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On pseudocompactness of remainders of certain spaces

Liang-Xue Peng?®”, Xing-Yu Hu?

?Department of Mathematics, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China

Abstract. Let Bbe a base for a nowhere locally compact Tychonoff space X and let bX be a compactification
of X. Then the following two statements hold:

(1) The remainder bX \ X of X is pseudocompact if and only if for any countable infinite subfamily V
of B there exists an accumulation point of the family V in bX \ X.

(2) If for any countable infinite subfamily V of B the set of all accumulation points of the family V in
X is not a nonempty compact set of X, then bX \ X is pseudocompact.

Let X = [];; Xi be a product space and S be a subset of X satisfying the following condition:

(*) For each nonempty countable set | C I, the projection p; : X — [[;; X; satisfies that p;(S) = X; :=
Hie Xi.

]If B is the canonical base for X and Vs = {B;N S : i € w} is a countable infinite subfamily of B85 = {BN S :
B € B} such that the set F of all accumulation points of the family Vs in S is nonempty, then for any a € F
there exists a countable subset | of I such that pl‘l(p @)NS = pl‘l(p](a)) NFand forany a € I\ ], po(F) = X,.

By the above conclusions, we can get two known results in [8]. We finally show that if X = [];; Xiis a
product of a family {X; : i € I} of Tychonoff spaces such that uncountably many of them are non-compact and
Y is a dense subspace of X, then for every compactification bY of Y the remainder bY \ Y is pseudocompact.

1. Introduction

A topological space X is called pseudocompact if X is a Tychonoff space and every continuous real-valued
function defined on X is bounded [6]. Recall that a point x of a space X is an accumulation point of a family V
of subsets of X if every open neighborhood V', of x meets infinite elements of V. A subset A of a space X is
said to be bounded in X if every infinite family & of open subsets of X such that VN A # 0, for every V € ¢,
has an accumulation point in X [4]. So a Tychonoff space X is pseudocompact if X is bounded in itself.

A compactification of a space X is any compact space bX containing X as a subspace such that X is dense
in bX. In this note, a compactification of a Tychonoff space is a Hausdorff compactification. A remainder of
a space X is the subspace bX \ X of a compactification bX of X.

Recall that a paratopological group is a group with a topology such that the multiplication on the group is
jointly continuous. A topological group G is a paratopological group such that the inverse mapping of G into
itself associating x~! with x € G is continuous [5]. Recall that a space X is of countable type if every compact
subspace B of X is contained in a compact subspace F C X that has a countable base of open neighborhoods
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in X [1]. All metrizable spaces and locally compact spaces are of countable type. In [7], M. Henriksen and
J.R. Isbell proved that a Tychonoff space X is of countable type if and only if the remainder in any (or in
some) Hausdorff compactification of X is Lindelof. In [2], it was proved that each remainder of a topological
group G is Lindeldf, or each remainder of G is pseudocompact. In [3], Arhangel’skii and Bella investigated,
when a topological group G is pseudocompact at infinity, that is, when bG \ G is pseudocompact, for each
compactification bG of G. Let X = [];¢; Xi be a product space such that uncountably many of the factors
X; are non-compact. Also, let S be a subspace of X such that p;(S) = X for each countable set | C I, where
p; : X = Xj =[] Xi is the projection. If bS is a compactification of S, then the remainder bS \ S of S is
pseudocompact ([8], Theorem 2.4).

In this note, we also study when a remainder of Tychonoff space is pseudocompact. Recall that a subset

U of a space X is a regular open if U = U°. We first discuss some properties of regular open subsets of a
space. We mainly get the following conclusions. Let B be a base for a nowhere locally compact Tychonoff
space X and let bX be a compactification of X. Then the following two statements hold:

(1) The remainder bX \ X of X is pseudocompact if and only if for any countable infinite subfamily V of
B there exists an accumulation point of the family V in bX \ X.

(2) If for any countable infinite subfamily V of 8 the set of all accumulation points of the family V in X
is not a nonempty compact set of X, then bX \ X is pseudocompact.

Let X = [];; Xi be a product space and S be a subset of X satisfying the following condition: (+) For each
nonempty countable set | C I, the projection p; : X — [[;¢; X; satisfies that p;(S) = Xj := [[;g; Xi.
If Bis the canonical base for X and Vs = {B;NS : i € w}is a countable infinite subfamily of Bs = {BNS : B € B}
such that the set F of all accumulation points of the family Vs in S is nonempty, then for any a € F there
exists a countable subset | of I such that pf‘l (pr@)ns = pl‘l(p](a)) NF and for any a € I\ ], po(F) = X,. By
the above conclusions, we can get two known results in [8]. We finally show that if X = J];; X; is a product
space of a family {X; : i € I} of Tychonoff spaces such that uncountably many of them are non-compact and
Y is a dense subspace of X, then for every compactification bY of Y the remainder bY'\ Y is pseudocompact.

The set of all positive integers is denoted by IN and w is N U {0}. Let Z be the set of integers. Let R be
the set of all reals with the natural topology. In notation and terminology we will follow [6]. Let X be a
topological space and let Y be a dense subspace of X and A C Y. Then the closure of A in the subspace Y of

X is denoted by Z(Y) and the interior of the set A in the subspace Y of X is denoted by IntyA. The closure of
a subset A of a space X is denoted by A and the interior of the set A in X is denoted by A°.

2. Main results

Lemma 2.1. Let Y be a Tychonoff topological space. Then Y is not pseudocompact if and only if there exists an infinite
locally finite family V of nonempty regular open subsets of Y.

Proof. Suppose that Y is not pseudocompact. Then there exists a continuous function f : Y — R such
that f is not bounded. For each y € Y, there exists some n € Z such that f(y) € (n,n + 2). Since f is
not bounded, the set A = {n € Z : f(Y) N (n,n +2) # 0} is infinite. For each n € A, f71((n,n +2))is a
nonempty open subset of X and f(f~1((n, n + 2))0) C (n,n+2) =[n,n+2]. Since f is not bounded, we have
{f~H((n,n+ 2))O :n € A}| = w. So there exists an infinite subfamily V c {f~1((n,n + 2))O : n € A} such that
V is a family of pairwise distinct sets. For each y € Y, theset {n € A: (f(y) =1, f(y) + 1) N [n,n + 2] # 0} is
finite. Since the mapping f is continuous, the set O, = f7'(f(y) — 1, f(y) + 1) is an open neighborhood of
the point y in Yand {V €V :0,NV # 0} < w. So V is a locally finite family of nonempty regular open
subsets of X such that |V| = w.
For the converse, it follows from ([6], Theorem 3.10.22). [

Lemma 2.2. Let X be a topological space and let Y be a dense subspace of X. If U and V are regular open subsets of
X, then U= Vifandonlyif UNY =VNY.



L.-X. Peng, X.-Y. Hu / Filomat 38:20 (2024), 7091-7099 7093

Proof. Assume that U and V are regular open subsets of Xand UNY =V NY. ThusUNY =V NY. Since
U and V are open in X and Yis densein X, UNY = Uand VNY = V. Thus U = V. Since U and V are

regular open subsets of X, U = U andV=V.ThusU=V.
For the converse, itisobviousthat UNY =V NYifU=V. O

Lemma 2.3. Let X be a topological space and let Y be a dense subspace of X. If U C Y is a reqular open subset of the

subspace Y of X, then Uisa regular open subset of X such that U = U nYand U =V whenever V is an open
subset of X such that V.N'Y = U.

Proof. Since U is a regular open subsetof Y, U = ITli’yU(Y). Since U is open in Y, there exists an open subset
V of X such that VN'Y = U. Since Y is dense in X, U = V. Thus U =V'. Since ﬁm =UNnY=VnY, the
setU=VNYcV nY=UNYcUNY= Um. Since U = I?’lfyU(Y), wehave U= U NY. By the above
proof, we also know that U = V' whenever V is an open subset of X such that VNY = U. Thus Uisa
regular open subset of X and U = uny. O

Lemma 2.4. Let X be a topological space and let Y be a dense subset of X such that X \ Y is a reqular dense subspace
of X. If U ={U, : n € w}isa family of reqular open subsets of Y such that U is point-finite in Y and U, # U,
whenever n # m, then {U, :n € w}isa family of pairwise distinct regular open subsets of X such that the following
properties hold:

(1) {Uno N(X\Y) : n € w}is a family of pairwise distinct sets;
(2) Every family {O, : n € w} of open subsets of X \ Y satisfying O, C u,” for each n € w is infinite, and for each
mewtheset{inew: O, C mo} is finite.

Proof. Since Y = X and U, is a regular open subset of Y for each 1 € w, it follows from Lemma 2.3 that u,”
is a regular open subset of X and mo NY = U, for each n € w. Since mo NY = U, for eachn € w and
U, # U, whenever n # m, we have Uno * U_mo whenever n # m. So {Uno : n € w}is a family of pairwise
distinct regular open subsets of X. Since X \ Y is dense in X, by Lemma 2.2 Uno NX\Y) # U_mO NX\Y)
whenever n # m. So {mo N(X\Y):n € w}is a family of pairwise distinct open subsets of X \ Y.

Now we assume that O, is an open subset of X \ Y such that O, C Uno for each n € w. Suppose
{O,, : n € w} is finite. Then there exists some m € w suchthatA={ne€w: 0, C mo} is infinite.

Since X \ Y is a regular dense subspace of X and O,, is a nonempty open subset of the subspace X \ Y of
X, there exists an nonempty open (in X \ Y) subset W such that W C W ¢ Op. Thus Int(x\y)W(X\Y) is a

regular open subset of the subspace X\ Yof X. If V = Int(x\y)W(X\Y), then V c U, for each n € A. The set
X\Yisdensein X and V is a regular open subset of the subspace X \ Y of X. By Lemma 2.3, V'isa regular
open subset of X. So V' c E,O for each n € A. Since Y is dense in X, the set V'ny #0.

Take a point z € V°NY. Thenz e mo NY = U, for each n € A. This contradicts that {U,, : n € w} is
point-finite. Thus {O, : n € w} is infinite.

By the above proof, we know that {n € w : O,, C mo} is finite for each m. O

Theorem 2.5. Let X be a nowhere locally compact Tychonoff space with a base B and let bX be a compactification of
XandY = bX\ X. If Y is not pseudocompact, then there exists a countable infinite family V C B such that the set F
of accumulation points of the family V in bX is a nonempty compact subset of X.

Proof. Assume that Y is not pseudocompact. Then by Lemma 2.1 Y contains an infinite family U = {U,, :
n € w} of nonempty regular open subsets of Y such that U is locally finite in Y. We can assume that U, # U,
whenever n # m. Since X and Y are both dense in bX and U is point-finite in Y, the conditions of Lemma

—
2.4 are satisfied. So it follows from Lemma 2.4 that {Int,x Un( %) : n € w} is an infinite family of pairwise
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—(X
distinct regular open subsets of bX. For each n € w, the set (Intyx U,,( )) N X is a nonempty open subset of

—(
X. Since B is a base of X, there exists a family {B,, : n € w} C 8 such that B, # # and B, C (Intbxun( X)) NnX
for each n € w. By Lemma 2.4, the family {B, : n € w} is infinite. Thus there exists an infinite subfamily
V C (B, : n € w} such that V is a family of pairwise distinct sets.
—
For eachn € w, we let V,, = Inthxll,,( 9, Then by Lemma 2.3 V,, is a regular open subset of bX and

_ — —b
V,.NY = U, for each n € w. Since Y = bX, we have V,,( . Un( %) foreachn € w. Let E = {x € bX : xis

an accumulation point of the family {V,, : n € w} in bX}. Then E is equal to {x € bX : x is an accumulation
point of the family {U, : n € w} in bX]}. Since {U, : n € w} is locally finite in Y, the set E is contained in X.
By Lemma 2.4, we know that for each O € V, the set {n € w : O C V,, N X} is finite. Thus if a point y € bX
is an accumulation point of the family V in bX, then y is an accumulation point of the family {V,, : n € w}.
Denote M = {x € bX : x is an accumulation point of the family V in bX}. Thus M c E c X. Since |V| = w
and bX is compact, M # 0. [

In fact, we have the following result.

Theorem 2.6. Let X be a nowhere locally compact Tychonoff topological space and let bX be a compactification of
X. Let (U, : n € w} be any locally finite family of nonempty open subsets of bX \ X such that U, # U, whenever
n # m. If W, is an open subset of bX such that W, N (bX \ X) = U, and V,, is a nonempty open subset of X such that
Ve C Wy N X foreachn € w, then V = {V,, : n € w} is infinite and the set F of accumulation points of the family V
in bX is nonempty and is contained in X.

Proof. Suppose that [{V,, : n € w}| < w. Then there exists some m € w such that |{n € w : V,, = Vj,}| = w. Let
Viw=0and {n € w:V, = O} = {k; : i € w} such that k; # k; whenever i # j. Then V}, = O C W, for each
i € w. Since O is an open subset of X, there exists an open subset O* of bX such that O* N X = O. Since
bX \ X = bX, we have O" N (bX \ X) # 0.

Let z be any point of O* N (bX \ X) and let M, be any open subset of bX \ X such that z € M. Then there
exists an open subset M} of bX such that M; N (bX \ X) = M,. Thus M; N O" is an open neighborhood of the
point z in bX. Since X = bX and O* N X = O, the set O is dense in O*. Thus (M; N O0*) N O # 0. Let p be any
point of (M; N O*) N O. Then p € O and M; N O" is an open neighborhood of the point p in bX. For each
i€w,OcCWand Wi, N X\ X) = Uy, Thus Uy, is dense in Wy, for each i € w. So M; N O* N Uy, # 0 for each
i € w. Since Uy, € bX\ X foreachi € w, theset M;NO* NUy, = M, NO" NU, # 0. Thus M, N Uy, # 0 for each
i € . This contradicts with that {U, : n € w} is locally finite in bX \ X. Thus the family V = {V,, : n € w} is
infinite. Since V is infinite, the set F of accumulation points of the family V in bX is nonempty.

By the proof above, we know that for each n € w the set {m € w : V,, ¢ W,,} is finite. Then the set
F c {x € bX : x is an accumulation point of the family {W, : n € w}} is a nonempty subset of X. [

Lemma 2.7. IfY is a dense subset of a space X and U is a regular open subset of X, then U'ny=UnNYisa reqular
open subset of Y.

Proof. Since U is aregular open subset of X, we have Uo = U. Thus UOHY =UNY. Foranyx € Inty(mm),
there exists an open subset Oy of the subspace Y of X such thatx € O, C TnY". Since Yisadense subspace
of X, we have U N Y(Y) cUNY = U. Then x € O, c U. Thus, there exists an open subset W, ofOX such
that W, NY = O,. Since Y is dense in X, we have W, = O,. Thusx € W, c W, c U. Sox € U . Thus

Inty@@nY ) cU NY =UNY. Itis obvious that U N Y C Inty(@AY ). Thus Inty(WNY ) = UNY.
Then U N Y is a regular open subset of Y. [

Lemma 2.8. Let Y7 and Y, be dense subsets of a space X. If U and V are reqular open subsets of Y1 and U # V, then
un Y, and V'n Y are regular open subsets of Y, and the two sets un Y, and V'n Y, are distinct.
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Proof. Since U and V are regular open subsets of Y; and Y_1 = X, it follows from Lemma 2.3 that U and V'
are regular open subsets of X. Thus, by Lemma 2.7 the sets U NnY,andV NY,are regular open subsets
of Y2.

By Lemma 2.3, wehave U=U NY;and V=V NYj. SincelU # V,wehaveU #V .SincelU and V
are two distinct regular open subsets of X, it follows from Lemma 2.2 that the two sets un Y, and VN Y,
are distinct. [

Theorem 2.9. Let X be a nowhere locally compact Tychonoff space and let B be a base for X. If bX is a compactification
of X, then bX\ X is pseudocompact if and only if for any countable infinite subfamily V of B there exists an accumulation
point of the family V in bX \ X.

Proof. (=) Assume that bX \ X is pseudocompact. Let V C B be any countable infinite subfamily of
8. Without loss of generality, we assume that V = {V,, : n € w} and V,, # V,,, whenever n,m € w and
n # m. Since X is regular, for every n € w there exists a nonempty regular open subset U, of X such
that U, c U, c V,. If |{U, : n € w}| < w, then there exists k € w such that |{m € w : U, = Uy}| = w. If

— (X
z € Intpyx) Uk( ) N (bX \ X), then z is an accumulation point of the family V in bX. Now we assume that
for every k € w, the set {m € w : U,, = Uy} is finite. Without loss of generality, we assume that U, # U,
whenever n # m.

—
It follows from Lemma 2.8 that {Intx, Un( RS (bX\ X) : n € w} is a family of regular open subsets of
— — (b
bX\ X and Intox U, O (BX\X) # Ity Uy N (bX\ X) whenever n # m. Since bX \ X is pseudocompact,
the family {Int(bx)m X N (bX\ X) : n € w} has an accumulation point z in bX \ X. Then the point z is an

b —
accumulation point of the family {Intgx, U,,( Yine w}. By Lemma 2.3, we have U, = Intgx) Un( Y A X for
every 1 € w. Thus the point z is an accumulation point of the family V.

(&) It follows from Theorem 2.5 that the remainder bX \ X of X is pseudocompact. [J

Recall that a m-base of a space X at a subset F of X is a family V of nonempty open subsets of X such
that every open neighborhood of F contains at least one element of V. A strong m-base of a space X at a
subset F of X is an infinite family V of nonempty open subsets of X such that every open neighborhood of
F contains all but finitely many elements of V ([2], p. 120).

Lemma 2.10. ([2], Lemma 2.1) Suppose that X is a nowhere locally compact Tychonoff space, and bX is a compact-
ification of X. Then the following two conditions are equivalent:

(1) The remainder Y = bX \ X is not pseudocompact;
(2) There exists a nonempty compact subspace F of X which has a strong countable 1-base in X.

Lemma 2.11. Let X be a regular space and B be a base for X. Then the following two conditions are equivalent:

(1) There exists a countable infinite subfamily V = {V, : n € w} C B such that the set F = {x € X : x is
an accumulation point of the family V in X} is a nonempty compact subset of X and any infinite family
{W,, : n € w} of open subsets of X, with W, C V,, for every n € w, has an accumulation point in X.

(2) There exists a nonempty compact subspace F of X which has a strong countable r-base V' C B.

Proof. (1) = (2) Assume that there exists a countable infinite subfamily V = {V,, : n € w} C B such that the
set F = {x € X : x is an accumulation point of the family V in X} is a nonempty compact subset of X and
any infinite family {W, : n € w} of open subsets of X, with W,, C V,, for every n € w, has an accumulation
pointin X

Claim. The family V is a strong countable 7-base at the compact subset F of X.

Proof of Claim. Take any open neighborhood O of the set F in X. Since X is regular and F is compact,
there exists an open set W of X such that F C W cO. Suppose {V e V:V\ W # 0)] = w.

Casel |[V\W:V eV, V\W #0) = w.
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Then the family {V\ W : V € V,V \ W # 0} has an accumulation point y in X. Then y € F. On the other
hand, V\ W c X \ W for every V € V. Then the point y ¢ W. This contradicts with F ¢ W.

Case2 (V\W: VeV, V\W # 0}l < w.

Since {V € V : V\ W # 0}] = w, there exists a countable infinite subfamily V; c V such that
WeVi:V\W=#0|=wand [V\W:VeW) =1 For any V € V), take a point x € V \ W. Then
x € () V1. Thus the point x is an accumulation point of the family V; in bX. Then x € F. A contradiction.

Thus there exists a nonempty compact subspace F of X which has a strong countable r-base V' C 8.

(2) = (1) Let V" C B be a strong countable n-base at a nonempty compact subspace F of X.

Case1 If {V € V' : V C F} is infinite, then there exists a countable infinite subfamily V = {V,, : n €
w} C{V € V' : V C F} such that V,, # V,,, whenever n # m. Since F is compact, the set A = {x € X : xis an
accumulation point of the family V} is a nonempty closed subset of F. Then A is compact. It is obvious that
for any infinite family {W, : n € w} of open subsets of X with W,, C V,, for every n € w has an accumulation
point in X.

Case 2 Now we assume that {V € V" : V \ F # 0} is infinite. Without loss of generality, we assume that
V\F # 0 for every V € V. For every V € V’, there exists a nonempty set Oy € B such that Oy C V and
OyNF =0. Since V' isa strong countable 7t-base at F and Oy NFE =0for every V € V', theset {Oy : V € V'}
is infinite. Thus there exists a subfamily {V,, : n € w} C V’ such that Oy, # Oy, whenever n # m. Then
V = {Oy, : n € w} is also a strong countable -base at F. Since F is compact and V = {Oy, : n € w}is a
strong countable rt-base at F, the set A of accumulation points of the family V in X is a nonempty compact
subset of X.

Let W = {W, : n € w} be any infinite family of open subsets of X with W, C Oy, for every n € w. Since
V = {Oy, : n € w} is a strong countable n-base at the compact set F and W,, C Oy, for every n € w, there
exists an accumulation point y € F of the family ‘W in X. Thus (1) holds. O

Theorem 2.12. Let X be a nowhere locally compact Tychonoff space and let B be a base for X. Then for any
compactification bX of X, the following two conditions are equivalent:

(1) The remainder Y = bX \ X is not pseudocompact;
(2) There exists a nonempty compact subspace F of X which has a strong countable m-base y C B.

Proof. (2) = (1) Suppose that there exists a nonempty compact subspace F of X which has a strong countable
ni-base y C B. Then by Lemma 2.10, bX \ X is not pseudocompact.

(1) = (2) Now we prove the converse. Suppose that bX \ X is not pseudocompact. By Theorem 2.9,
there exists a countable infinite subfamily V C 8 such that ¥ has no accumulation points in bX \ X. We
can assume that V = {V,, : n € w} is such that V,, # V,,, whenever n # m.

Let F; = {x € bX : x is an accumulation point of the family V in bX}. Then F; is a nonempty closed
compact subset of bX. Since the family V has no accumulation points in bX \ X, the set F; € X. Let
W = {W, : n € w} by any infinite family of open subsets of X with W,, c V,, for every n € w. Then the
family ‘W has an accumulation point in bX. Then the set A of accumulation points of the family W in bX
is a nonempty subset of F;. Thus A is contained in X. Then the family W has an accumulation point in
X. By Lemma 2.11, there exists a nonempty compact subspace F of X which has a strong countable m-base
yc8. O

Theorem 2.13. Let B be a base for a nowhere locally compact Tychonoff space X and bX be a compactification of X. If
for any countable infinite subfamily V of B the set of all accumulation points of the family V in X is not a nonempty
compact set, then bX \ X is pseudocompact.

Proof. Suppose that bX\ X is not pseudocompact. By Theorem 2.5, there exists a countable infinite subfamily
V of B such that the set A of all accumulation points of the family V in bX is nonempty and contained in
X. Since the set A is closed in bX, the set A is compact. Since A C X, the set A is equal to {x € X : x is an
accumulation point of the family V in X} and A is compact. A contradiction. O
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Theorem 2.14. Let X = [];; Xi be a product space and S be a subset of X satisfying the following condition:

(*) For each nonempty countable set | C I, the projection py : X — [1;¢; X satisfies that py(S) = Xj := [];¢; Xi.
If B is the canonical base for X and Vs = {B; N S : i € w} is a countable infinite subfamily of Bs = (BN S : B € B}
such that the set F of all accumulation points of the family Vs in S is nonempty, then for any a € F there exists a
countable subset | of I such that p,‘l(p](a)) NS = pl‘l(p](a)) NFand forany a € I\ ], po(F) = X,.

Proof. Let 8B be the canonical base for X and let 85 = {(BNS : B € B}. Then Bs is a base for S. Let
Vs ={B;NS :i € w} be a countable infinite subfamily of Bs such that the set F of all accumulation points of
the family Vs in S is nonempty.

For every i € w, let B; = (yeq, p;l(ll“) for some finite subset A; of I and U, is open in X,, for each a € A;.
If]=Uf{Ai:i€ew}, then|]| <wand J C I.

Since F # 0, we take a € F. Let a; = pj(a) and let b be any element of pj‘l(a]) N S. In what follows,

we show that b € F. Let Oy be any open neighborhood of the point b in X and O, € 8. Assume that
Op = Nk p;kl(Oak), where n € N, ax € I and O,, is open in X,, for each k < n. We can assume thatn > 1,
{1, ...,a;} € ] for some 1 < i < nand {ajs1, ...} CI\]. I C = M p;kl(Oak), then the set C is an open
neighborhood of the point a in X.

Sincea € F,wehave|lmew:CNB, NS #0}|=w. fmewand CNB,, NS # 0, thenlety,, € CNB,,NS.
Forany i+ 1 < k < n, we let y,, € O,,. Since J U {aji1,...,a,} C I is countable, there exists x,, € S
such that pj(x,) = py(ym) and pa,,, (¥m) = Ya,, for each t € {1,..,n —i}. Then x,, € Oy N B, N'S. Then
fm € w:0yNByNS#0}| =w Thusb € FNS = F. Then we have proved p;'(a;) N S € p;"(ay) N F. Since
F c S, wehave pl‘l(a]) NFcC pl‘l(a]) N S. Thus pl‘l(zz]) ns= p,‘l(a]) NF.

Now we prove the last part of this result. Leta € I'\ ], then {a} U | = J; C I is countable. If x, € X,, then
there exists y € S such that p;(y) = pj(a) and pa(y) = x4. Theny € SN p,’l(p](a)).

Since pj‘l(p](a)) Nns = pj‘l(p](a)) N F, the point y € F. Thus x, € p,(F). Hence p,(F) = X, for each
acl\]. O

Proposition 2.15. Let X; be a Tychonoff space for each i € I and X = [];e; Xi be a product space. Let S be a subset of
X satisfying the following conditions:

(1) py(S) = Xj := [y Xi for each nonempty countable subset | C I;

(2) for each nonempty countable subset | C I and each y € X, the intersection pl‘l(y) N S is not compact.

Then for the canonical base B for X and for any infinite family Vs of Bs = {BNS : B € B}, the set F of all
accumulation points of the family Vs in S is not a nonempty compact set.

Proof. Suppose that there exists a countable infinite subfamily Vs = {B; N S : i € w} of Bs such that the set F
of all accumulation points of the family Vs in S is a nonempty compact subset of S. Then it follows from
Theorem 2.14 that for any a € F there exists a countable subset | of I such that pj‘l(p](a)) NS = pj‘l(p](a)) NF.

Since the set pl‘l(p](a)) N F is a closed subset of F and F is compact, the set pl‘l (pj(a)) N F is compact. Then
pl‘l(p 7(a)) N S is compact. A contradiction. [

Proposition 2.16. ([8], Corollary 2.7) Let X; be a Tychonoff space for each i € 1. Let X = [];;; Xi be a product space
and S be a subset of X satisfying the following conditions:
(1) py(S) = Xj := [y Xi, for each nonempty countable subset | C I;
(2) for each nonempty countable subset | C I and each y € X, the intersection pl‘l(y) N S is not compact.
If bS is a compactification of S, then the remainder Y = bS \ S is pseudocompact.
Proof. It can be gotten by Theorem 2.13 and Proposition 2.15. [

Theorem 2.17. ([8], Theorem 2.4) Let X = [];; Xi be a product of Tychonoff spaces such that uncountably many
of the factors X; are non-compact. Also, let S be a subspace of X such that p;(S) = X for each countable set | C I,
where py : X — Xj = [l,e) Xi is the projection. If bS is a compactification of S, then the remainder Y = bS \ S is
pseudocompact.
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Proof. It is obvious that the subspace S of X is dense in X and it is nowhere locally compact. Let 8 be the
canonical base for X and let Bs = {BN S : B € B}. Then B; is a base for S. Suppose there exists a countable
infinite subfamily Vs = {B; N S : i € w} of Bs such that the set F of all accumulation points of the family Vs
in S is a nonempty compact subset of S. Then by Theorem 2.14 there exists a countable subset | of I such
that for any a € I \ |, po(F) = X,. Since the set F is compact and the mapping p;|S is continuous, the space
X, is compact for every a € I\ J. A contradiction.

Thus for any infinite subfamily Vs of 85 = (BN S : B € B}, the set F of all accumulation points of
the family Vs in S is not a nonempty compact set. Then it follows from Theorem 2.13 that bS \ S is
pseudocompact. [

Corollary 2.18. ([8], Corollary 2.5) Let {X; : i € I} be a family of Tychonoff spaces such that uncountably many of
them are non-compact. If bX is a compactification of the product X = [];e; Xi, then the remainder Y = bX \ X is
pseudocompact.

Lemma 2.19. Let X be a regular space. If Y is a dense subspace of X and there exists a nonempty compact subspace
F of Y which has a strong countable 1i-base in Y, then the set F has a strong countable mt-base in X.

Proof. Let V = {V,, : n € w} be a family of nonempty open subsets of Y such that V is a strong countable
ni-base at a nonempty compact set Fin Y.

For every n € w, there exists an open subset U, of X such that U, N Y = V,. Let O be any open
neighborhood of F in X. By regularity of X and compactness of F, there exists an open set W of X such that
Fc W c W c O. Then there exists m € @ such that Vi, C WNY for every n > m. Thus 77, c W c O for
every n > m. Since Y = X and U, is open in X such that U, N Y = V,, for every n > m, we have V, = U,.
Thus for every n > m, U, C U, c O. Then {U,, : n € w} is a strong countable r-base at Fin X. [

Theorem 2.20. Let X be a Tychonoff space and let Y be a dense subspace of X. If X is a nowhere locally compact
space such that for every compactification bX of X the remainder bX \ X of X is pseudocompact, then for every
compactification bY of Y the remainder bY \ Y of Y is pseudocompact.

Proof. Let bY be any compactification of Y. Since X is nowhere locally compact and Y is dense in X, the
subspace Y of X is nowhere locally compact. Then bY \ Y is dense in bY.

Suppose that the remainder bY \ Y is not pseudocompact. By Lemma 2.10, there exists a nonempty
compact subspace F of Y which has a strong countable mt-base in Y. By Lemma 2.19, the set F has a strong
countable nt-base in X. If bX is a compactification of X, then it follows from Lemma 2.10 that the remainder
bX '\ X of X is not pseudocompact. A contradiction. Thus the remainder bY \ Y of Y is pseudocompact. [

By Corollary 2.18 and Theorem 2.20, we have the following result.

Theorem 2.21. Let {X; : i € I} be a family of Tychonoff spaces such that uncountably many of them are non-compact.
If X = [ ;e Xi is a product space and Y is a dense subspace of X, then for every compactification bY of Y the remainder
bY \ 'Y is pseudocompact.

In ([8], Theorem 3.7), it was proved that if X is an uncountable space and G is a non-compact topological
group, then the remainder of C,(X, G) in any Hausdorff compactification is pseudocompact.

We denote the family of continuous functions from X to Y by C(X, Y). The set with the topology inherited
from the product space Y* (that is, the pointwise convergence topology) is denoted by C,(X, Y). Every space
of the form C,(X, Y) is assumed to be dense in YX ([8], p- 360). By Theorem 2.21, we have the following
result.

Theorem 2.22. Let Y be a non-compact Tychonoff space. If X is uncountable and C,(X,Y) is dense in Y, then for
any compactification bC,(X,Y) of C,(X, Y), the remainder bCp(X, Y) \ Cy(X, Y) is pseudocompact.

Proof. Since X is uncountable and Y is non-compact such that C,(X, Y) is dense Y*, by Theorem 2.21, for
any compactification bC,(X, Y) of C,(X, Y), the remainder bC,(X, Y) \ C,(X, Y) is pseudocompact. [J
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