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Abstract. In this paper we derive the explicit, closed-form, recursion-free formulae for the arbitrary-order
Fréchet derivatives of the exponential and logarithmic functions in unital Banach algebras (complex or real).
These computations are obtained via the Bochner integrals for the Banach algebra valued functions, with
respect to the standard Lebesgue measure. As an application, we utilize our results in the approximation
schemes of the solutions to stochastic functional differential equations.

1. Introduction

1.1. Motivation
Recent progress in stochastic analysis requires a further advancement in the study of the higher-order

Fréchet derivatives of the elementary functions. In particular, the papers [17], [18], and [33] provide the
approximate solutions to certain classes of stochastic differential equations, obtained by the multivariate or
infinitely-dimensional Taylor polynomials, and thus demand the Fréchet differentiability of the diffusion
and drift coefficients up to certain orders. However, effectively determining the said higher-order deriva-
tives is, in practice, impossible to achieve, as calculating the Fréchet derivatives is a difficult task even
for the matrix functions. In that sense, the results from [17] and [18] are in need of an alternative solving
strategy.

In this paper we find a way to go around this computational difficulty: we manage to rewrite the
problem in terms of the real Hilbert spaces and the corresponding real operator algebras, where we express
the unknown higher-order derivatives of the diffusion and drift coefficients via the higher-order Fréchet
derivatives of the exponential and logarithmic functions, defined in those operator algebras. Thus, we
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proceed to study the higher-order Fréchet derivatives of the exponential and logarithmic functions in
arbitrary unital Banach algebras, complex or real. Consequently, we derive the recursion-free, closed-form
integral representations of these derivatives, which are precisely the Bochner integrals for the Banach
algebra valued functions, with respect to the standard Lebesgue measure. To our knowledge, no similar
results exist in the available literature. By doing so, we simultaneously generalize some results from [1]–[3],
[5]–[14], [21], [34], and [43] to the setting of the unital Banach algebras and C∗-algebras.

1.2. A quick revision of Fréchet derivatives

For the given normed spaces V1 and V2, letD1 be the closed unit ball in V1. Assume that U is an open
subset of V1, u0 ∈ U, and let f : U→ V2 be a function. The function f is Fréchet differentiable at point u0, if
there exists a bounded linear operator f ′u0

∈ L(V1,V2) such that

lim
r→0

1
r

(
f (u0 + rv) − f (u0)

)
= f ′u0

(v)

uniformly for v ∈ D1. In that sense, the operator f ′u0
is the Fréchet derivative of f at point u0. By definition,

it is always assumed that r is a real scalar. Direct verification shows that, if L ∈ L(V1,V2), then, for every
u0 ∈ V1, it follows that L′u0

= L. The first-order derivatives appear frequently in the perturbation analysis of
the matrix and operator functions and equations, see [1]–[3], [6], [7], [12], [13], [15], [19]–[22], [24]–[26], [39]
and so on.

The higher-order Fréchet derivatives are defined in the following manner. For a fixed D ∈N, observe the
spaceMD(VD

1 ,V2) of all bounded (continuous) D−linear mappings from VD
1 to V2 (a mapping is D−linear

if it is linear in each coordinate). Then,MD(VD
1 ,V2) is isometrically isomorphic to the space (see [20])

L

V1,L (V1,L (. . . ,L(V1,V2)) . . .)︸                              ︷︷                              ︸
D−1– nested parentheses

 .
Respectively, if the mapping v 7→ f ′u0

v is Fréchet differentiable at u0, considered as a mapping from U to
L(V1,V2), then its Fréchet derivative belongs to the space L(V1,L(V1,V2)), and the latter is isomorphic to
M2(V2

1 ,V2). Thus, the second-order Fréchet derivative of f at (u0,u0) is f ′′(u0,u0) ∈ M2(V2
1 ,V2). By continuing

this process (assuming the higher-order derivatives exist), it follows that the Dth-order Fréchet derivative
of f : U→ V2 at point (u0, . . . ,u0︸     ︷︷     ︸

D

) is f (D)(u0, . . . ,u0︸     ︷︷     ︸
D

) ∈ MD(VD
1 ,V2).

The higher-order Fréchet derivatives are used when a more sophisticated analysis is required, and
when the first-order approximations are not enough. Regardless, effectively computing the higher-order
derivatives is a quite complicated task. Often, these calculations are, in one way or another, transfered to
the costly recursive procedures, or, to the functional calculus of the square matrix functions ([1]–[6], [12],
and [26]), and to the functional calculus on the complex unital Banach algebras ([19] and [22]).

The main advantage of our results, compared to the cited ones, lies in their amenability: they are
recursion-free, spectrum-independent, and are valid in both real and complex Banach algebras. The
recursion-free part paves a clear path for the numerical procedures, which will use significantly less memory
and faster algorithms. The spectrum-independent part is extremely convenient for Banach algebras, since
effectively calculating the spectrum of the given element is in general impossible. Finally, the real and
complex spaces part is of crucial importance, given that most of the ODEs, PDEs and SDEs occur in the
real Banach spaces, and not every real Banach space can be treated as a complex one.

2. Fréchet derivatives of the exponential function

In this section we assume thatA is a fixed unital Banach algebra over the field F ∈ {C,R}with unity 1.
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The exponential function a 7→ ea, at point a ∈ A, is defined as the series

ea :=
∞∑

k=0

1
k!

ak,

where a0 := 1A for every a ∈ A. The above series is absolutely convergent by the virtue of the extended
triangle inequality:

∥ea
∥ =

∥∥∥∥∥∥∥
∞∑

k=0

1
k!

ak

∥∥∥∥∥∥∥ ≤
∞∑

k=0

1
k!
∥a∥k = e∥a∥ < ∞,

which implies its convergence inA (the characterization of all Banach spaces, see [35]).
It is well-known that the exponential function has the first-order Fréchet derivative at any point a ∈ A,

and the corresponding integral formula (1) below has been established in several different papers, see e. g.
[1]–[3], [5]–[7], and [9]:

(ea)′a (b) =
∫ 1

0
ea(1−s)beasds, b ∈ A. (1)

In particular, the results derived in [1]–[3], [5], and [6, pp. 310–320], are obtained for the exponentials
of the complex matrices only, with a comment that some of the results can be extended to the infinitely-
dimensional spaces. The authors of the paper [7] treat the integral in (1) as a Riemman integral, and assume
that A is a complex unital Banach algebra. Similarly, the book [9, pp. 161–180] mentions the expressions
like (1) on several occasions, and treats them as Bochner integrals with respect to an arbitrary absolutely-
convergent complex measure, however, it also assumes that A is a complex unital Banach algebra, and
there is no explicit proof that (1) is valid in any unital Banach algebra.

In what follows, we proceed to prove that (1) holds in arbitrary unital Banach algebras A, real or
complex, where the integral representation in (1) is meant in the sense of the Bochner integral with respect
to the scalar Lebesgue measure. The proof is more technical than intuitive as demonstrated below.

Indeed, we follow the same idea as in [5, pages 167-171]. For a given a ∈ A, consider the following
linear differential equation

dh(r)
dr
= a h(r), h(0) = c ∈ A, (2)

where h : [0,R] → A is a continuously differentiable function and R > 1 is arbitrary. By [14, page 8], it
follows that (2) has a unique solution in the set of continuously differentiable A-valued functions. Then,
by the Fundamental Theorem for the Bochner integral, we get

h(r) − h(0) =
∫ r

0
a h(s) ds, r ∈ [0,R].

Notice that f (r) = ear is given by the series which is uniformly convergent on every bounded set, so the
differentiation under the infinite sum is allowed. Since f ′(r) = aear and this is a continuous function, we see
that f is the solution to (2) with the initial condition f (0) = 1 ∈ A. Therefore

ear = 1 +
∫ r

0
aeasds, r ∈ [0,R].

If we consider the inhomogeneous case

dh(r)
dr
= a h(r) + 1(r), h(0) = c ∈ A, r ∈ [0,R], (3)
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where 1 : [0,R]→A is a continuous function, we see that

d
dr

(
e−arh(r)

)
= e−ar

(
dh(r)

dr
− a h(r)

)
= e−ar1(r),

and obtain

h(r) = earc +
∫ r

0
ea(r−s)1(s) ds, r ∈ [0,R],

where we used that ear commutes with eas. Now, take a, b ∈ A. Then h(r) = e(a+b)r is the solution to the
differential equation

dh(r)
dr
= (a + b)h(r), h(0) = 1.

We can rewrite this equation in the form

dh(r)
dr
= a h(r) + b h(r), h(0) = 1,

and consider the last equation as the inhomogeneous in the form (3). Thus, we get

h(r) = ear +

∫ r

0
ea(t−s)b h(s) ds, r ∈ [0,R],

implying

ea+b
− ea =

∫ 1

0
ea(1−s)b e(a+b)sds. (4)

Notice that in general ea does not commute with eb. Hence, the following result is proved.

Theorem 2.1. For every a ∈ A, the limit lim
r→0
∥ea+rb

− ea
∥ = 0 converges uniformly in b ∈ K, where K is a bounded

subset ofA.

Proof. For a fixed r > 0 we have

ea
− ea+rb =

∞∑
k=1

1
k!

ak
−

∞∑
k=1

1
k!

(a + rb)k.

By definition, the above series both unconditionally converge, therefore they can be observed term by term.
Respectively, for every k ∈N one has

(a + rb)k = (a + rb) · . . . · (a + rb)︸                    ︷︷                    ︸
k−times

= ak + rbak−1 + arbak−2 + a2rbak−3+

+ r2b2ak−2 + ar2b2ak−3 + . . . + rkbk,

which gives that
1
k!

(
ak
− (a + rb)k

)
=

1
k!

(
rbak−1 + . . . + rkbk

)
and such expressions are bounded by (for r < 1):

1
k!
∥rbak−1 + . . . + rkbk

∥ ≤
r
k!

(
∥b∥∥a∥k−1 + . . . + ∥b∥k

)
<

r
k!

(∥a∥ + ∥b∥)k .
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Consequently,

∥ea+rb
− ea
∥ =

∥∥∥∥∥∥∥
∞∑

k=1

1
k!

ak
−

∞∑
k=1

1
k!

(a + rb)k

∥∥∥∥∥∥∥ ≤
∞∑

k=1

1
k!

∥∥∥ak
− (a + rb)k

∥∥∥
≤

∞∑
k=1

r
k!

(∥a∥ + ∥b∥)k = re(∥a∥+∥b∥) = O(r).

Thus when r→ 0 + 0 the proposed limit holds.

Remark 2.2. If F = C then the statement directly follows from the functional calculus for holomorphic functions (as
pointed out in [19]). Let γ∗ denote the graph of γ, which is a compact subset of C. The mapping c 7→ σ(c) is upper
semi-continuous. This means that for every a ∈ A and ϵ > 0 there exists some δ > 0, such that if b ∈ A and ∥b∥ < δ,
then σ(a + b) ⊂ σ(a) + D(0; ϵ), where D(0; ϵ) = {z ∈ C : |z| < ϵ}. Since we have a, b ∈ A arbitrary, we adjust r by
∥rb∥ < δ. Thus, if γ is a cycle surrounding σ(a), and the distance from γ∗ to σ(a) is greater then ϵ, then γ surrounds
σ(a + rb) if ∥rb∥ < δ. We have

ea =
1

2πi

∫
γ∗

ez(z − a)−1dz

and

ea+rb =
1

2πi

∫
γ∗

ez(z − a − rb)−1dz.

It follows that

∥ea+rb
− ea
∥ ≤

1
2π

∫
γ
∥ez
∥∥(z − a − rb)−1

− (z − a)−1
∥ · |dz|

and the last integral is a line integral. Since

(z − a − rb)−1
− (z − a)−1 = r(z − a − rb)−1b(z − a)−1

and
lim
r→0

(z − a − rb)−1b(z − a)−1 = (z − a)−1b(z − a)−1,

it follows that
lim
r→0
|r|∥ez
∥∥(z − a − rb)−1b(z − a)−1

∥ = 0

uniformly in z ∈ γ∗ and uniformly in b ∈ K. Thus,

lim
r→0
∥ea+rb

− ea
∥ = 0

uniformly in b ∈ K. ♣

Summing up the calculations above, we now prove that (1) holds inA in the sense of the Bochner integral
with respect to the scalar Lebesgue measure.

Theorem 2.3. Let f : A → A be defined as f (a) = ea for every a ∈ A. Then f is Fréchet differentiable at every
a ∈ A and

f ′a (b) =
∫ 1

0
ea(1−s)beasds (5)

holds for every b ∈ A, where the integral in (5) is interpreted as the Bochner integral of the A−valued expression,
with respect to the Lebesgue measure.
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Proof. Notice that b 7→
∫ 1

0
ea(1−s)beasds is a bounded linear operator inA. For r ∈ R, r , 0, from (4), we have

1
r

(
ea+rb

− ea
− r

∫ 1

0
ea(1−s)beasds

)
=

1
r

(
r
∫ 1

0
ea(1−s)b e(a+rb)sds − r

∫ 1

0
ea(1−s)beasds

)
=

∫ 1

0
ea(1−s)b

(
e(a+rb)s

− eas
)
ds.

Theorem 2.1 implies that lim
r→0

(
e(a+rb)s

− eas
)
= 0 uniformly in s ∈ [0, 1] and b ∈ DA. Thus,

lim
r→0

∫ 1

0
ea(1−s)b

(
e(a+rb)s

− eas
)
ds = 0

uniformly in b ∈ DA, and the statement follows.

2.1. Higher-order derivatives of the exponential function

Below we proceed to derive a more general integral representation for the higher-order Fréchet deriva-
tives of the exponential function. To our knowledge, there are no such results in the available literature,
not even for the matrix exponential function. On that note, we mention that paper [19] also studies the
higher-order Fréchet derivatives of the exponential function, but again, observes the exponential function
over a complex unital Banach algebra, and uses the holomorphic functional calculus to achieve the desired
results. Consequently, the integration paths used in [19] are spectrum-dependent and are not fixed, since
they must surround the spectrum of a inA, which is not possible if we allow F to be R.

Let m > 1 be a fixed positive integer, and let Sm denote the set of all permutations of the set {1, . . . ,m}.
One given j ∈ Sm gives the ordered m−tupple ( j(1), . . . , j(m)) of numbers 1, . . . ,m. For a fixed j ∈ Sm and
for a fixed 2 ≤ k ≤ m, observe the following m + 1 − k−tupple ( j(k), . . . , j(m)). We define the set P( j, k) in the
following manner

P( j, k) := { j(p)
∣∣∣ if j(p) = min

(
j(k), . . . , j(p)

)
, k ≤ p ≤ m},

and
P( j, 1) := { j(p)

∣∣∣ if j(p) = min
(
j(1), . . . , j(p)

)
, 1 ≤ p ≤ m}.

Notice that P( j, ℓ) is nonempty because j(ℓ) ∈ P( j, ℓ), for every 1 ≤ ℓ ≤ m.

Similarly, observe the k − 1−tupple ( j(1), . . . , j(k − 1)). We define the set Q( j, k) as

Q( j, k) := { j(q)
∣∣∣ if j(q) = min

(
j(q), . . . , j(k − 1)

)
, 1 ≤ q ≤ k − 1}

and finally
Q( j,m + 1) := { j(q)

∣∣∣ if j(q) = min
(
j(q), . . . , j(m)

)
, 1 ≤ q ≤ m}.

It follows that j(ℓ − 1) ∈ Q( j, ℓ) for every 2 ≤ ℓ ≤ m + 1.

Example 2.4. Let m = 5 and let j ∈ S5 be given as

j : (1, 2, 3, 4, 5) 7→ (3, 4, 5, 1, 2).

Choose k = 3. Then j(3) = 5, and P( j, 3) = {1, 5}, P( j, 1) = {1, 3}, while Q( j, 3) = {3, 4} and Q( j, 6) = {1, 2}. ♣
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Let (s1, . . . , sm) ∈ [0, 1]m be an arbitrary element of the m−dimensional unit cube. For an arbitrary but fixed
j ∈ Sm define the scalar expressions

ψk( j) :=
∏

j(p)∈P( j,k)

(1 − s j(p)) ·
∏

j(q)∈Q( j,k)

s j(q), for every 2 ≤ k ≤ m,

ψ1( j) :=
∏

j(p)∈P( j,1)

(1 − s j(p)),

ψm+1( j) :=
∏

j(q)∈Q( j,m+1)

s j(q).

(6)

Note that ψ1, ψk and ψm+1 all depend on the chosen j ∈ Sm.

Theorem 2.5. Let A be a unital complex Banach algebra and a ∈ A. The mapping f : a 7→ ea has the Fréchet
derivative of any order at a. Precisely, for every m ∈ N, and for every (b1, . . . , bm) ∈ Am, the mth-order Fréchet
derivative of f at point (a, . . . , a), in (b1, . . . , bm), is given as

f (m)
(a, . . . , a︸ ︷︷ ︸

m−times

)(b1, . . . , bm)=
∑
j∈Sm

∫ 1

0
. . .

∫ 1

0︸    ︷︷    ︸
m−times

Ψ(a,m, j, b1, . . . , bm)dsmdsm−1 . . . ds1, (7)

where
Ψ(a,m, j, b1, . . . , bm) := eaψ1( j)b j(1)eaψ2( j)b j(2) · . . . · eaψm( j)b j(m)eaψm+1( j),

and ψk( j) are provided by (6) for every fixed j ∈ Sm.

Proof. Notice that for every m ∈ N and for every 1 ≤ k ≤ m the expressions ψk( j) are bounded on [0, 1] and
the functions eaψk( j) are bounded and integrable in both the Lebesgue and Riemman sense. The proof follows
from the Dominated convergence theorem and the mathematical induction. When m = 1, the statement
obviously holds. Assume the theorem is true for m and it will be proved that the statement holds for m + 1
as well.
Since, in general, the algebra A is not commutative, the exponential identity ea+b = eaeb does not hold.
However, there is a way of going around this and that is by noting that

ea+rb = ea + r f ′a (b) + o(r) = ea + r
∫ 1

0
ea(1−s)beasds + o(r), r→ 0. (8)

Denote by

I( j, k, b) =
∫ 1

0
ea(1−s)ψk( j)beasψk( j)ds,

where one j ∈ Sm is fixed. For that particularly chosen j, observe the integrand Ψ(a,m, j, b1, . . . , bm) of the
corresponding summand from (7):

Ψ(a,m, j, b1, . . . , bm) = eaψ1( j)b j(1)eaψ2( j)b j(2) · . . . · eaψm( j)b j(m)eaψm+1( j). (9)

This expression is Fréchet differentiable at point a, if there exists the limit(
eaψ1( j)b j(1)eaψ2( j)b j(2) · · · eaψm( j)b j(m)eaψm+1( j)

)′
a

(bm+1)

= lim
r→0

r−1 [
Ψ(a + rbm+1,m, j, b1, . . . , bm) −Ψ(a,m, j, b1, . . . , bm)

]
.

(10)
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Applying the transformation (8) to each exponential e(a+rbm+1)ψk( j) in (10), we get

Ψ(a + rbm+1,m, j, b1, . . . , bm)

= e(a+rbm+1)ψ1( j)b j(1) · · · b j(m)e(a+rbm+1)ψm+1( j)

=
(
eaψ1( j) + rI( j, 1, bm+1) + o(r)

)
b j(1)

(
eaψ2( j) + rI( j, 2, bm+1) + o(r)

)
· b j(2) · · · b j(m)

(
eaψm+1( j) + rI( j,m + 1, bm+1) + o(r)

)
= eaψ1( j)b j(1)eaψ2( j)b j(2) · · · eaψm( j)b j(m)eaψm+1( j)

+ rI( j, 1, bm+1)b j(1)eaψ2( j)b j(2)eaψ3( j)b j(3) · · · eaψm( j)b j(m)eaψm+1( j)

+ eaψ1( j)b j(1)rI( j, 2, bm+1)b j(2)eaψ3( j)b j(3) · · · b j(m)eaψm+1( j)

+ eaψ1( j)b j(1)eaψ2( j)b j(2)rI( j, 3, bm+1)b j(3)eaψ4( j)b j(4) · · · b j(m)eaψm+1( j)

+ · · ·

+ eaψ1( j)b j(1)eaψ2( j)b j(2)eaψ3( j)b j(3) · · · eaψm( j)b j(m)rI( j,m + 1, bm+1)
+ o(r).

This shows that the limit in (10) exists and is equal to the following(
eaψ1( j)b j(1)eaψ2( j)b j(2) · . . . · eaψm( j)b j(m)eaψm+1( j)

)′
a

(bm+1)

=

(∫ 1

0
eaψ1( j)(1−sm+1)bm+1eaψ1( j)sm+1 dsm+1

)
· b j(1)eaψ2( j)b j(2)eaψ3( j)b j(3) · · · eaψm( j)b j(m)eaψm+1( j)

+ eaψ1( j)b j(1)

(∫ 1

0
eaψ2( j)(1−sm+1)bm+1eaψ2( j)sm+1 dsm+1

)
· b j(2)eaψ3( j)b j(3) · · · b j(m)eaψm+1( j)

+ · · ·

+ eaψ1( j)b j(1)eaψ2( j)b j(2) . . . eaψm( j)b j(m) ·

(∫ 1

0
eaψm+1( j)(1−sm+1)bm+1eaψm+1( j)sm+1 dsm+1

)
.

(11)

Since every entity in (11) is bounded, and does not depend on the set of integration, it follows that(
eaψ1( j)b j(1)eaψ2( j)b j(2) · . . . · eaψm( j)b j(m)eaψm+1( j)

)′
a

(bm+1) =

=

∫ 1

0

[
eaψ1( j)(1−sm+1)bm+1eaψ1( j)sm+1 b j(1)eaψ2( j)b j(2) . . . eaψm( j)b j(m)eaψm+1( j)

]
dsm+1+

+

∫ 1

0

[
eaψ1( j)b j(1)eaψ2( j)(1−sm+1)bm+1eaψ2( j)sm+1 b j(2) . . . b j(m) · eaψm+1( j)

]
dsm+1+

+ · · ·+

+

∫ 1

0

[
eaψ1( j)b j(1)eaψ2( j)b j(2)eaψ3( j) . . . b j(m)eaψm+1( j)(1−sm+1)

· bm+1eaψm+1( j)sm+1
]
dsm+1.

(12)

Notice that one integrand of the form (9) gives m + 1 summands, and each summand (as in (12)) is an
integral of the form ∫ 1

0
eaψ′1( j′)b j′(1)eaψ′2( j′)b j′(2) · . . . · eaψ′m+1( j′)b j′(m+1)eaψ′m+2( j′)dsm+1,

where:

• j′ is a permutation of the set {1, . . . ,m + 1}, such that j′(i0) = m + 1 for one particular index i0, and
j′(i) = j(i) for the remaining indices i , i0;
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• in that sense, if j′(i0) = m+1 and j′(i) = j(i) for the remaining indices i , i0, thenψ′i0 ( j′) := ψi0 ( j)(1−sm+1),
ψ′i0+1( j′) := ψi0 ( j)sm+1, and ψ′i ( j′) := ψi( j).

It is not difficult to see that, for every 2 ≤ k ≤ m + 1, the sets P( j′, 1), P( j′, k), Q( j′, k), and Q( j′,m + 2), which
are defined in the analogous way, as were the sets P( j, 1), P( j, k), Q( j, k), and Q( j,m + 1), respectively, are
compatible with the afore-mentioned construction of ψ′i ( j′), 1 ≤ i ≤ m + 2. The above observation holds for
every fixed permutation j ∈ Sm, which proves that every integrand (9) of every summand from (7) is Fréchet
differentiable, ergo the Dominated convergence theorem can be applied (recall that the Fréchet derivative
produces a bounded linear operator for bm+1), thus

f (m+1)

(a, . . . , a)︸   ︷︷   ︸
m+1−times

(b1, . . . , bm+1) =

 f (m)

(a, . . . , a)︸   ︷︷   ︸
m−times

(b1, . . . , bm)


′

a

(bm+1)

=
( ∑

j∈Sm

∫ 1

0
. . .

∫ 1

0︸     ︷︷     ︸
m−times

[
eaψ1( j)b j(1)eaψ2( j) . . . b j(m)eaψm+1( j)

]
dsmdsm−1 . . . ds1

)′
a
(bm+1)

=
∑
j∈Sm

∫ 1

0
. . .

∫ 1

0︸     ︷︷     ︸
m−times

([
eaψ1( j)b j(1) . . . b j(m)eaψm+1( j)

])′
a
(bm+1)dsmdsm−1 . . . ds1

=
∑

j′∈Sm+1

∫ 1

0
. . .

∫ 1

0︸     ︷︷     ︸
m+1−times

[
eaψ′1( j′)b j′(1) . . . eaψ′m+1( j′)b j′(m+1)eaψ′m+2( j′)

]
dsm+1dsm. . .ds1.

Example 2.6. Let m = 2. Direct calculations give

(ea)′′(a,a)(b1, b2) =
∫ 1

0

∫ 1

0
ea(1−s1)(1−s2)b2ea(1−s1)s2 b1eas1 ds2ds1

+

∫ 1

0

∫ 1

0
ea(1−s1)b1eas1(1−s2)b2eas1s2 ds2ds1.

(13)

It can be easily verified that Theorem 2.5 holds: both addends in (13), read from left to right, define one permutation
of the index-set for {b1, b2}: the first one defines j1 : (1, 2) 7→ (2, 1) while the second one defines j2 : (1, 2) 7→ (1, 2).
Recall the sets P( j, k) and Q( j, k), determined by the fixed permutation j and the position k. By applying (6) to j1, the
following holds

P( j1, 1) = {1}, P( j1, 2) = {2}, Q( j1, 2) = {1}, Q( j1, 3) = {1},

ψ1( j1) = (1 − s1)(1 − s2), ψ2( j2) = (1 − s1)s2, ψ3( j2) = s1,

while, for j2 we get
P( j2, 1) = {1}, P( j2, 2) = {2}, Q( j2, 2) = {1}, Q( j2, 3) = {1, 2},

ψ1( j2) = (1 − s1), ψ2( j2) = s1(1 − s2), ψ3( j2) = s1s2.

Indeed, (13) has the form

(ea)′′(a,a) (b1, b2) =
∑
j∈S2

∫ 1

0

∫ 1

0
eaψ1( j)b j(1)eψ2( j)b j(2)eψ3( j)ds2ds1.

♣
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Example 2.7. Let m = 3. Then the third-order Fréchet derivative of the function f : a 7→ ea at point (a, a, a) is a
bounded trilinear operator, which by the virtue of Theorem 2.5 attains the value at point (b1, b2, b3):

f ′′′(a,a,a)(b1, b2, b3) =
∫ 1

0

∫ 1

0

∫ 1

0
eaψ1 b1eaψ2 b2eaψ3 b3eaψ4 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
eaψ5 b1eaψ6 b3eaψ7 b2eaψ8 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
eaψ9 b2eaψ10 b1eaψ11 b3eaψ12 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
eaψ13 b2eaψ14 b3eaψ15 b1eaψ16 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
eaψ17 b3eaψ18 b1eaψ19 b2eaψ20 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
eaψ21 b3eaψ22 b2eaψ23 b1eaψ24 ds3ds2ds1.

Notice that every summand contains one permutation of the set {b1, b2, b3}. Below we proceed to determine the scalars
ψ1, . . . , ψ24 by (6). Recall the sets P( j, k) and Q( j, k), defined via the fixed permutation j and the position k. Let

j1 :
(

1 2 3
1 2 3

)
be the first permutation of the index set. Then

P( j1, 1) = {1}, P( j1, 2) = {2}, P( j1, 3) = {3},

Q( j1, 2) = {1}, Q( j1, 3) = {1, 2}, Q( j1, 4) = {1, 2, 3}.

Applying (6) we get
ψ1 = 1 − s1, ψ2 = (1 − s2)s1, ψ3 = (1 − s3)s1s2, ψ4 = s1s2s3.

The remaining parameters are computed accordingly:

Let j2 :
(

1 2 3
1 3 2

)
be the second permutation of the index set. Then

P( j2, 1) = {1}, P( j2, 2) = {3, 2}, P( j2, 3) = {2},

Q( j2, 2) = {1}, Q( j2, 3) = {1, 3}, Q( j2, 4) = {1, 2},

ψ5 = 1 − s1, ψ6 = (1 − s2)(1 − s3)s1, ψ7 = (1 − s2)s1s3, ψ8 = s1s2.

Let j3 :
(

1 2 3
2 1 3

)
be the third permutation of the index set. Then

P( j3, 1) = {2, 1}, P( j3, 2) = {1}, P( j3, 3) = {3},

Q( j3, 2) = {2}, Q( j3, 3) = {1}, Q( j3, 4) = {1, 3},

ψ9 = (1 − s2)(1 − s1), ψ10 = (1 − s1)s2, ψ11 = (1 − s3)s1, ψ12 = s1s3.

Let j4 :
(

1 2 3
2 3 1

)
be the fourth permutation of the index set. Then

P( j4, 1) = {2, 1}, P( j4, 2) = {3, 1}, P( j4, 3) = {1},



D. Djordjević, B. Djordjević / Filomat 38:21 (2024), 7503–7524 7513

Q( j4, 2) = {2}, Q( j4, 3) = {2, 3}, Q( j4, 4) = {1},
ψ13 = (1 − s2)(1 − s1), ψ14 = s2(1 − s1)(1 − s3), ψ15 = (1 − s1)s2s3, ψ16 = s1.

Let j5 :
(

1 2 3
3 1 2

)
be the fifth permutation of the index set. Then

P( j5, 1) = {3, 1}, P( j5, 2) = {1}, P( j5, 3) = {2},

Q( j5, 2) = {3}, Q( j5, 3) = {1}, Q( j5, 4) = {1, 2},
ψ17 = (1 − s3)(1 − s1), ψ18 = (1 − s1)s3, ψ19 = s1(1 − s2) ψ20 = s1s2.

Finally, let j6 :
(

1 2 3
3 2 1

)
be the sixth permutation of the index set. Then

P( j6, 1) = {3, 2, 1}, P( j6, 2) = {2, 1}, P( j6, 3) = {1},

Q( j6, 2) = {3}, Q( j6, 3) = {2}, Q( j6, 4) = {1},
ψ21 = (1 − s3)(1 − s2)(1 − s1), ψ22 = s3(1 − s2)(1 − s1), ψ23 = (1 − s1)s2, ψ24 = s1.

Combining the previous calculations we obtain

f ′′′(a,a,a)(b1, b2, b3)

=

∫ 1

0

∫ 1

0

∫ 1

0
ea(1−s1)b1eas1(1−s2)b2eas1s2(1−s3)b3eas1s2s3 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
ea(1−s1)b1eas1(1−s2)(1−s3)b3eas1s3(1−s2)b2eas1s2 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
ea(1−s2)(1−s1)b2eas2(1−s1)b1eas1(1−s3)b3eas1s3 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
ea(1−s2)(1−s1)b2eas2(1−s3)(1−s1)b3eas2s3(1−s1)b1eas1 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
ea(1−s3)(1−s1)b3eas3(1−s1)b1eas1(1−s2)b2eas1s2 ds3ds2ds1

+

∫ 1

0

∫ 1

0

∫ 1

0
ea(1−s3)(1−s2)(1−s1)b3eas3(1−s2)(1−s1)b2eas2(1−s1)b1eas1 ds3ds2ds1.

♣

3. Fréchet derivatives of the logarithmic function

LetA be a unital Banach algebra over the field F ∈ {R,C}. Then eA = {ea : a ∈ A} denotes the range of
the exponential function in A. Recall that the logarithm is defined at a ∈ A, if and only if there exists an
element c ∈ A, such that ec = a, that is, if and only if a ∈ eA. In that case, we write c ∈ ln a. However, note
that even if A is the set of square matrices, the value ln a is not uniquely determined, but rather refers to
the set {c ∈ A : ec = a}, see [5], [6], [9], and [25].

The matrix and operator logarithms appear quite naturally in the operator theory and matrix analysis,
as well as in the applied linear algebra, see e.g. [8], [10], [11], [13], [14], [21], [34], and [43]. Respectively,
the perturbation analysis is always required for the function a 7→ ln a, and is commonly conducted via
its first-order Fréchet derivatives, see [3] and [13]. Additionally, it is worth mentioning that the Fréchet
derivatives in general subject to the chain rule, thus derivatives of the logarithmic function can be used to
study the derivatives of the exponential function, and vice versa.

In the afore-mentioned literature, the primal focus was on the logarithmic function itself, and its first-
order Fréchet derivative. Their existence and uniqueness varied from the matrix to the operator setting,
and depended on the choice of the field F. In this section, we study the logarithmic function, together with
its arbitrary-order Fréchet derivatives, in both real and complex setting.
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3.1. The complex case
When F = C, one can apply the rich spectral theory of complex unital Banach algebras and the corre-

sponding functional calculus. Consequently, the following result emerges.

Theorem 3.1. [39, Theorem 10.30, p. 264]. LetA be a unital complex Banach algebra (not necessarily commutative),
and let a ∈ A. Suppose that 0 belongs to the unbounded connected component of C \ σA(a), where σA(a) is the
spectrum of a inA. Then there exists c ∈ A such that ec = a.

Much like the complex logarithm, ln a is not uniquely determined, see [5], [6], [9], [11], [19], [25], and [43] .
The following therem characterizes the set of logarithms for a ∈ eA.

Theorem 3.2. [43, Theorem 2.] Let V be a complex Banach space, and letA be the (unital complex) Banach algebra
of bounded linear operators in V. Assume that a ∈ A is any element whose resolvent set contains a curve connecting
λ1 = 0 and some λ2 ≥ ∥a∥.

Then, there exists a continuously differentiable function f : [0, 1] → A, such that f (0) = 0, and f (s) , 0 when
s , 0, f (1) = 1, and 1(s) := ( f (s) − 1)/ f (s) lies entirely in the resolvent set of a. Moreover, the equation a = ec has a
solution given as

c f = ln a =
∫ 1

0
f ′(s)(a − 1A)( f (s)a + (1 − f (s))1A)−1ds. (14)

These solutions c f commute with any operator which commutes with a. Any other solution to ec = a, which commutes
with a, differs from c f by a logarithm of the identity. The integral converges in A. The logarithm is an analytic
function of a.

By the uniform boundedness principle, it is not difficult to see that the above integral absolutely
converges as well, thus the expression in (14) is Lebesgue-measurable and can be regarded once again as a
Bochner integral of anA−valued function with respect to the Lebesgue measure.

Specially, if σ(a) ∩R−0 = ∅, then the function f1(s) := s can be observed and (14) reduces to

ln a =
∫ 1

0
(a − 1)((a − 1)s + 1)−1ds. (15)

It is a known result (see e.g. [13], [25] or [43]), that if a and b are elements inA such that σ(a + rb) ∩R−0 = ∅
for every 0 ≤ r ≤ 1, then (15) gives

ln(a + rb) − ln a = r
∫ 1

0
((a − 1)s + 1)−1b((a − 1)s + 1)−1ds + o(r), r→ 0. (16)

Then the relation (16) is, for convenience, rewritten as∫ 1

0
((a − 1)s + 1)−1b((a − 1)s + 1)−1ds

=

∫ 1

0
s−1((a − 1) + s−1)−1bs−1((a − 1) + s−1)−1ds

=

∫ 1

0
s−2((a − 1) + s−1)−1b((a − 1) + s−1)−1ds

=

∫
∞

1
((a − 1) + s′)−1b((a − 1) + s′)−1d(s′)

=

∫
∞

0
(a + s′′)−1b((a + s′′)−1d(s′′),

(17)

where s′ := s−1 and s′′ := s′ − 1, i.e.

(ln)′a : b 7→
∫
∞

0
(a + s)−1b(a + s)−1ds. (18)
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3.2. The real case

Let F = R. Following the notation from [30] and [34], the spectrum of a inA is denoted as:

σ∗
A

(a) := {λ ∈ C : (a − λ1A)(a − λ̄1A) − is not invertible inA}.

The set σ∗
A

is a non-empty compact in C, see e.g. [30]. The following theorem gives sufficient conditions
for the existence of a real logarithm of the given element a ∈ A:

Theorem 3.3. [34, Theorem 2.1.] Let A be a unital real Banach algebra (not necessarily commutative), and let
a ∈ A.

(1) Suppose that 0 belongs to the unbounded connected component of C \ σ∗
A

(a). Then there exists c1 ∈ A such
that ec1 = a2.

(2) If (−∞, 0] belongs to the unbounded connected component of C \σ∗
A

(a) then there exists c ∈ A such that ec = a.

Corollary 3.4. [34, Corollary 2.2.] Let A be a unital real Banach algebra (not necessarily commutative), and let
a ∈ A. Suppose that 0 belongs to the unbounded connected component of C \ σ∗

A
(a). Then

a ∈ eA ⇔ a = e2, for some e ∈ A.

It will be shown that under these assumptions the integral expression (15) holds in real Banach algebras.
The authors of [13] showed this for the space of real square matrices, though their argument can without
loss of generality be extended to real Banach algebras, since they had derived their results with the help of
the abstract linear differential equations, which are valid in general Banach spaces. Below is presented a
slightly modified idea from [13, pp. 10].

LetA be a real unital Banach algebra, and let a ∈ eA, i.e. a has a real logarithm in the sense of Theorem
3.3. For every s ∈ [0, 1], let c(s) ∈ A be such that the following parametric equation is satisfied (precisely,
this is a C0 semigroup inA):

ec(s) = (a − 1)s + 1, 0 ≤ s ≤ 1. (19)

By construction it follows that a and c(s) commute, thus c(s) satisfies the ODE

d
ds

c(s) = (a − 1)e−c(s), 0 ≤ s ≤ 1, c(0) = 0. (20)

The eq. (19) implies that c(s) is a real logarithm of (a − 1)s + 1 for every s ∈ [0, 1], therefore

a = c(1) =
∫ 1

0
(a − 1)e−c(s)ds =

∫ 1

0
(a − 1)((a − 1)s + 1)−1ds, (21)

so the relation (15) holds in real unital Banach algebras as well (though it has to be taken into account for
which elements of A the real logarithm exists). Furthermore, the authors of [13] showed that the relation
(16) holds in the space of real square matrices, and, by using the same argument, it can be concluded that
the realtion (16), and, consequently, (18), hold in the real unital Banach algebras:

(ln)′a : b 7→
∫
∞

0
(a + s)−1b(a + s)−1ds, (22)

where a and b satisfy conditions of Theorem 3.3.
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3.3. Higher-order derivatives of the logarithmic function

Given that the same Bochner integral representations hold for the first-order Fréchet derivative of the
logarithmic function in both real and complex Banach algebras, it is convenient to derive the general
formula for the arbitrary-order Fréchet derivatives of the logarithmic function simultaneously, in both real
and complex Banach algebras. Precisely, the following result is obtained:

Theorem 3.5. Let A be a unital Banach algebra over the field F ∈ {R,C}, let a ∈ eA, and let m ∈ N be arbitrary.
Assume that (1) or (2) holds, where

(1) F = R and (b1, . . . , bm) ∈ Am are given, such that

m⋃
k=1

 ⋃
0≤r≤1

σ∗
A

(a + rbk)

 ∩R−0 = ∅. (23)

(2) F = C and (b1, . . . , bm) ∈ Am are given, such that

m⋃
k=1

 ⋃
0≤r≤1

σA(a + rbk)

 ∩R−0 = ∅. (24)

Then, the function a 7→ ln a has its Fréchet derivatives of orders up to m at point a, and produces the m−linear
operator in (b1, . . . , bm) given as

(ln)(m)

(a, . . . , a)︸   ︷︷   ︸
m−times

(b1, . . . , bm) =
∑
j∈Sm

(−1)m+1
∫
∞

0
(a + s)−1b j(1)(a + s)−1b j(2) · · · (a + s)−1b j(m)(a + s)−1ds, (25)

where Sm denotes the set of all permutations of the index set {1, . . . ,m}, and the integral in (25) is the Bochner integral
of theA−valued expression with respect to the Lebesgue measure.

Proof. The proof is virtually the same for both cases and it follows from the resolvent equations, by the
principle of the mathematical induction and from the Dominated convergence theorem. When m = 1 the
statement follows from (18) and (22). Assume the statement is true for m − 1 and proceed to prove that it
also holds for m ≥ 2.

Due to the assumptions (1) and (2), the given entities are invertible in the respective algebras, and the
resolvent equations produce

(a + rb + s)−1
− (a + s)−1 = (a + s)−1(−rb)(a + rb + s)−1,

thus the function a 7→ (a + s)−1 is Fréchet differentiable at a and

(a + rb + s)−1 = (a + s)−1
− r(a + s)−1b(a + s)−1 + o(r), r→ 0.

Let j ∈ Sm−1 be fixed. The latter goes to show that the function

a 7→ (a + s)−1b j(1)(a + s)−1b j(2) . . . (a + s)−1b j(m−1)(a + s)−1

is Fréchet differentiable at a and the corresponding bounded linear operator L attains at point bm the value
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given below:

Lbm = lim
r→0

r−1
[
(a + rbm + s)−1b j(1) · · · b j(m−1)(a + rbm + s)−1

− (a + s)−1b j(1)(a + s)−1
· · · (a + s)−1b j(m−1)(a + s)−1

]
= lim

r→0
r−1

[(
(a + s)−1

− r(a + s)−1bm(a + s)−1 + o(r)
)

b j(1)

·

(
(a + s)−1

− r(a + s)−1bm(a + s)−1 + o(r)
)

b j(2)

· ... · b j(m−1)

(
(a + s)−1

− r(a + s)−1bm(a + s)−1 + o(r)
)

− (a + s)−1b j(1)(a + s)−1 . . . (a + s)−1b j(m−1)(a + s)−1
]

= lim
r→0

r−1
[
(−r)(a + s)−1bm(a + s)−1b j(1) · · · b j(m−1)(a + s)−1

−

− r (a + s)−1b j(1)(a + s)−1bm(a + s)−1b j(2) . . . b j(m−1)(a + s)−1

− · · · − r (a + s)−1b j(1)(a + s)−1b j(2) . . . (a + s)−1bm(a + s)−1 + o(r)
]

= (−1)
∑
j′∈Sm

(a + s)−1b j′(1)(a + s)−1 . . . (a + s)−1b j′(m)(a + s)−1,

where Sm denotes the set of all permutations of the set {1, . . . ,m}. Finally, the Dominated convergence
theorem is applied and

( ln)(m)
(a, . . . , a︸ ︷︷ ︸

m−times

)(b1, . . . , bm) =

(ln)(m−1)

(a, . . . , a)︸   ︷︷   ︸
m−1−times

(b1, . . . , bm−1)


′

a

(bm)

= (−1)m+1
∑
j′∈Sm

∫ +∞

0
(a + s)−1b j′(1)(a + s)−1 . . . (a + s)−1b j′(m)(a + s)−1ds.

3.4. Special case: C∗-algebras
Let C be a complex unital C∗−algebra. The spectral mapping theorem states that for every a ∈ C−1,+ (the

set of positive invertible elements in C is traditionally denoted as C−1,+), there exists a unique self-adjoint
c ∈ Ch, such that ln a = c. Additionally, if a and b are invertible positive elements in C, then, for a small
enough positive r, the value a + rb is also a positive and invertible element in C. By definition, it follows
that a 7→ ln a is Fréchet differentiable at a and for any b ∈ C−1,+ produces a bounded linear operator. By the
virtue of Gelfand-Naimark-Segal theorem, the following corollary holds:

Corollary 3.6. Let a ∈ C−1,+ be a positive invertible element in C. Then, the function a 7→ ln a has the Fréchet
derivative of any order at point a, and for every m ∈ N, and for every (b1, . . . , bm) ∈

(
C
−1,+

)m
, the formula (25) is

valid.

4. Applications to SFDEs

4.1. Problem setting
In this section the notation is the same as the one used in [18]. Let N ∈ N be an arbitrary fixed natural

number and let τ > 0 be an arbitrary positive number. It is significant to consider the space of continuous
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functions from [−τ, 0] to RN, denoted as C([−τ, 0],RN). Recall that, when equipped with the supremum
norm ∥ · ∥∞, this becomes a Banach space, denoted as

VR :=
(
C([−τ, 0],RN), ∥ · ∥∞

)
.

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space, equipped with the filtration {Ft}t≥0 which
is non-decreasing, continuous from the right and F0 contains all the P−null sets. Let η be a VR−valued
random variable, which is Ft0−adapted starting from a certain point in time t0 ≥ 0. Let M ∈ N (in general
M , N), and let

w(t) := (w1(t), . . . ,wM(t)), t ≥ 0

be a standard M−dimensional Wiener process, which is Ft−adapted and independent from F0.
Let (y(t))t≥0 be any Ft−adapted N−dimensional stochastic process. Recall that (y(t))t≥0 is said to have a

functional delay (i.e., has a time-dependent memory) of length τ, if the value of y at some point t′ (i.e., the
N−dimensional random variable y(t′)) depends on the values which process had taken during the period
[t′ − τ, t′):

y(t′) ∼ {y(t′ + θ) : θ ∈ [−τ, 0)},

where ∼ refers to statistical, stochastic, or functional dependence. This delay is portrayed as the process

yt := {y(t + θ) : θ ∈ [−τ, 0]}, t ≥ 0.

With respect to the previous notation, the functional stochastic differential equation (SFDE for short),
with the time-dependent delay of length τ, is governed by the equation

dx(t) = α(xt, t)dt + β(xt, t)dw(t), t ∈ [t0,T], (26)

where time is measured from the initial moment t0 until the final moment T, 0 ≤ t0 < T < ∞. Thus, the
SFDE (26) has an initial condition of the form

xt0 = η, (27)

where, in general, η is anFt0− adapted process. Under these circumstances, the functionη is the experimental
input data, which also has the memory of length τ.

The drift and diffusion coefficients α and β are mappings from VR× [t0,T] toRN andRN×M, respectively,
which are assumed to be Borel measurable. The appropriate integral form of (26)–(27) is

x(t) = η(0) +
∫ t

t0

α(xℓ, ℓ)dℓ +
∫ t

t0

β(xℓ, ℓ)dw(ℓ), t ∈ [t0,T]. (28)

Such equations model important phenomena with memory, like the various predator-prey models, the
population-growth models, the gene expression rates, the particle motion in liquids, the viscoelasticity of
fluids, and the controlled movement of the rigid bodies, see [4, 23, 27–29, 31, 32, 36, 40–42].

The process {x(t)}t≥0 defined by (28) has been studied in [18], where it was successfully approximated
P−almost everywhere, and in the Lp

−sense, by the almost surely continuous processes as demonstrated
below. For an arbitrary positive large enough integer n, let {t0, t1, . . . , tn−1,T} be the equidistant nods in the
segment [t0,T], where tk := t0 + k(T − t0)/n for 0 ≤ k ≤ n. Provided that α is Fréchet differentiable up to the
order m1, and that β is Fréchet differentiable up to the order m2, with respect to their first arguments, at the
nod points xn

tk
, the following approximate equations emerge for every k ∈ {0, . . . ,n − 1}:

xn(t) = xn(tk) +
∫ t

tk

m1∑
i=0

α(i)
(xn

tk
,ℓ)(

i times︷                  ︸︸                  ︷
xn
ℓ − xn

tk
, . . . , xn

ℓ − xn
tk

)

i!
dℓ +

∫ t

tk

m2∑
i=0

β(i)
(xn

tk
,ℓ)(

i times︷                  ︸︸                  ︷
xn
ℓ − xn

tk
, . . . , xn

ℓ − xn
tk

)

i!
dw(ℓ), t ∈ [tk, tk+1],
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(29)

where α(i)
(xn+tk ,ℓ)

and β(i)
(xn

tk
,ℓ) represent the i-th Fréchet derivatives of the functionals α and β with respect to

their first arguments, respectively, at the points (xn
tk
, ℓ), where i ≥ 1, and α(0)

(xn
tk
,ℓ) = α(xn

tk
, ℓ) ∈ RN, β(0)

(xn
tk
,ℓ) =

β(xn
tk
, ℓ) ∈ RN×M. In that sense, for each k ∈ {0, 1, . . . ,n − 1}, a different initial condition is considered: when

k = 0, the initial condition is (27), while, for k > 0, the initial condition is xn
tk
= {xn(tk+θ), | θ ∈ [−τ, 0]}, which

is derived from the solution of the previous equation. The approximate solution xn = {xn(t) | t∈ [t0 − τ,T]},
constructed by the successive connection of the initial condition (27) and the processes {xn(t) | t ∈ [tk, tk+1]} at
the points tk, k ∈ {0, 1, . . . ,n − 1}, is almost surely a continuous process which approximates the solution to
the eq. (28)P−almost everywhere and in the Lp

−sense. Other than [18], the paper [33] proposes a numerical
method for solving the eq. (28) under certain conditions.

As previously mentioned, it is quite difficult to calculate the arbitrary-order Fréchet derivatives of the
diffusion and drift coefficients α and β, and one of the main goals of this paper is to find another way
of effectively obtaining these derivatives, without the restrictive assumptions or the loss in precision. It
is worth mentioning that even in some special cases of SFDEs (which appear when the process has time-
constant delays, or even if it does not have delays at all, see [16] and [17], for example), one runs into the
problem of computing the higher-order Fréchet derivatives of the matrix functions, which itself is again a
computational problem.

4.2. Transferring the problem to real Hilbert spaces
To start, note that the Banach space VR consists of the continuous N−dimensional vector-valued

functions. Respectively, for each a ∈ VR there exists an N−tuple of real, scalar, continuous functions
a1, . . . , aN ∈ C([−τ, 0],R) such that

a = (a1, . . . , aN) .

Recall that each coordinate space C([−τ, 0],R) is dense in L2([−τ, 0],R) with respect to the ∥ · ∥2−norm, and
that the convergence in ∥ · ∥∞−norm implies the same in ∥ · ∥2−sense, while the converse does not hold.
Motivated by this observation, rather than the initial space VR, the spaceH , which is defined as

H := L2([τ, 0],RN) :=
{

a : [−τ, 0]→ RN :
∫

[−τ,0]

(
∥a(θ)∥(2,RN)

)2
dµ(θ) < ∞

}
,

where µ denotes the standard Lebesgue measure on [τ, 0] and ∥ ·∥(2,RN) denotes the standard Euclidean norm
in RN, will be the subject of consideration. The scalar product inH is well-defined as

⟨a, b⟩H :=
∫

[−τ,0]
⟨a(θ), b(θ)⟩RN dµ(θ).

The spaceH becomes a Hilbert space by taking the completion with respect to the ∥ · ∥(2,H)−norm, which is
generated via the scalar product ⟨·, ·⟩H .

Proposition 4.1. With respect to the previous notation, the space(
C([−τ, 0],RN), ∥ · ∥(2,H)

)
is dense inH .

Proof. Recall thatH is isomorphic to

H � L2([−τ, 0],R) ⊗RN � L2([−τ, 0],R) ⊕ L2([−τ, 0],R) ⊕ . . . ⊕ L2([−τ, 0],R)︸                                                           ︷︷                                                           ︸
N−times

where ⊗ denotes the tensor product and ⊕ denotes the orthogonal sum. Since C([−τ, 0],R) is dense
in L2([−τ, 0],R) with respect to the ∥ · ∥2−norm and H is merely the copy of N such spaces, the proof
immediately follows.
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It is also straightforward that RN can be embedded into H via the constant functions: for every
(r1, . . . , rN) ∈ RN, let r be the constant function given as

r : θ 7→ (r1, . . . , rN), ∀θ ∈ [−τ, 0].

Thus, in the further text, the space (RN, 1
τ∥ · ∥2, ) considered as a subspace ofH without any restrictions, will

be observed. Respectively, one can observe α : H → H , where α represents the continuous extension of
the initial α from VR to the entireH .

Assumption α. The functional α : VR × [−τ, 0] → RN allows a continuous extension in the first argument
α : H × [t0,T]→H .

Since α is m1−times Fréchet differentiable in its first argument by assumption, and it allows a continuous
extension to the entire space H , it follows that all the Fréchet derivatives of α (which are bounded linear
operators in the respective spaces) also allow the continuous linear extensions to H , which are precisely
the Fréchet derivatives of the function α of the respective order. Furthermore, the considered Fréchet
derivatives of α are taken with respect to their first argument,s and are chosen precisely at the nod points
xn

tk
, while the time argument ℓ runs freely over [tk, tk+1]. Without loss of generality, one can fix t ∈ [t0,T],

and introduce the function ᾱt : H →H , defined as

ᾱt(·) := α(·, t),

which is also Fréchet differentiable m1−times inH by the same argument. Denote its first-order derivative
at some point a ∈ H as Daᾱt. Then Daᾱt is a bounded linear operator in the direction b1, for some b1 ∈ H , by
definition. This means that, when computing the higher-order derivatives of ᾱt, one computes the respective
higher-order derivatives of Daᾱt(b1) with respect to a. In other words, the second-order derivative of ᾱt at
a, at point (b1, b2), is the first-order derivative of a 7→ Daᾱt(b1) at point b2:

D2
(a,a)ᾱ

t(b1, b2) = lim
r→0+0

r−1
(
D(a+rb2)ᾱ

t(b1) −D(a)ᾱ
t(b1)

)
.

In that sense, one can think of {Daᾱt
}a∈I as the family of bounded linear operators inH , which is indexed by

some I ⊂ H , which contains an open ball around a. Thus, when a continuously varies over I, the operators
Daᾱt continuously vary as well. Precisely, this is a homotopy perturbation method parametrized by I ⊂ H .
The Frećhet derivatives of Daᾱt are analyzed as follows.

Recall that any bounded linear operator L on the real Hilbert space H has its unique adjoint L∗, such
that

⟨Lx, y⟩H = ⟨x,L∗y⟩H
holds for all x, y ∈ H . This is a consequence of the Riesz representation lemma and is valid for both real and
complex Hilbert spaces. Since L∗ is uniquely determined and obtained via the continuous linear functionals
onH , it follows that L 7→ L∗ is a uniformly continuous mapping.

An operator U is said to be orthogonal if U∗U = I. Recall the following result:

Theorem 4.2. [8, Theorem 4.3.] Every bounded linear operator on a real Hilbert space is a linear combination of
orthogonal operators; five operators suffice.

It is clear from the proof of [8, Theorem 4.3.] that this decomposition depends continuously on the given
operator.

On the other hand, consider an important result and observation derived in [37], where the authors had
studied real Hilbert spaces and infinite matrices over them. Note that the space H is separable (with the
multivariate Hermite polynomials being an appropriate countable basis, see [38]), therefore, any bounded
linear operator onH can be interpreted as an infinite bounded matrix overH .

Adopting the notation and terminology from [37], an operator R ∈ L(H) is said to be a rotation in
H , if there exists a skew-symmetric H ∈ L(H) (i.e. H = −H∗), such that R = eH. Unlike the matrix case,
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these rotations do not form a group w.r.t. multiplication in infinitely-dimensional Hilbert spaces, as neatly
noted in [37]. In that same paper, the authors had proved that every orthogonal operator can be expressed
as a product of at most three rotations; combining the previous analysis, for every L ∈ L(H) there exist
C1, . . . ,C5 ∈ R and skew-symmetric operators H1, . . . ,H15 ∈ L(H), all of which continuously depend on L,
such that

L =
5∑

k=1

CkeH3k−2 eH3k−1 eH3k . (30)

The last expression allows the utilization of the exponential function in H , together with its Fréchet
derivatives studied in Section 2: as L continuously varies overH (or over I ⊂ H), then so do the summands
from the right-hand-side in (30). However, the procedure itself is costly in computation, as the latter consists
of products of three exponential terms. Thus L can be simplified even further in the following sense. First
observe the following:

L =
1
2

(L − L∗) +
1
2

(L + L∗) , (31)

where the first addend is a skew-symmetric operator while the second is a symmetric (self-adjoint) operator.
Then there exists a rotation R such that

1
2

(L − L∗) = ln R.

Respectively (31) gives

L = ln R +
1
2

(L + L∗) , (32)

and determining the Fréchet derivatives of L comes down to computing the corresponding derivatives of
ln R and 1

2 (L + L∗). The first one is achieved by the results obtained in Section 3. For the second addend,
one can either apply (30) directly, or, if the circumstances allow it, can proceedas follows. Recall another
result from [8]:

Lemma 4.3. [8, Lemma 3.1.] If H is symmetric in H then H can be written as the orthogonal sum of two
infinite-dimensional H−invariant closed linear subspaces.

Respectively,H = H1 ⊕H2, and 1
2 (L + L∗) can be represented as a block-diagonal operator matrix

1
2

(L + L∗) =
[

L1 0
0 L2

]
:
[
H1
H2

]
→

[
H1
H2

]
. (33)

However, note that this decomposition relies on the corresponding eigenspaces of 1
2 (L + L∗). If the latter is

possible, i.e., if 1
2

(
Daᾱt +

(
Daᾱt)∗) and 1

2

(
Da+rb2 ᾱ

t +
(
Da+rb2 ᾱ

t)∗) have the same eigenspaces for every small
enough positive r, then (33) can be applied for both of them. This way, the computation of the Fréchet
derivatives of Daᾱt is divided into two separate problems: one is computing the appropriate derivatives
of the logarithmic function, while the other is first reducing the remaining operators from (32) via (33),
and then, decomposing the reduced operators L1 and L2 in terms of (30), and then finally computing the
derivatives of the corresponding exponential functions defined respectively in L(H1) and L(H2).

Basically, the same procedure applies to the functionβ. The main difference is thatβ : VR×[t0,T]→ RN×M,
soHM is defined as

HM := ⊕k=1,MH � H ⊗ {1, . . . ,M}.

Then RN×M can be embedded intoHM via the constant functions.
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Assumption β. The functional β : VR × [−τ, 0]→ RN×M allows a continuous extension in the first argument
β : H × [t0,T]→HM.

Respectively, for every fixed t ∈ [t0,T] define β̄t
M : HM × [t0,T]→HM as

β̄t
M =

β̄(·, t), 0, 0, 0, . . . , 0︸           ︷︷           ︸
M−1−times

 : H ⊕H ⊕ . . . ⊕H︸                ︷︷                ︸
M−times

→HM.

It follows that for every t ∈ [t0,T] the mapping β̄t
M mapsHM toHM. The decompositions (30), (32), and (33)

transfer the problem to computing the Fréchet derivatives of the exponential and logarithmic functions.

4.2.1. The complex case
Though the stochastic processes stuided in [16]–[18] are real processes, at this point the results of this

paper can be applied even if F = C. Precisely, rather than RN, RN×M, and VR, assume that CN, CN×M and
VC are observed instead. Then, L2

(
[−τ, 0],CN

)
defines the complex Hilbert space, HC, which is defined

in the same manner as H in the previous section, though the involution portion in the definition of the
corresponding scalar product is denoted as:

⟨h1, h2⟩HC :=
∫

[−τ,0]
⟨h1(θ), h2(θ)⟩CN dµ(θ).

The space HM for β is defined in the same way. Accordingly, under the assumptions Assumption ᾱ and
Assumption β̄, for every fixed t ∈ [t0,T] the corresponding Fréchet derivatives at a: Daᾱt and Daβ̄t

M, which
are bounded linear operators in the corresponding complex Hilbert spaces, are observed.

On the other hand, recall that any bounded linear operator on a complex Hilbert space can be represented
as a combination of four unitary operators on that space. Precisely, for any L ∈ L(H),

L = Re L + i Im L, (34)

where Re L and Im L are self-adjoint bounded linear operators,

Re L := 1/2(L + L∗), Im L := 1/2i(L − L∗).

Scaling by the factor of ∥L∥−1, under the assumption that ∥Re L∥, ∥ Im L∥ ≤ 1, the identity

S =
1
2

(
S + i

√

I − S2
)
+

1
2

(
S − i

√

I − S2
)

(35)

is obtained, where S ∈ {∥L∥−1 Re L, ∥L∥−1 Im L} (in this case the positive square root is well-defined). Recall
that S ± i

√

I − S2 are unitary operators, so, for easier notation,

U+(S) := S + i
√

I − S2, U−(S) := S − i
√

I − S2 (36)

are introduced, and, by combining the expressions (34), (35), and (36),

L =
∥L∥
2

(
U+(∥L∥−1 Re L) +U−(∥L∥−1 Re L)

)
+

+
i∥L∥

2

(
U+(∥L∥−1 Im L) +U−(∥L∥−1 Im L)

)
.

(37)

Finally, we recall the lemma (see e.g. [9]) which states that any unitary operator U can be expressed as
U = eiHU , where HU is a bounded self-adjoint linear operator. In other words, for every L ∈ L(H) there exist
four self-adjoint operators H1(L), H2(L), H3(L), H4(L) ∈ L(H) (which depend on the choice of L) such that

L =
∥L∥
2

(
eiH1(L) + eiH2(L) + ieiH3(L) + ieiH4(L)

)
. (38)
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Returning to Daᾱt and Daβ̄t
M, rather than computing the higher-order Fréchet derivatives of ᾱt and β̄t

M
directly, simply decompose Daᾱt and Daβ̄t

M into linear combinations of the exponentials as in (38), and
proceed to evaluate the Fréchet derivatives of the respective exponential terms. Notice that, as opposed
to the real case in the equation (30), there is only a linear combination of the exponential terms and no
multiplication, so the computational cost is fairly lower in the complex case.

Declarations

Conflict of interest. The authors declare that there is no conflict of interest in publishing the findings
obtained in this article.

Data sharing not applicable for this article as no datasets were generated or analyzed during the
study.

References
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