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Abstract. In this paper, based on the meaning of t-metric space we study the notion of convergence
and ideal convergence on this field of spaces and investigate their properties, comparing it also with the
usual notions of convergence and ideal convergence on metric spaces. Especially, we study the meaning
of convergence on t-metric spaces, giving new characterizations for this notion, new results for complete
T-metric spaces and new notions of compactness and totally boundedness on such spaces. We also prove
theorems that enrich a related theory. Finally, we insert and study the meaning of ideal convergence on

T-metric spaces, giving also new characterizations and investigate its behavior under the view of classical
meaning of ideal convergence.

1. Introduction

The notion of convergence wins an essential part in the branches of Mathematical Analysis and Topology
(see for example [1, 8, 19, 20]). Several topological notions and properties have been studied in the view of
convergence of sequences and nets.

Simultaneously, the importance of this research issue; the meaning of convergence, led to define new
types of convergences; namely, statistical convergence and ideal convergence for various fields; metric
spaces, fuzzy metric spaces, topological spaces, fuzzy topological spaces, partially ordered sets, fuzzy
ordered sets (see for example [5-7, 9-18, 21-23, 26-30]).

On the other hand, since metric and topological spaces have their own significant role in the field of
Mathematics, it is absolutely natural to have new related realms of spaces. Especially, in [2—4] the author
studies the notion of T-metric space, where 7 is an arbitrary cardinal number, as a generalization of the usual
metric space. Especially, the class of all T-metric spaces as 7 runs through the cardinal numbers contains
all ordinary metric spaces (for T = 1). In these works we can also find an initial study of convergence on

T-metric spaces as a tool for the study of the so-called sequentially complete T-metric spaces. A related
study on 7-metrizable spaces can be found on [24].
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2. Preliminary notes

In the following sections RY. denotes the topological product of T copies of the space R; = [0, +00) with
the usual topology.

We remind that if X;, i € I, are topological spaces, then the open sets in the product topology of the
space X = H X; are arbitrary unions (finite or infinite) of sets of the form H U;, where each U; is open

i€l i€l

in the space X; and U; # X; for only finitely many i. Also, on the space R} the operations of addition,
multiplication, and multiplication by a scalar, as well as a partial ordering, are defined in a natural way
(coordinatewise).

If T denotes an arbitrary non zero cardinal number, then the meaning of 7-metric space is given as
follows.

Definition 2.1. ([3]) Let X be a non empty set. A mapping p. : X X X — R} is called a t-metric on X if the
following axioms are satisfied:

(1) p:(x,y) = 0if and only if x = y, where 0 is the point of the space R} whose all coordinates are zeros.
(2) pe(x,y) = p(y,x), forall x, y € X.
(3) pe(x,2) < pelx, y) + po(y,2), forall x, y,z € X.

The pair (X, p;) is called a t-metric space and the elements of X are called points.

The following are examples of T-metric spaces (see [3]):
(1) If (X, p) is a metric space, I is a set such that |I[| = 7 and p; = p, for every i € I, then the mapping
pr : X X X — R} defined by

pc(x, y) = {pi(x, Y)kier,

for every x,y € X, is a T-metric on X.
(2) It {(Xi, pi) : 1 € I} is a family of metric spaces, where [I| = 7, then the mapping p. : X X X — IR} defined by

p(x, y) = {pi(xi, yi)bier,

is a T-metric on X, where X = H Xi, x = {xi}ier and y = {yi}ier.
iel
Also, we state that every t-metric space (X, p;) generates a Tychonoff (that is, a completely regular and
Hausdorff) topological space (X, T,,). The topology T, on X defined by the local basis consisting of the sets
of the form

B(x, 0(0)) = {y € X : p«(x,y) € O(O)},

of each point x € X, where O(0) runs through all open neighborhoods of the point 0 in the space R}, is
called the topology induced by the T-metric p,. If O(0) denotes the family of all open neighborhoods of the
point 0 in R?, then the family

B ={B(x,0(0)) : x € X, O(0) € O(0)}
is a base for this topology T, .

3. The notion of convergence on 7-metric spaces

In this section we study the notion of convergence of nets on t-metric spaces and present new facts and
properties. Firstly, the usual meaning of convergence of sequences for an arbitrary metric space is reminded
as follows.
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Definition 3.1. ([8]) A sequence (x,)qen Of @ metric space (X, p) converges to a point x € X if for every € > 0
there exists a positive integer 1y such that x, € B(x, €) for every n > ng, where B(x, €) = {y € X : p(x,y) < €}.

Equivalently, we say that a sequence (x,).en Of a metric space (X, p) converges to a point x € X if
nl—i}}—lm p(xy, x) = 0, that is, for every ¢ > 0 there exists a positive integer ny such that p(x,,x) < ¢, for every

n = ng. In each case we write nl_i)rpw x, = x and the point x is called the limit of the sequence (x,)neN-

However, in a classical topological point of view, the convergence of sequences are not able to describe
essential topological properties because the convergence of sequences in a space does not uniquely deter-
mine its topology (see for example [8, 20]). But, the convergence of nets managed to successfully address
the above problem. The nets give a different view in order to study convergences in topological spaces.
We have the so-called Moore-Smith sequences by Moore-Smith [25] and their study, in the view of conver-
gence, in topological spaces by Birkhoff [1]. We state that J. Kelley [19, 20] provides the right description of
convergence in topological spaces under the prism of nets.

We remind that a non empty set A with a reflexive and transitive binary relation < is said to be directed
if every pair of elements of A has an upper bound that is, for every A1, A, € A, there exists A € A such that
At < Aand A; < A A mapping s : A — X from a directed set A into a set X is called a net on X and is
denoted by s = (xa)1ea, Where x) = s(A). A net (y,)uem in X is said to be a subnet of the net (x))yea in X if
there exists a function ¢ : M — A with the following properties:

(1) yu = xp( for every u € M.
(2) For every A € A there exists pig € M such that ¢(u) > A for every p € M with y > po.

A net is considered to be a generalization of the notion of a sequence and a subnet a generalization of the
concept of subsequence to the case of nets.

Definition 3.2. ([8]) If (X, 7) is a topological space, then we say that a net (x)) ea on X converges to a point
x € X if for every open neighborhood U of x there exists Ag € A such that x) € U for all A > A. In this case
we write all}’\l x) = x. The point x is called the limit of the net (x)1en.

€

A natural question that arises is the investigation of the notion of convergence on t-metric spaces. The
papers [2-4] give the initial study on this topic.

Definition 3.3. ([3]) A net (x3))ea in a T-metric space (X, p;) converges to a point x € X if for every open
neighborhood O(0) of the point 0 € IR} there exists an index Ap) € A such that

pr(xy,x) € O(0) for every A > Ap).

In this case we write pT—lAinR x) = x and the point x is called the p.-limit of (xy)1ea. We simply write that the
(S

net (x))1ea converges to x with respect to p; or p.-converges to x.

Remark 3.4. By Definition 3.3 we observe that for every net (x)),ea in any 7-metric space (X, p;) we have
that
pT-l/\ig\l x = x if and only if 1A1€r§\1 p(xa,x) = 6.

Remark 3.5. A net (x))ea in any t-metric space (X, p;) converges to a point x € X with respect to p, if and
only if (x)1ea converges to x in the topological space (X, T,,). That is, according to Definitions 3.2 and 3.3,
pz(xa,x) € O(0) holds eventually if and only if x; € B(x, O(0)) holds eventually.

Therefore, we can have the following result that follows from Remark 3.5.

Proposition 3.6. Let (X, p;) be a T-metric space and (x)) e be a net on X. Then:

(1) The p-limit of (x)aen is unique.
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(2) If (xa)ren converges to a point x € X with respect to p., then each subnet of it converges to the same point with

respect to pq.

Aswehave seen above the sequences are a special case of nets; the set IN of natural numbers is a directed
set (whenever it is necessary we refer to the set of positive integers). Thus, in the following example we
apply Definition 3.3 for sequences.

Example 3.7. Let I be a set with |I| = 7 and p;(x, y) be the usual metric on R for every i € I. We also consider

1
the sequence (E) and the t-metric space (R, p;), where p; : R X R — IR is the 7-metric defined by
neN

p<(x, y) = {pi(x, Y)kier,

for every x, vy € R. Then this sequence p.-converges to zero.
Indeed, let O(0) be an open neighborhood of 0 in R}. According to the product topology on IR}, there

existsasetV = H U; such that V € O(0), where each Uj; is an open neighborhood of 0in IR, and U; # R, for
iel
only finitely many i; let iy, .. ., i. We state that for every i = iy, .. ., i, there exists €; > 0, such that [0, ;) € U,.

In addition, since the sequence (—) converges to zero, in the usual sense, for every i = iy, ..., i, there
N /neN
exists a positive integer n; € IN such that

1
pi (;,0) < ¢, foreveryn > n;.
Let np = max{n;,,...,n;}. Then for everyiel,
1
pi (E'O) € U;, for every n > ny.

Especially, for every i =i, ..., i,
1
pi (E'O) € U;, for every n > ny

and trivially, for every i € I'\ {ip, ..., ix} (for which U; = R}),

1
pi (E'O) € U;, for every n € IN.

1
(= | | , > 1o,
{pz (n,O)}id €| | Ui foreveryn = ng

iel

Then we have

that is,
o (%,O) €V, forevery n > ny
and therefore,
Pr (%,0) € 0(0), for every n > ny,
proving that this sequence p,-converges to 0.
Generalizing Example 3.7 we can have the following proposition.

Proposition 3.8. Let (X, p) be a metric space, I be a set such that |I| = T and p; = p, for every i € I. On X we
consider the T-metric p; : X X X — R} defined by

pf(xr y) = {pi(xr y)}iell

for every x,y € X. A net (xa)1en on X converges to a point x € X with respect to the metric p if and only if it
converges to the same point x with respect to p;.
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Proof. Firstly, we suppose that a net (x1)1ea on X converges to a point x € X with respect to the metric p and
we prove that (x1)1ea converges to the same point x with respect to p,. Let O(0) be an open neighborhood

of 0 in RT. According to the product topology on IR}, there exists a set V = H U; such that V € O(0),
iel

where each U; is an open neighborhood of 0 in R, and U; # R, for only finitely many i; let iy, ..., 4. Since

the net (x1)1ea converges to x in the metric space (X, p;), for every i =iy, ..., i, there exists A; € A such that

pi(xx, x) € U;, forevery A > A;.

We choose Ag an element of A greater than or equal to A;, ..., A;. Then for everyi €I,
pi (xa,x) € U;, for every A > Ao.

Especially, for every i =iy, ..., i,
pi(xa,x) € Uj, for every A > Ao

and trivially, for every i € I\ {ip, ..., i} (for which U; = R}),
pi (xp,x) € Uj, for every A € A.

Then we have
{pi(x/\/x)}iel € H u;, for every A > A
iel
that is,
{pi(xr, X)}ier € V, for every A > A

and therefore,
p(xa,x) € O(0), for every A > Ay,

proving that the net (x)))ca p.-converges to x.

Conversely, we suppose that anet (x1)1ea converges to a point x € X with respect to p, and we prove that
(x1)1ea converges to x with respect to the metric p. Let ¢ > 0 and iy € I. We consider the open neighborhood
0(0) = H U; of 0in R}, where U;, = [0, ¢) and U; = R for every i € I'\ {ip}. Since the net (x;)1ca converges

i€l
to x with respect to p;, there exists A9 € A such that

p(xa,x) € O(0), for every A > Ao.

Then
{pi(xa, X)}ier € H U;, for every A > Ag
i€l
and thus,
pir(xa, x) € Uy, for every A > Ay.
Hence,

p(xp, x) < g, for every A > Ao.

Therefore, the net (x))1ea converges to x with respect to the metric p. [

We state that if {X; : i € I} is a family of sets, X = H X;and s; = (x;);\e,\ are nets on X;j, i € I, then we
iel
consider the net s : A — X on X defined by s(A) = {xi\}ielr for every A € A. The net s will be called the
net generated by the nets s;, i € I. If s;, i € I, are sequences, then we refer to s as the sequence generated by the
sequences s;, 1 € .
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Proposition 3.9. Let I be a set with |I| = t and {(X;, p;) : i € I} be a family of metric spaces. We consider the t-metric
pr : X X X — RY defined by
p(x, v) = {pi(xi, yi)lier,

where X = HX” x = {Xi}ier and y = {yitier. Whenever i € I, s; = (xg)AEA on X; converges to a point z; € X;
iel

with respect to the metric p; if and only if the net s generated by the nets s;, i € 1, on X p.-converges to the point

z = {zi}ies € X.

Proof. We suppose that a net s; = (xg) lea On X; converges to a point z; € X; with respect to the metric p;
for each i € I and we prove that the net s on X p;-converges to the point z = {z;};c; € X. Let O(0) be an
open neighborhood of 0 in R}. According to the product topology on IRY, there exists a set V = H U; such

that V C O(0), where each U; is an open nelghborhood of 0in R, and U; # R, for only finitely many i; let
io, - - -, ix. Since the net (x A)/\eA, whenever i = iy, ..., 1, converges to z; € X; in the metric space (X;, p;), there
ex1sts A; € A such that

pi(xg,z,-) € U;, forevery A > A;.

We choose Ag an element of A greater than or equal to A;, ..., A;. Then for everyi €[,

{Pi(xf\,zi)}iel € H U;, for every A > Ag
i€l
that is, '
{pi(x}, zi)}ier € V, for every A > Ao
and therefore,
p(s,z) € O(0), for every A > A,

proving that the net s p.-converges to z.

Conversely, we suppose that the net s on X p.-converges to the point z = {z;};c; € X and we prove that
the net s; = (x’A) lea on X; converges to z; € X; with respect to the metric p;, wheneveri € I. Let ¢ > 0 and
ip € I. We consider the open neighborhood O(9) = H U; of 6 in RY, where U;, = [0,¢) and U; = R, for

i€l

every i € I\ {ip}. Since the net s converges to z with respect to p,, there exists Ay € A such that

p<(s,z) € O(0), for every A > Ay

Then '
{pi(x), zi)bier € H U;, forevery A > A
i€l
and thus, '
piy (¥}, zi,) € Uy, for every A > Ao.
Hence,

Piy (xlA",z,-U) <¢, forevery A > A,

proving that the net (xig) reA converges to z;, € X;, with respect to the metric p;,. Since the index iy is chosen
to be arbitrary and fixed we have completed the proof. [

Undoubtedly, the meaning of Cauchy sequences plays an essential role in the field of convergences. We
remind that a sequence (x,),en On a metric space (X, p) is said to be Cauchy if for every € > 0 there exists
no € IN such that

p(xn, xy) < €, for every n,m > ny.

A metric space (X, p) is called complete if each Cauchy sequence converges to a point x € X.
In the paper [3] the author studies the notion of sequentially completeness for t-metric spaces in order
to obtain a generalization of Banach fixed point theorem.
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Definition 3.10. ([3]) A net (x1)en is said to be Cauchy in a T-metric space (X, pr) if for every open neigh-
borhood O(0) of the point 0 of the space R}, there exists an index Ap(g) € A such that

pr(xy, x4) € O(0), for every v, u > Ao).
We state that if a net is a sequence, then Definition 3.10 is referred to the notion of Cauchy sequence.

Definition 3.11. ([2-4]) A T-metric space (X, p;) is said to be sequentially complete if every Cauchy sequence
converges in (X, pr).

Similar to Propositions 3.8 and 3.9 we can prove the following results.

Proposition 3.12. Let (X, p) be a metric space, I be a set such that |I| = © and p; = p, for every i € I. On X we
consider the T-metric p; : X X X — R} defined by

pc(x, y) = {pi(x, Y)kier,

for every x,y € X. A net (xp)rea on X is Cauchy with respect to the metric p if and only if (xa)ren is Cauchy with
respect to p.

Proposition 3.13. Let (X, p) be a metric space, I be a set such that |I| = © and p; = p, for every i € I. On X we
consider the T-metric p, : X X X — R}, defined by

(%, ) = {pilx, Yhier,
for every x,y € X. Then (X, p) is a complete metric space if and only if (X, p.) is sequentially complete.

Proposition 3.14. Let I be a set with |I| = 7 and {(X;, pi) : i € I} be a family of metric spaces. We consider the
T-metric pr : X X X — R}, defined by
p(x, y) = {pi(xi, yi)lier,

where X = H Xi, x = {xi}ier and y = {yi}ier. Wheneveriel, s; = (x;) rea on X; is Cauchy with respect to the metric
i€l

pi if and only if the net s generated by the nets s;, i € I, on X is Cauchy with respect to the T-metric p.

Proposition 3.15. Let I be a set with |I| = 7 and {(X;, p;) : i € I} be a family of metric spaces. We consider the
T-metric pr : X X X — R defined by
pe(x, y) = ApiCxi, yilier,

where X = H Xi, x = {xi}ier and y = {yilier. Then (X, pr) is sequentially complete if and only if (X, p;) is complete,
iel
whenever i € I.

Proof. Let (X, pr) be sequentially complete, iy € I be fixed and (xff)neN be a Cauchy sequence in X;,. We
shall prove that this sequence converges to a point of X;,. For each i € I\ {iy} we consider a fixed point
of X;; let it be ¢;. Then we consider the sequence s; = (x;)neN, where xfi = ¢; for each n € IN. Also, we set
Siy = (*))nen. Then the sequence s, where s(1) = (x!)ie1, for each n € N, is generated by the sequences s;,

i € I. By Proposition 3.14, the sequence s of X = H X; is Cauchy and thus it p;-converges to a point {z;}e;
i€l
of X. By Proposition 3.9, the sequence (x,),en converges to z;, of Xj.
Conversely, we suppose that each (X;, p;), i € I, is complete and we shall prove that (X, p;) is sequentially

complete. Let s, where s(n) = (x!)ie1, for each n € N, be a Cauchy sequence of X = H X;. Foreachi €I, we
i€l

consider the sequence s; = (x,),en of X;. Then s is generated by s;, i € I. By Proposition 3.14, each s;, i € I, is

Cauchy, and thus, it converges to a point z; of X;. By Proposition 3.9, the sequence s p,-converges to {z;}ief

of X. O
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In this section, we enrich the study of completeness, proving a corresponding Baire theorem for t-metric
spaces. The following lemmas will be useful for the proof of this theorem.

Lemma 3.16. For each x € X and U € T, with x € U there exists O(0) € O(0) such that
x € B(x, 0(0)) < CI(B(x, 0(0))) € U
Proof. It follows immediately, since the family 8 is a base for the regular space (X, T, ). O
Lemma 3.17. Let X be a t-metric space and A C X.
(1) If Ais closed in (X, T,,), then any sequence in A, which converges in X with respect to p., converges in A.

(2) If T is finite and any sequence in A, which converges in X with respect to p., converges in A, then A is closed
in (X, Tp,).

Proof. (1) It follows by Remark 3.5, since it is well known that the statement (1) of the lemma is true for
every topological space if “sequence” replaced by “net”.
(2) Suppose that A is not closed. Then X \ A is not open. So, there exists an element x € X \ A such that

B(x,0(0)) N A # 0,

l T
for every O(0) € O(0). Forn =1,2,... we put O,(0) = [O, E) and choose a point x,, € B(x, O,(8)) N A. Then

(xn)nen is a sequence in A with a p,-limit x that is not in A, which is a contradiction. [J
We recall that for a topological space X the following statements are equivalent:
(1) X is a Baire space.
(2) The intersection of any countable collection of open dense subsets of X is dense.
(3) The union of any countable collection of closed nowhere dense subsets of X is nowhere dense.

Theorem 3.18. (Baire Category Theorem for 7-metric spaces) Let (X, p;) be a sequentially complete t-metric
space, where 7 is finite. Then (X, T,,) is a Baire space.

Proof. Let{U, :n =1,2,...} be acountable family of open dense subsets of X. We prove that the intersection

ﬂ U, is dense. Let V be a non empty open subset of X. Since U, is dense, VN U; # 0. By Lemma 3.16 there
n=1

exist x; € X and O1(0) € O(6) such that
x1 € B(x1,01(0)) € Cl(B(x1, 01(6))) C VN U;.

Without loss of generality we can suppose that O1(0) = H Uy;, where Uy; € [0,1) foreveryi=1,...,7. In
i=1
a recursive manner, we construct a sequence (¥, )zeN in X and a subfamily {O,(6) : n = 1,2, ...} of O(6) such
that:
(1) CI(B(x1,01(0))) € V N U;.
(2) CI(B(x141, 0441(0))) € B(x,,, 0, (0) N U1, n=1,2,....

o 1
(3 04(0) = [ | Ui, where U, € [o, ;) foreachi=1,...,randn=1,2,...
i=1

We prove that (xn)nen is a Cauchy sequence. Let O(0) be an open neighborhood of the point 6 in the
space R}. Then there exists a positive integer ny such that

[o, nlo) c 0(6).
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For every v, u > ng with v > u we have x, € B(x,, O,(0)). Therefore,

1\" 1\’
(%) € 04(6) € |0, g[o,—)
prtx5) € 0,0 o3 <o

and hence, p.(x,, x,) € O(0).
Since the 7-metric space (X, p;) is sequentially complete, the sequence (x,),en p.-converges to some
point x. Since
xy € Cl(B(x,, 0,(0))) € B(x1,01(0)) foreveryn =1,2,...,

by Lemma 3.17, x € CI(B(x1, O1(0))). Since
xy € Cl(B(x,, 0,(0))) € B(xp, O2(0)) for everyn =2,3,...,

by Lemma 3.17, x € CI(B(x2, O»(0))). Continuing in the same way,

00

xe ﬂ CI(B(x, 0n(0))) C ﬁ(v nU,)=Vn ﬂ U,.
n=1

n=1

[

n=1
Thus V N N, Uy, # 0, proving the theorem. [J

In what follows, we continue such a study introducing the notions of sequentially compactness and
totally boudedness for t-metric spaces and investigating their relations with the notion of sequentially
completeness.

Definition 3.19. A 7-metric space (X, p-) is said to be sequentially compact if each sequence has a convergent
subsequence with respect to p;.

Definition 3.20. A t-metric space (X, p.) is said to be totally bounded if for every open neighborhood O(0)
of 0 in RY, there exists a finite subset A of X such that X = U B(x, O(0)).

x€eA

Similar to the classical theory of metric spaces, if (X, p;) is a T-metric space and Y C X, then Y is totally
bounded, if the condition of Definition 3.20 is satisfied, restricting the 7-metric p; on Y X Y.

Remark 3.21. By Definition 3.19 we have that if the topological space (X, T,,) is compact, then the T-metric
space (X, pr) is sequentially compact.

Theorem 3.22. Every sequentially compact t-metric space is sequentially complete.

Proof. Let (X, p;) be a sequentially compact 7-metric space and (x,).en be a Cauchy sequence. We shall

prove that (x,).en pr-converges to a point x € X. Since X is sequentially compact, (x,)nen has a convergent

subsequence (x,, )keN- Let pT-klim Xy, = x. We prove that p.- 11111 x, = x. Let O(0) be an open neighborhood
oo n—+00

of 0in RY. According to the product topology on IRY, there exists aset V = H U; such that V € O(0), where
iel
each U, is an open neighborhood of 0 in R and U; # R, for only finitely many i; let iy, . .., i. Without loss
of generality we suppose that U; = [0, ¢;) for every i = iy,...,i. We consider the set W = H U;, where
i€l
u; = [O, %) foreveryi=iy,...,ixand U; = R, foreveryi € I\{ip,...,i}. Then W C V. Since pf—klim Xy, =X,
—+00
there exists k; € IN such that
P(xn,, x) € W, for every k > k.

Also, since (x,)sen is Cauchy, there exists k, € IN such that

P<(Xn, X)) € W, for every n, n; > k.



D. Georgiou et al. / Filomat 38:21 (2024), 7525-7539 7534

Letky = max{kj, k»}. Then from the definition of the subsequence we have thatny, > ko > kj and ny, > ko > k.
Since

P (Xn, X) < pr(Xn, Xy ) + Pr(Xn %),

we have that p.(x,, x) € V and thus, p.(x,,x) € O(0), for every n > ko, proving that (x,),en pr-converges to
x. O

Theorem 3.23. Every sequentially compact t-metric space is totally bounded.

Proof. Let (X, pr) be a sequentially compact 7-metric space. We prove that it is totally bounded. For that,
we suppose in contrast that it is not totally bounded. Then there is an open neighborhood O1(0) of 6 in RY.
such that for every finite subset A of X we have

X # U B(x, 01(0)).

xeA

Similar to the proof of Theorem 3.22 there exists aset V = H U; such that V C O1(0), where each U; is an
iel
open neighborhood of 0 in R, and U; # R, for only finitely many i; let iy, . . ., ix. Without loss of generality
we suppose that U; = [0, &;) for every i = iy, ...,ix. We consider the set W = H L[lf , where Ulf = [O, %) for
iel

everyi=ip,...,ixand U] = R, foreveryi €I\ {ip,...,i}. Then W C V.

Let x; € X. Then there exists x, € X such that x, ¢ B(x;, O1(0)). That is, p:(x1, x2) ¢ O1(6). Also, there
exists x3 € X such that x3 ¢ B(x1, 01(6)) U B(xz, 01(0)). That is, p.(x1,x3) ¢ O1(0) and p.(x2, x3) ¢ O1(0).
Continuing with the same arguments, we can construct a sequence (x,),en such that

Xy & B(xm, O1(0)), for every n #m,

that is,
pr(Xn, xp) & O1(0), for every n # m.

We shall prove that (x,).en has not a p;-convergence subsequence. Indeed, if (xy, )ren is a subsequence
of (xn)nen that converges to a point x € X with respect to p;, then there exists kg € IN such that
pr(xn,, x) € W, for every k > k.
Then for every ki, ky > ko we have

pr(x,,kl,x) € Wand pT(xnkz,x) e W.

Since pT(xnkl,xnkz) < pT(xnkl,x) + pT(xnkz,x), we have that pT(xnkl,xnkz) € V, thatis pr(xnkl,xnkz) € 01(6) which
is a contradiction. Thus, X is totally bounded. [

Proposition 3.24. If (X, p:) is totally bounded and Y C X, then Y is also totally bounded.

Proof. Let O(0) be an open neighborhood of 0 in RY. Similar to the proof of Theorem 3.22 there exists a set
V= H U; such that V C O(0), where each U; is an open neighborhood of 0 in R, and U; # R, for only

iel
finitely many ; let iy, .. ., . Without loss of generality we suppose that U; = [0, ¢;) for every i =iy, ..., i. We
consider the set W = H u;, where U! = [O, %) foreveryi=ip,...,irand U, = R, foreveryi € I\ {ip, ..., i}.
iel

Then W C V. Since X is totally bounded, there exists a finite subset A of X such that

X = U B(x, W).

xeA
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Let D be the set of all x € A such that B(x, W) N Y # 0. For each x € A we denote by y, an element of Y for
which y, € B(x, W) N'Y. Then the set C = {y, : x € D} is a finite subset of Y such that

Y ¢ |_JB(y,000)).

yeC

Indeed, if y € Y, then there exists x € A such that y € B(x, W) (or equivalently, p.(y, x) € W) and p.(x, yx) € W.

Since p:(y, yx) < p<(y,x) + p:(x, 1), we have that p:(y,yx) € V and hence, p:(y,y:) € O(0). Thus, if

By(y,0(0)) =1y’ € Y: p(y, y') € O(0)}, then Y = U By(y, 0(0)), as it holds that By(y, O(0)) = YN B(y, O(0)).
yeC

Therefore, Y is totally bounded. O

Theorem 3.25. Let (X, p) be a t-metric space, where t is finite. If X is sequentially complete and totally bounded,
then it is sequentially compact.

Proof. We suppose that X is not sequentially compact. Then by Remark 3.21, (X, T, ) is not compact. There
exists an open cover ¢ = {U; : j € J} of X for which there is not a finite subcover. Since X is totally bounded,
there exists a finite subset A; of X such that

X = | Bx, 01(0)),

x€A,

2

the set B(xl,O1(6)_) can not be covered by a finite number of elements of c. By Proposition 3.24 the set
Y1 = B(x1, 01(0)) is totally bounded and similarly, there exists a finite subset A, of B(x;, 01(6)) such that

T
1
where O1(0) = H Uy; with Uy; = [O, —) for every i = 1,...,7. Thus, there exists x; € A; for which
i=1

B(x1,01(0)) = ] By, (x,0,(6)),

xX€A,

: 1
where O,(6) = H Uy; with Uy; = [0, ?) foreveryi=1,...,7and By, (x, 0»(0)) = Y1 N B(x, 0,(0)), for every
i=1
x € A.
There exists x, € A, for which the set Y, = By, (x2, O2(0)) can not be covered by a finite number of
elements of c. Continuing with the same arguments we can construct a sequence of open sets

Y12Y,2...2Y,2...,
- 1
where O,,(0) = H U,; with U,,; = [O, 2_”) foreveryi=1,...,1, such that
i=1

01(0) 2 02(6) 2...204(0) 2 ...

and a sequence (xy)nen, Which is Cauchy.
Indeed, let O(0) be an open neighborhood of the point 0 in the space IR}. Then there exists a positive
integer ng such that

[o, %) c 0(6).

For every v, u > no with u > v we have Y, C 'Y, and so x, € By, , (x,, 0,(0)). Therefore,

pe( ) € 0,(6) = [0, 21) c [0, %) c 0(6)
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and hence, p.(x,, x,) € O(0).

Since X is sequentially complete, this sequence p,-converges to a point x € X. Since c is a cover of X,
there exists jo € ] such that x € Uj,. Moreover, since Uj, is open in the topology T,_, there exists n € IN such
that

B(x, 0,(0)) € Uj,.

Since the sequence (x,,).en pr-converges to x, there exists m € IN, m > n + 1, such that x,, € B(x, 0,,41(0)).
Then
Y C B(xr On(e)) c u]o

Indeed, if y € Y}, then p(y, xn) € O,(0), where O,,(0) = H U,,; with U,,,; = [O, im) foreveryi=1,...,t.
i=1

2
1 1 1 1
Ui = (0.5 [0, 35) = 03 )

. . . 1
foreveryi=1,...,7. Also, pr(xy, x) € On11(6), where O,11(6) = H U1y with Ugeyi = [O, 2”?) for every
i=1

We state that

i=1,...,7. We state that
1 1 1
Ui = [0, ) = (0.3 37)

for every i = 1,...,7. By the axiomatic properties of t-metric, p:(y,x) < p(y, Xm) + p(xm, x). Thus,
p<(y,x) € O,(0). Then Y, is covered by U, which is a contradiction. [

Corollary 3.26. Let (X, pr) be a t-metric space, where T is finite. Then X is sequentially complete and totally bounded
if and only if it is sequentially compact.

4. Ideal convergence on T-metric spaces

The ideal convergence on t-metric spaces give us a different approach to the notion of convergence. The
ideal convergence of sequences is based on the notion of an ideal on IN [21, 22].
Let D be a non empty set. A family 1 of subsets of D is called ideal if T has the following properties:

(1) 0er.
(2) fAeZfand BC A,thenBe 1.
(3) IfA,Be I,thenAUBE€ 1.
The ideal 7 is called proper if D ¢ I and non trivial if 7 # {0} and D ¢ 1.

Definition 4.1. (see, for example, [21, 30]) Let 7 be a non trivial ideal on IN. A sequence (x,),en of a metric
space (X, p) is said that 7-converges to a point x € X if for every € > 0,

melN:p(x,x)>¢e}el.

In this case we write 7- lim x, = x and the point x is said to be the 7-limit of the sequence (x,)eN.

n—+o0

Definition 4.2. (see, for example, [23]) Let (X, 7) be a topological space. A net (x1)1ea in X is said that
TI-converges to a point x € X, where 1 is a non trivial ideal of A, if for every open neighborhood U of x,

(AeA:xy¢Ulel.
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It is known that in every metric space (X, p), any sequence (x,)sen £ f-converges to a point x € X, where
1 ¢ denotes the ideal of all finite subsets of IN, if and only if it converges (with the usual notion) to the same
point x (see for example [23]).

In the next we insert the notion of ideal convergence on 7-metric spaces.

Definition 4.3. Let J be a non trivial ideal on IN. A sequence (x,).en 0f a T-metric space (X, p;) is said that
T-p-converges to a point x € X if for every open neighborhood O(6) of the point 0 in the space R}, we have

{neIN: p(x,,x) € OO)) € 1.

In this case we write 7-p.- lim x, = x and the point x is said to be the 7-p.-limit of the sequence (x,),eN.

n—+oo

Remark 4.4. The sequence (x,),en Z-converges to x with respect to p, if and only if (x,,),en Z-converges to
x in the topological space (X, T),).

Based on Remark 4.4 we can have the following facts.

Proposition 4.5. Let (X, p;) be a T-metric space, I a non trivial ideal on IN and (x,)nen be a sequence on X. Then:
(1) The I-py-limit of (Xn)nen is unique.
(2) (xw)uen L f-pr-converges to a point x € X if and only if it p.-converges to the same point x.

Proposition 4.6. Let (X, p) be a metric space, 1 be a non trivial ideal on IN, I be a set such that |I| = 7, p; = p, for
every i € I, and the t-metric p, : X X X — RT. defined by

p<(x,y) = {pi(x, Y}ier,

for every x,y € X. A sequence (xn)neN I -converges to a point x € X with respect to the metric p if and only if it
I-p.-converges to the same point x.

Proof. We suppose that the sequence (x,)nen £ -converges to a point x € X with respect to the metric p and

we shall prove that it 7-p;-converges to the same point x. Let O(6) be an open neighborhood of 9 in IRY.

According to the product topology on IRY, there exists a set V = H U; such that V C O(0), where each
i€l

U; is an open neighborhood of 0 in R, and U; # R, for only finitely many i; let iy, ..., i. Then for every

i =1y,...,I, there exists ¢; > 0 such that [0, &;) € U;. Since the sequence (x,)nen Z-converges to x in the

metric space (X, p;), where i = iy, ..., ir, we have that

{neN: pi(xn,x) > &}) € T

and thus,
mnelN:pi(x,,x)¢ U} el

Then by the notion of ideal

iy

U{n € N : pi(x,,x) ¢ Ui} € 1.

i:ig
Since 4

ik
€ N {pien, Oier ¢ VI | Jtn € N pitn, ) 2 Ui,

we have that

{nelN: {pi(xnrx)}iel gViel.
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Since
{n€IN: pe(xy,x) € O0)}) € {n € IN: {pi(xn, X)}icr ¢ V3,

we have
{1’1 € N : PT(xn/x) ¢ O(e)} € I/

proving that (x,,)sen £-pr-converges to x.
Conversely, we suppose that a sequence (x,,),en Z-p.-converges to a point x € X and we shall prove that

it 7-converges to the same point x. Let ¢ > 0 and iy € I. We consider the open neighborhood O(9) = H U;
iel
of 0in R, where U;, = [0, ¢) and U; = R, for every i € I\ {ip}. Since the sequence (x,),en -p-converges
to x, we have that
{neIN: p(x,,x) & OO) € 1.

Since
{nelN: pj(xy,x) > e} C{neN:p(xy,x) &€ O0O),
we have
(nelN:pj(xp,x)2eleld
or

nelN:p(x,x)>¢e}el.

Hence, (x,)nen Z-converges to x. [J

Proposition 4.7. Let {(X;, p;) : i € I} be a family of metric spaces, where |I| = t, and I be a non trivial ideal on IN.
We consider also the t-metric p; : X X X — R defined by

p<(x, ) = {pi(xi, yi)ier,

where X = H Xi, x = {xi}ier and y = {yi}ie1. Wheneveriel, s; = () nen on X; I-converges to a point z; € X; with
iel

respect to the metric p; if and only if the sequence s generated by the sequences s;, i € 1, 1T-p,-converges to the point

z = {zi}ies € X.

Proof. We suppose that the sequence s; = (x},),en on X; Z-converges to a point z; € X; with respect to the
metric p;, whenever i € I, and we shall prove that it 7-p.-converges to the point z = {z;};c; € X. Let O(0) be
an open neighborhood of 6 in R}. According to the product topology on IR, there exists a set V = H U;

iel
such that V € O(0), where each U; is an open neighborhood of 0 in R, and U; # R, for only finitely many i
let iy, ...,ix. Then for every i =iy, ..., i, there exists ¢; > 0 such that [0, ¢;) € U;. Since the sequence (x},),eN
J-converges to z; in the metric space (X, p;), where i = iy, ..., i, we have that

{nelN: p,-(x;,zi) >eled

and thus, ‘
meN:pi(x,z)¢ U} el.

Then by the notion of ideal
I
| JineN:pixl, z) ¢ Ui e 1.
i=iy
Since ‘
L3
(n e N: (pilxh, z)kier ¢ VI € | Jin € N2 pitxd, z) ¢ U,

i=i



D. Georgiou et al. / Filomat 38:21 (2024), 7525-7539 7539

we have that ,
{neIN:{pi(x,, zi)lier ¢ V) € 1.
Since

(neN:pi(s,z) 2 00)) C{neN:{pi(x,z)ie ¢ V),

we have
{nelN:p.(s,z) ¢ O0)) € 1,

proving that (x,,),en £-p.-converges to x.
Conversely, we suppose that the sequence s on X 7-p,-converges to a point z = {z;};¢; € X and we prove
that the sequence s; = (x},),en On X; J-converges to z; € X; with respect to the metric p;, whenever i € I.

Let ¢ > 0 and iy € I. We consider the open neighborhood O(6) = H U; of 6 in RT, where U;, = [0, ¢) and
i€l
U; = R, foreveryi € I\ {ip}. Since the sequence s 7-p.-converges to z, we have that

{nelN:p.(s,z) ¢ OO)) € 1.

Since }
{neN: p; (0, zi) & Uiy} € {n € IN: pe(s,z) ¢ O0)},

we have .
{neN:p;(x?,z,) ¢ Uy} €I,

proving that the sequence (x?),cn Z-converges to z;, € X;, with respect to the metric p;,. Since the index i
is chosen to be arbitrary and fixed we have completed the proof. [
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