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Existence and fractional inequalities for hybrid ρ-Caputo fractional
integro-differential equations with non-local conditions
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Abstract. This paper focuses on investigating the existence of solutions and fractional inequalities for a
hybrid ρ-Caputo fractional differential equation accompanied by a non-local condition. By leveraging the
Dhage fixed point theorem, we establish specific criteria that guarantee the existence of solutions for our
problem. Furthermore, through the application of the ρ-Caputo derivative techniques, we illustrate various
fractional inequalities.

1. Introduction

The theory of fractional differential equations plays a significant role in modeling systems across a
wide range of disciplines, including biology, physics, rheology, electrodynamics, chemistry, and signal and
image processing, among others (see references [6, 7, 9, 10, 13, 15]). As a result of their diverse applications,
fractional differential equations have garnered extensive research attention, yielding noteworthy theoretical,
solution-oriented, and applicative outcomes (see references [2, 11, 12]). In this context, Almeida introduced
the ρ-Caputo derivative as a generalization of approaches like Caputo and Caputo-Hadamard derivatives
[14]. For further insights and recent advancements in problems involving the ρ-Caputo derivative, we
refer readers to [1, 4, 5]. Hybrid differential equations find their relevance in modeling several non-
homogeneous physical processes, encompassing various dynamical systems as specific cases. This area has
seen substantial interest due to its broad applications, with recent attention in works such as [3, 8, 11].

In 2010, Dhage and Lakschmikantham extended the concept of hybrid differential equations to the
integer domain with the following equation[3]:{

d
dt

(
υ(s)

h(s,υ(s))

)
= 1(s, υ(s)), s ∈ [0,T],

υ(0) = υ0.

Under mixed Lipschitz and Carathéodory conditions, they established existence results and differential
inequalities. In 2015, Hilal and Kajouni extended this problem to the fractional domain [8]. They provided
sufficient conditions for the existence of solutions to the following problem:{

CDγ
(

υ(s)
h(s,υ(s))

)
= 1(s, υ(s)), s ∈ [0,T],

aυ(0) + bυ(T) = c.
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where CDγ denotes the Caputo fractional derivative, f and 1 are appropriately defined functions. In 2020,
Hannabou and Kajouni utilized Dhage’s fixed point theorem to investigate a hybrid fractional integro-
differential equation [11]. This equation, given by CDγ

[ υ(s)−
∑m

j=1 Iβi ,ϑi(s,υ(s))
h(s,υ(s))

]
= 1(s, υ(t)), s ∈ J = [0,T],

a υ(0)
h(0,υ(0)) + b υ(T)

h(T,υ(T)) = c,

expanded the scope of study in this area.
Building upon these works, this paper extends the results obtained in [11] to the ρ-Caputo fractional

setting. Specifically, our focus lies on the hybrid ρ-Caputo fractional integro-differential boundary value
problem: CDγ,ρ

[ υ(t)−
∑m

j=1 Iβi ,ρϑ j(t,υ(t))
h(t,υ(t))

]
= 1(t, υ(t)), t ∈ J = [0,T], 0 < ρ < 1,

a υ(0)
h(0,υ(0)) + b υ(T)

h(T,υ(T)) = c.
(1)

where CDγ,ρ represents the ρ-Caputo fractional derivative of order γ, ϑ j are appropriately defined functions,
and a, b, and c are real constants with a + b , 0.

The rest of this paper is structured as follows: In Section 2, we furnish fundamental insights into
fractional calculus and fixed-point theorems that hold pertinence to our investigation. Building upon
Dhage’s fixed-point theorem, Section 3 is dedicated to establishing the existence of solutions for the hybrid
ρ-Caputo fractional integro-differential boundary value problem. Section 4 delves into the fractional
inequalities that are associated with our derived solution. Concluding our study, the final section succinctly
summarizes the outcomes and contributions of this work.

2. Preliminaries

In this section, we lay the groundwork by introducing fundamental definitions and key findings that
will be utilized subsequently.

Consider X = C(J,R), which represents a Banach space consisting of continuous functions mapping
from J = [0,T] to R. The norm in this space is defined as:

∥ y ∥= sup
t∈J
| y(t) | .

Moreover, we define multiplication in X as:

(xy)(t) = x(t)y(t)

Evidently, X functions as a Banach algebra in accordance with the aforementioned supremum norm and
multiplication operation. We denote by C(J ×R,R) the collection of functions y : J ×R −→ R satisfying the
following conditions:

(i) For each x ∈ R, the mapping s→ 1(s, x) is measurable.

ii) For each t ∈ J, the mapping x→ 1(s, x) is continuous.

The set C(J × R,R) is referred to as the Caratheodory class of functions defined on J × R. These functions
possess the property of being Lebesgue integrable when they are bounded by another Lebesgue integrable
function defined on the interval J.

The space of real-valued Lebesgue functions on the interval J is denoted as L1(J,R). This space is
equipped with a norm ∥ · ∥L1 defined as:

∥ υ ∥L1=

∫ T

0
| υ(s) | ds.
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Definition 2.1. [14](ρ-Riemann-Liouiville fractional integral) Considerρ > 0, where f belongs to the space L1([J,R),
and ρ ∈ C1([a, b]) is an increasing function with the property that ρ′(s) , 0 for all s ∈ [a, b]. The ρ-Riemann-Liouville
fractional integral of order ρ acting on the function f is defined as follows:

(Iγ,ρ f )(t) =
1
Γ(γ)

∫ t

0
(ρ(t) − ρ(s))γ−1ρ′(s) f (s)ds. (2)

It’s evident that when ρ(t) = t, the expression given in (2) corresponds to the classical Riemann-Liouville
fractional integral.

Definition 2.2. [14](ρ-Caputo fractional derivative) Assume that n − 1 < ρ ≤ n, and f belongs to the function
space Cn([a, b]), while ρ is an increasing function in the space Cn([a, b]), satisfying the condition that ρ′(s) , 0 for all
s ∈ [a, b]. The ρ-Caputo fractional derivative of order γ acting on the function f is defined as follows:

(CDγ,ρ f )(s) = (In−γ,ρ f [n])(s)

=
1

Γ(n − γ)

∫ s

0
(ρ(s) − ρ(u))n−γ−1ρ′(u) f [n](u)du,

(3)

where f [n](u) :=
(

1
ρ′(u)

d
du

)n
f (u) defined over the interval [a, b].

By virtue of this definition, it becomes evident that when γ = n ∈ N, the expression (Dγ,ρ f )(s) simplifies to
f [n](s).

Remark 2.3. [14] In particular, when γ ∈ (0, 1), we have

(CDγ,ρ f )(s) =
1
Γ(γ)

∫ s

0
(ρ(s) − ρ(u))γ−1 f ′(u)du. (4)

Lemma 2.4. [4] Let γ > 0, if f ∈ Cn−1([a, b]), then we have

Iγ,ρ(CDγ,ρ f (s)) = f (s) −
n−1∑
k=0

f [k](0)
k!

(ρ(s) − ρ(0))k. (5)

In particular, when γ ∈ (0, 1), then

Iγ,ρ(CDγ,ρ f (s)) = f (s) − f (0) (6)

Lemma 2.5. [4] Let γ > 0 and f ∈ C1([a, b], we have

CDγ,ρIγ,ρ f (s) = f (s)

.

Lemma 2.6. [11](Dhage fixed point theorem)
Consider a Banach algebra X and let S be a non-empty, closed, convex, and bounded subset of X. Within this

context, three operatorsA, G: X→ X, and B: S → X are introduced and satisfy the following conditions:

(a) The operatorsA and G possess Lipschitz properties with Lipschitz constants δ and φ, respectively.

(b) The operator B is both compact and continuous.

(c) For any x ∈ S, if υ = AυBx +Gυ, then υ belongs to the set S.

(d) The constants δ and φ are chosen such that δM + φ < 1, where M =∥ B(S) ∥.

Under these conditions, the equation υ = AυBυ +Gυ possesses at least one solution.
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3. Existence results

Prior to delving into the existence result, we establish a crucial auxiliary lemma. This lemma assumes a
pivotal role in the process of converting the presented problem into a fixed-point formulation.

Lemma 3.1. Given 0 < γ < 1 and real constants a, b, and c with a + b , 0, consider an χ ∈ L1(J,R). The ρ-Caputo
fractional integro-differential boundary value problem, denoted as: CDγ,ρ

[ υ(t)−
∑m

j=1 Iβi ,ρϑ j(t,υ(t))
h(t,υ(t))

]
= χ(t), t ∈ J = [0,T], 0 < γ < 1,

a υ(0)
h(0,υ(0)) + b υ(T)

h(T,υ(T)) = c.
(7)

can be equivalently expressed as the integral equation

υ(t) = h(t, υ(t))
[ ∫ t

0

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)χ(s)ds −

1
a + b

(
b
∫ T

0

(ρ(T) − ρ(s))γ−1

Γ(γ)
ρ′(s)χ(s)ds

−c +

b
m∑

j=1
Iβi,ρϑi(T, υ(T))

h(T, υ(T))

)]
+

m∑
j=1

Iβ j,ρϑ j(t, υ(t)), t ∈ J.

(8)

Proof. Let’s consider an χ ∈ L1(J,R). We want to demonstrate the equivalence between the ρ-Caputo
fractional integro-differential boundary value problem given in (7) and the integral equation (8).

• First Direction: From Problem to Equation Let υ be a solution of the problem stated in (7). Applying
the γ-Riemann-Liouville fractional integral operator Iγ,ρ to both sides of the first equation in (7), we
arrive at

υ(t)
h(t, υ(t))

= Iγ,ρχ(t) +
υ(0)

h(0, υ(0))
+

∑m
j=1 Iβ j,ρϑ j(t, υ(t))

h(t, υ(t))
. (9)

Consequently,

a
υ(0)

h(0, υ(0))
+ b

υ(T)
h(T, υ(T))

= bIγ,ρχ(T) + (a + b)
υ(0)

h(0, υ(0))
+

b
∑m

j=1 Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))
.

Utilizing the nonlocal condition, we can deduce that

υ(0)
h(0, υ(0))

=
1

a + b

(
c − bIγ,ρχ(T) −

b
m∑

j=1
Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))

)
.

Substituting the value of
υ(0)

h(0, υ(0))
into (8), we obtain

υ(t)
h(t, υ(t))

=

∫ t

0

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)χ(s)ds −

1
a + b

(
b
∫ T

0

(ρ(T) − ρ(s))γ−1

Γ(γ)
ρ′(s)χ(s)ds

−c +
b
∑m

j=1 Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))

)]
+

∑m
j=1 Iβ j,ρϑ j(t, υ(t))

h(t, υ(t))
.

This implies that υ(t) satisfies the integral equation (8).
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• Second Direction: From Equation to Problem

Now, let υ(t) be a solution of the integral equation (8). Upon applying the ρ-Caputo fractional
derivative CDγ,ρ to both sides of equation (8), we obtain the first equation of (7).

Substituting t = 0 and t = T into (8), we obtain:

υ(0)
h(0, υ(0))

=
−1

a + b

( b
Γ(γ)

∫ T

0

(
ρ(t) − ρ(s)

)γ−1
ρ′(s)χ(s)ds − c +

b
m∑

j=1
Iβ j,ρϑi(T, υ(T))

h(T, υ(T))

)

+

m∑
j=1

Iβ j,ρϑi(0, υ(0))

h(0, y(0))
,

and

υ(T)
h(T, υ(T))

=

∫ T

0

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)χ(s)ds −

1
a + b

( b
Γ(γ)

∫ T

0

(
ρ(T) − ρ(s)

)γ−1
ρ′(s)χ(s)ds

−c +

b
m∑

j=1
Iβ j,ρϑi(T, υ(T))

h(T, υ(T))

)
+

m∑
j=1

Iβ j,ρϑi(T, υ(T))

h(T, υ(T))
.

Through straightforward calculations, we find that

a
υ(0)

h(0, υ(0))
+ b

υ(T)
h(T, υ(T))

= c.

Thus, the proof is complete.

We present our main result regarding the existence of solutions for problem (1). To proceed, we introduce
the following assumptions:

(H1) TThe function h : J × R → R \ 0 and ϑ j : J × R → R, where ϑ j(0, υ(0)) = 0 for j = 1, 2, ...,m, are
continuous. Additionally, there exist two positive functions ρ and φ j for j = 1, 2, ..,m, with bounds
∥ρ∥ and ∥φ j∥, such that:

|h(t, υ1(t)) − h(t, υ2(t))| ≤ ϕ(t)|υ1(t) − υ2(t)|, (10)

and

|ϑ j(t, υ1(t)) − ϑ j(t, υ2(t))| ≤ φ j(t)|υ1(t) − υ2(t)|, j = 1, 2, ...,m, (11)

hold for all t ∈ J and υ1, υ2 ∈ R.

(H2) A function θ ∈ L1(J,R) exists such that:

|1(t, υ(t))| ≤ θ(t) a.e. t ∈ J, (12)

for all υ ∈ R.

(H3) There exists a number ς > 1 such that:

ς ≥

H0∆ +

∑m
j=1Θ0, j(ρ(T) − ρ(0))β j

Γ(β j + 1)

1 − ∥ϕ∥∆ −

∑m
j=1 ∥φ j∥

(
ρ(T) − ρ(0)

)β j

Γ(β j + 1)

. (13)
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Where:

∆ =
(
1 +

|b|
|a + b|

)(
∥θ∥L1

(ρ(T) − ρ(0))γ

Γ(γ + 1)

)
+
|c|
|a + b|

+

∣∣∣∣∣∣∣∣∣∣∣∣
b

m∑
j=1
∥φ j∥
(
ρ(T) − ρ(0)

)β j

Γ(β j + 1)h(T, υ(T))

∣∣∣∣∣∣∣∣∣∣∣∣ ,
H0 = supt∈J |h(t, 0)| and Θ0, j = supt∈J |ϑ j(t, 0)|, j = 1, 2, ...,m.

Theorem 3.2. Under the assumptions (H1)-(H3), If the inequality:

∥ϕ∥

[(
1 +

|b|
|a + b|

)(
∥θ∥L1

(ρ(T) − ρ(0))ρ

Γ(γ + 1)

)
+
|c|
|a + b|

∣∣∣∣∣∣∣b
∑m

j=1 Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))

∣∣∣∣∣∣∣
]

+

m∑
j=1
∥φ j∥
(
ρ(T) − ρ(0)

)β j

Γ(β j + 1)
< 1.

(14)

holds, then the hybrid ρ-Caputo fractional integro-differential boundary value problem (1) possesses at least one
solution on the interval J.

Proof. We consider the following set

S = {υ ∈ X; ∥υ∥ ≤ ς} ,

where ς satisfies the inequality (13).
It’s evident that S constitutes a nonempty, closed, convex, and bounded subset of the space X. In order

to establish our result, we introduce the operatorsA,G : X→ X, and B : S → X as defined below:

Aυ(t) = h(t, υ(t)); t ∈ J,

Bυ(t) =
1
Γ(γ)

∫ t

0

(
ρ(t) − ρ(s)

)γ−1
ρ′(s)1(s, υ(s))ds

−
1

a + b

( b
Γ(γ)

∫ T

0

(
ρ(T) − ρ(s)

)γ−1
ρ′(s)1(s, υ(s))ds − c +

b
∑m

j=1 Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))

)
; t ∈ J,

Gυ(t) =
m∑

j=1

Iβ j,ρϑ j(t, υ(t)) =
m∑

j=1

∫ t

0

(
ρ(t) − ρ(s)

)β j−1

Γ(β j)
ρ′(s)ϑ j(s, υ(s))ds; t ∈ J.

Now, we will demonstrate that A, B, and G meet the conditions of Lemma 2.6. To achieve this, we will
break down the proof into several steps.

(i) A and G are Lipschitzian on X.
Let υ1, υ2 ∈ X. According to assumption (H1), we have:

|Aυ1(t) −Aυ2(t)| = |h(t, υ1(t)) − h(t, υ2(t))|
≤ |ϕ(t)||y1(t) − y2(t)|
≤ ∥ϕ∥∥υ1 − υ2∥,

which, upon taking the norm for t ∈ J, leads to:

∥Aυ1 −Aυ2∥ ≤ ∥ϕ∥∥υ1 − υ2∥, for all υ1, υ2 ∈ X.

Consequently,A is Lipschitz continuous on X with a Lipschitz constant of
∥∥∥ϕ∥∥∥.
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Continuing in a similar manner, consider υ1 and υ2 in X. We observe:

|Gυ1(t) − Gυ2(t)| =

∣∣∣∣∣∣∣∣
m∑

j=1

Iβ j,ρhi(t, υ(t)) −
m∑

j=1

Iβ j,ρϑi(t, υ(t))

∣∣∣∣∣∣∣∣
≤

m∑
j=1

∫ t

0

∣∣∣∣∣∣∣∣
(
ρ(t) − ρ(s)

)β j−1

Γ(β j)
ρ′(s)

∣∣∣∣∣∣∣∣ |φ j(s)||υ1(s) − υ2(s)|ds

≤

m∑
j=1

∥φ j∥

Γ(β j + 1)

(
ρ(T) − ρ(0)

)β j
∥υ1 − υ2∥,

which implies:

∥Gυ1 − Gυ2∥ ≤

m∑
j=1

∥φ∥
(
ρ(T) − ρ(0)

)β j

Γ(β j + 1)
∥υ1 − υ2∥.

Hence, we conclude thatG is Lipschitz continuous with a Lipschitz constant of
m∑

j=1

∥φ j∥
(
ρ(T) − ρ(0)

)β j

Γ(β j + 1)
.

(ii) The operator B continuous on X.
We first show that G is continuous. Let υn be a sequence in S converging to υ ∈ S. Due to the
continuity of 1, it’s easy to see that 1(s, υn(s))→ 1(s, υ(s)) as n→ +∞. By using (H2), we can conclude
that the expression ∣∣∣∣

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υn(s))

∣∣∣∣ ≤ ∆θ(s), s ∈ J,

where ∆ = sup
s∈J

∣∣∣∣
(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)
∣∣∣∣.

Then, by the Lebesgue dominated convergence theorem, we have:

lim
n→ +∞

∫ t

0

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υn(s))ds =

∫ t

0

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υ(s))ds,

and similarly:

lim
n→ +∞

∫ T

0

b
(
ρ(T) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υn(s))ds =

∫ T

0

b
(
ρ(T) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υ(s))ds.

Thus, we conclude that: lim
n→ +∞

Bυn = Bυ. which implies the continuity of B. Next, let’s prove that

B(S) is uniformly bounded on X. Take υ ∈ S:

|Bυ(t)|

=

∣∣∣∣∣∣∣∣
∫ t

0

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υ(s))ds

−
1

a + b

( b
Γ(γ)

∫ T

0

(
ρ(T) − ρ(s)

)γ−1
ρ′(s)1(s, υ(s))ds − c +

b
∑m

j=1 Iβ j,γϑ j(T, υ(T))

h(T, υ(T))

)∣∣∣∣∣∣∣
≤ ∥θ∥L1

(
ρ(T) − ρ(0)

)γ
Γ(γ + 1)

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

+

∣∣∣∣∣∣∣b
∑m

j=1 Iβ j,γϑ j(T, υ(T))

(a + b)h(T, υ(T))

∣∣∣∣∣∣∣,
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for all t ∈ J.
Let’s define:

M =
(
1 +

|b|
|a + b|

)(
∥θ∥L1

(
ρ(T) − ρ(0)

)γ
Γ(γ + 1)

)
+
|c|
|a + b|

+

∣∣∣∣∣∣∣b
∑m

j=1 Iβi,ρh(T, υ(T))

f (T, υ(T))

∣∣∣∣∣∣∣ ,
which ensures that ∥Bυ∥ ≤ M for υ ∈ S. This shows that B(S) is uniformly bounded. Now, we show
that B(S) is equicontinuous on X.
Consider τ1, τ2 ∈ J with τ1 < τ2 and υ ∈ S. We can analyze the difference:

| Bυ(τ2) − Bυ(τ1)|

=

∣∣∣∣∣∣∣∣
∫ τ2

0

(
ρ(τ2) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υ(s))ds −

∫ τ1

0

(
ρ(τ1) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, υ(s))ds

∣∣∣∣∣∣∣∣
≤ ∥θ∥L1

∫ τ1

0

∣∣∣∣∣∣∣∣
(
ρ(τ2) − ρ(s)

)γ−1
−

(
ρ(τ1) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)

∣∣∣∣∣∣∣∣ ds

+∥θ∥L1

∫ τ2

0

∣∣∣∣∣∣∣∣
(
ρ(τ2) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)ds

∣∣∣∣∣∣∣∣ ,
≤ ∥θ∥L1

(
ρ(τ2)−ρ(τ1)

)γ
Γ(γ+1) .

As this is independent of υ ∈ S and since τ1 approaches τ2, the right-hand side tends to zero. This
result, coupled with the Arzelà-Ascoli theorem, confirms that S is completely continuous on S.

(iii) The hypothesis (c) of lemma 2.6 is satisfied.
Assume υ ∈ X and x ∈ S are such that υ = AυBx +Gυ. Then, we have:

|υ(t)| ≤ |h(t, υ(t))|

∣∣∣∣∣∣∣∣
[ ∫ t

0

(
ρ(t) − ρ(s)

)γ−1

Γ(γ)
ρ′(s)1(s, x(s))ds

+
1

a + b

( b
Γ(γ)

∫ T

0

(
ρ(T) − ρ(s)

)γ−1
ρ′(s)1(s, x(s))ds + c

)]∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣

m∑
j=1

Iβ j,ρϑi(T, υ(T))

∣∣∣∣∣∣∣∣ .
Since

|h(t, υ(t))| ≤ |h(t, υ(t)) − h(t, 0)| + |h(t, 0)|,

and ∣∣∣ϑ j(t, υ(t))
∣∣∣ ≤ ∣∣∣ϑ j(t, υ(t)) − ϑ j(t, 0)

∣∣∣ + ∣∣∣ϑ j(t, 0)
∣∣∣.

Thus,

|υ(t)| ≤
(
ς∥ϕ∥ +H0

)[(
1 +

|b|
|a + b|

)(
∥θ∥L1

(
ρ(T) − ρ(0)

)γ
Γ(γ + 1)

)
+
|c|
|a + b|

+

∣∣∣∣∣∣∣b
∑m

j=1 Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))

∣∣∣∣∣∣∣ ] +
m∑

j=1

(
ς∥φ j∥ + θ0, j

)( (ρ(T) − ρ(s)
)β j

Γ(β j + 1)

)
.

Referring to (13), it’s clear that ∥υ∥ ≤ ς. Hence, υ ∈ S, and hypothesis (c) is satisfied.
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(iv) δM + ρ < 1. We have

|Bυ(t)| ≤
(
1 +

|b|
|a + b|

)(
∥θ∥L1

(
ρ(T) − ρ(0)

)γ
Γ(γ + 1)

)
+
|c|
|a + b|

+

∣∣∣∣∣∣∣b
∑m

j=1 Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))

∣∣∣∣∣∣∣ .
So

∥Bυ∥ ≤
(
1 +

|b|
|a + b|

)(
∥θ∥L1

(
ρ(T) − ρ(0)

)γ
Γ(γ + 1)

)
+
|c|
|a + b|

+

∣∣∣∣∣∣∣b
∑m

j=1 Iβ j,ρϑ j(T, υ(T))

h(T, υ(T))

∣∣∣∣∣∣∣ .
Using the condition (14), it’s possible to deduce that δM + ρ < 1, where ρ =

∑m
j=1

(
ρ(T) − ρ(0)

)β j

Γ(β j + 1)
∥φ j∥

and δ = ∥ϕ∥.
With all these assumptions satisfied, the conditions of Dhage’s fixed point theorem are met. Therefore,
by the conclusion of Dhage’s fixed point theorem, there exists a point υ ∈ S such that υ = AυBυ+Gυ,
which corresponds to a solution of problem (1) on J. This concludes the proof.

4. Fractional hybrid integro-differential inequalities

This section is dedicated to examining a crucial outcome related to strict inequalities within the frame-
work of our fractional hybrid integro-differential problem. Subsequently, we initiate our discussion with
the following definition:

Definition 4.1. [5] We define a function r : [0,T] → R to be an element of the set Ca([0,T],R) if it is continuous
and adheres to the condition sar(s) ∈ C([0,T],R).

Functions in the class Ca([0,T],R) exhibit the property described in the following lemma.

Lemma 4.2. [5] Consider r ∈ Ca([0,T],R) and suppose that for any s1 ∈ (0,+∞), the conditions r(s1) = 0 and
r(s) ≤ 0 for any s ∈ (0, s1) hold. Then, we have

CDγ,ρr(s1) ≥ 0.

In what follows, we will require the following assumption.

(C1) The mapping x 7→
x

h(s, x)
is almost everywhere increasing in R for ∈ [0,T].

(C2) The mapping x 7→

∑m
j=1 ϑ j(s, x)

h(s, x)
is almost everywhere decreasing in R for ∈ [0,T].

Now, we present our initial outcome regarding fractional inequalities for the problem (1).

Theorem 4.3. Given that the conditions (C1)-(C2) are satisfied, and there exist functions κ1 and κ2 from Ca([0,T],R)
such that:

(i) CDγ,ρ
[κ1(s) −

∑m
j=1 Iβi,ρϑ j(s, κ1(s))

h(s, κ1(s))

]
≤ 1(s, κ1(s)) s ∈ J = [0,T],

(ii) CDγ,ρ
[κ2(s) −

∑m
j=1 Iβi,ρϑ j(s, κ2(s))

h(s, κ2(s))

]
≥ 1(s, κ2(s)) s ∈ J = [0,T].

With one of the inequality being strict. Additionally, κ0
1 < κ

0
2 implies that

κ1(s) < κ2(s), for all s ∈ [0,T],

where κ0
i = s1−aκi(s)|s=0, i = 1, 2.
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Proof. Assuming the conclusion is false and the inequality (ii) is strict, let’s explore this situation further.
Since κ1 and κ2 belong to Ca([0,T],R) and κ0

1 < κ
0
2, there exists a point s1 within the interval [0,T] where the

following conditions hold:

κ1(s1) − κ2(s1) = 0 and κ1(s) − κ2(s) < 0, ∀s ∈ [0, s1].

Consider the functions:

Zi(s) =
κi(s) −

∑m
j=1 Iβi,ρϑ j(s, κi(s))

h(s, κi(s))
, i = 1, 2.

These functions satisfy Z1(s1) = Z2(s1) and due to conditions (C1)-(C2) , we have Z1(s) < Z2(s) for any
s ∈ [0, s1). Now, let’s define r(s) = Z1(s) − Z2(s) for s ∈ [0, s1]. This function satisfies r(s1) = 0 and r(s) < 0 for
all s ∈ [0, s1), and it also belongs to Ca([0,T],R). By applying lemma 4.2, we can deduce that CDγ,ρr(s1) ≥ 0.
Consequently, we have:

1(s1, κ1(s1)) ≥C Dγ,ρZ1(s1) ≥C Dγ,ρZ2(s1) > 1(s1, κ2(s1)).

This contradicts the assumption that κ1(s1) = κ2(s1). Therefore, the conclusion is true.

Theorem 4.4. Given the conditions (C1)-(C2) and taking into consideration the real numbers a, b, and c such that
a + b , 0, let’s assume the existence of functions κ1 and κ2 belonging to Ca([0,T],R) satisfying the following
conditions:

(i) CDγ,ρ
[κ1(s) −

∑m
j=1 Iβi,ρϑ j(s, κ1(s))

h(s, κ1(s))

]
≤ 1(s, κ1(s)) s ∈ J = [0,T],

(ii) CDγ,ρ
[κ2(s) −

∑m
j=1 Iβi,ρϑ j(s, κ2(s))

h(s, κ2(s))

]
≥ 1(s, κ2(s)) s ∈ J = [0,T].

With one of the inequality being strict. Moreover, if a > 0, b < 0, and κ1(T) < κ2(T), then the inequality:

a
κ1(0)

h(0, κ1(0))
+ b

κ1(T)
h(T, κ1(T))

< a
κ2(0)

h(0, κ2(0))
+ b

κ2(T)
h(T, κ2(T))

implies that
κ1(s) < κ2(s), for any s ∈ [0,T].

Proof. Starting from the inequality:

a
κ1(0)

h(0, κ1(0))
+ b

κ1(T)
h(T, κ1(T))

< a
κ2(0)

h(0, κ2(0))
+ b

κ2(T)
h(T, κ2(T))

,

we derive
a
( κ1(0)
h(0, κ1(0))

−
κ2(0)

h(0, κ2(0))

)
< b
( κ2(T)
h(T, κ2(T))

−
κ1(T)

h(T, κ1(T))

)
.

Since b < 0 and κ1(T) < κ2(T), in accordance with the condition (C1), we deduce that:
( κ2(T)
h(T, κ2(T))

−

κ1(T)
h(T, κ1(T))

)
> 0. This leads to the conclusion that κ1(0) < κ2(0), supported by the fact that a > 0 and the

condition (C). Subsequently, by applying Theorem 4.4, we attain the desired result.

Theorem 4.5. Assuming that the conditions of Theorem 4.4 are met and there exists a positive constantΛ satisfying:

1(s,u) − 1(s, v) ≤
Λ

1 + (ρ(s) − ρ(0))γ+1

(u(s) −
∑m

j=1 Iβi,ρϑ j(s,u(s))

h(s,u(s))

−

v(s) −
∑m

j=1 Iβi,ρϑ j(s, v(s))

h(s, v(s))

)
a. e. s ∈ J = [0,T].

(15)
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For all u, v ∈ R such that u ≥ v. If the following inequality holds:

a
κ1(0)

h(0, κ1(0))
+ b

κ1(T)
h(T, κ1(T))

< a
κ2(0)

h(0, κ2(0))
+ b

κ2(T)
h(T, κ2(T))

provided that Λ ≤ Γ(1 + γ)
(
ρ(s) − ρ(0)

)2γ
,then it follows that:

κ1(s) < κ2(s) for any s ∈ [0,T].

Proof. Let us consider a small positive value ϵ > 0 and define:

κ2,ϵ(s)
h(s, κ2,ϵ(s))

=
κ2(s)

h(s, κ2(s))
+ ϵ
(
1 + (ρ(s) − ρ(0))γ+1

)
Additionally, let’s introduce:

Z2,ϵ(s) =
κ2,ϵ(s) −

∑m
j=1 Iβ j,ρϑ j(s, κ2,ϵ(s))

h(s, κ2,ϵ(s))
.

Because κ2,ϵ(s)
h(s,κ2,ϵ(s)) >

κ2(s)
h(s,κ2(s)) , we can infer that κ2,ϵ(s) > κ2(s). By employing inequality (15) along with the

condition:
CDγ,ρ

[κ2(s) −
∑m

j=1 Iβi,ρϑ j(s, κ2(s))

h(s, κ1(s))

]
≥ 1(s, κ2(s)) s ∈ J = [0,T],

we can derive the following sequence of inequalities:

CDγ,ρZ2,ϵ(s) =C Dγ,ρZ2(s) + ϵΓ(1 + γ)
(
ρ(s) − ρ(0)

)γ+1

≥ 1(s, κ2,ϵ(s)) −
Λ

1 + (ρ(s) − ρ(0))γ+1

(
Z2,ϵ(s) − Z2(s)

)
+ ϵΓ(1 + γ)

(
ρ(s) − ρ(0)

)γ+1

≥ 1(s, κ2(s)) + ϵ
(
Γ(1 + γ)(ρ(s) − ρ(0))2γ

− Λ
)

> 1(s, κ2(s)).

Furthermore, since we have κ2,ϵ(0) > κ2(0) ≥ κ1(0),we can apply theorem 4.4 to conclude that κ2,ϵ(s) > κ1(s)
for any s ∈ [0,T]. Taking the limit as ϵ approaches 0, we deduce that κ2(s) ≥ κ1(s) for all s ∈ [0,T], which
completes the proof.

5. conclusion

This study not only advances our comprehension of hybrid ρ-Caputo fractional integro-differential
equations but also lays the groundwork for future investigations and applications in diverse areas of
mathematics and its applications.
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