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Existence and qualitative behavior of mild solutions for fuzzy
boundary value problem with nonlocal conditions
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Abstract. The focus of this study is on boundary-value issues for Caputo-type fractional differential
equations of order 1 < q < 2. To begin, we demonstrate the existence theorem of mild solutions under
certain lesser constraints combining the measure of non-compactness and Darbo’s fixed-point theorem.
The generalised Ulam-Hyers stability requirements are then investigated. The insights provided here

enlarge and enhance on several already established discoveries. subsequently an illustration is provided
to demonstrate the truthfulness of what has been found.

1. Introduction

Fuzzy set theory has been attracting increasing interest in recent years as it is widely used in several
fields such as mechanics, electrical engineering, signal processing, etc. As a result, in recent decades, fuzzy

set theory has become a hot and current topic and has received much attention from researchers (see for
instance [7, 8, 16, 17, 19, 21-23]).

Consider that Kaleva [11] explored the features of differentiable fuzzy set value relationships using the
idea of H-differentiability introduced by Puri and Ralescu [12], who provided the existence and uniqueness

theorems for a solution of the fuzzy differential equation.
X'(s) = f(s,x(5)); x(0) = xo.
where f : ] X Fr» — Fr» satisfies the Lipschitz condition.

In [13] Bhaskar Dubey and Raju K. George investigated linear-time-invariant processes with fuzzy
starting points.

x'(s) = Ax(s) + Be(s), x(sp) = xo.
where ¢(s) € (Fr)’ a control and A, B, are g X g,q X p real matrices, accordingly, sy > 0.

In [14] Nguyen Thi Kim Son investigates the existence of fuzzy moderate solutions to non-linear fuzzy
fractional evolution equations to illustrate the efficacy of mathematical conclusions.

gHZ)qu(s) = Au(s) + f(s, u(s)),s € [0,a].
M(O) = Qo.
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here gHDq is the fuzzy Caputo fractional derivative of class g € (0, 1) and A is the infinitesimal generator of

a strongly continuous semi-group {T(s)}:0 on the space of all triangular fuzzy elements 7.
By the inspire of above works, in this article, We handle the existence of mild solutions to a set of fuzzy
fractional semi-linear integrodifferential equations of order 1 < a < 2:

{ DTu(t) = Au(t) + f(t,u(t)) + fot p(t —s)g(s,u(s))ds, te]=1[0,T], (1)
u)+mu)=uged, wWO0)+nw)=u€7,

where D} is Caputo’s fractional derivative of 1 < g < 2,A is the infinitesimal generator of a strongly
continuous semigroup E,, (At7) on 7. The functions f, g are defined from | x 7~ — 7 and continuous.
p: ] — 7 is an integrable map on J, the non-local conditionm : 7~ — 7;n : 7 — 7 are continuous fuzzy
maps.

The following is how this work is organized. Section 2 gives a few definitions and initial information
that shall be utilized to support our primary findings. Section 3 provides an adequate definition of mild
solution to the (1). Section 4 contains evidence for our primary findings. Lastly, in Section 5, a case study
is provided to demonstrate the efficacy of the findings gained.

2. Preliminaries and Lemmas

In this part we recall some basic notions that will be useful in the rest of our article.

2.1. The metric space Fr
Definition 1. The fuzzy number is a fuzzy set u : R — [0, 1] that satisfies these conditions:

1. uisnormal, i.e. there’saty € R suchas u(ty) = 1;

2. uis a fuzzy convex set;

3. u is upper semicontinuous;

4. uclosure of {t € R, u(t) > 0} is compact.
The set of all fuzzy elements on R is symbolized by Fr.

Fr={u:R—[0,1], u satisfies (1 —4) below }.
The r-cut of a ¥r component is given by
u ={seR,u(s) >r} For all re (0,1]

We may write using the previous items

u" = [u(r), u(r)]. )
The distance separating two elements of #r can be measured by (see [1])
d(M,N) = sup max{|M(r) - N(1)l, M) - NI} €)
re0,1]

And the following properties are valid:
1. dM+e N +¢€) =dM,N);
2. d(M,IN) = |d(M, N);
3. dM+ N,w+¢€) <dM,w)+d(N,e);
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The fuzzy number additions and scalar multiplication computations on R take the structure

IMe&NT =[M] +[NT and [poM]" = p[M]',p € R. 4)
where

IMI" +[NT ={u+v:ue Ml velNT}. (5)
is the Minkowski summation of [M]" and [N]" and

pIMI" = {pu : p e IMI'}. (6)

For M,y € Fr, the gH difference [2] of M and N, expressed as M &,y N, is given as the number H € Fr
such as

(i) M=N+z or

Ai) N=M+(-D)H @)

MegHN=z4=>{

In regard to r-cuts, we receive
(Mg y)" = Imin{M(r) - y(r), M(r) - 7()}, maxiM(r) - y(), M(r) - 511
And the prerequisites for the existence of H = M e,y N € Fr are

H(r) = M(r) - N(r) and H(r) = M(r) - N(r)
with H(r) increasing, %(1’) decreasing, H(r) < ﬁ(r)
H(r) = M(r) - N(r) and H(r) = M(r) - N(r)
with H(r) increasing, %(1’) decreasing, H(r) < 77(1’)

case (i) { (8)

case (ii) { )

for all r € [0, 1].

In general, with x € g, There is no such thing as y € ¥ such as x @ y = 0. Sadly, then, Fr isn't
a linear field with additions and scalar multiplication. Hence, (g, |l - ||) is not a Banach space, where
Ix|| = d(x,0), x € Fr.

Denote 7 the space of all triangular fuzzy elements in 7. (7, d) is a subset of the metric set (¥R, d). It
is a complete metric space. Moreover, Bede [3] showed that if x, y € 7, then the difference x ©,5 v always

existsin 7 and x 6,5 y = (-1) © (y OyH x).
Let 7" be a subset of FR, ] C R, and denote C(J, 7") by the set of all continuous mappings f : ] = 7.

2.2. Hukuhara’s derivative
Letu : ] = Fr a fuzzy-valued function. The r-cut of u is given by

u(t,r) = [g(t, P, (t, r)],Vt €] Vrelo,1].

Definition 2. [4] Let ty € | and h be such that ty + h € (0,T), then the generalized Hukuhara derivative of a fuzzy
value function u : | — R at ty is defined as

u(to +h) —gm u (to) ,
2 z TgH Ugy (to)

lim

=0. 10
h—0 0 ( )

1

If ugy (to) € Fr satisfying (10) exists, we say that u is generalized Hukuhara differentiable at t,.

Definition 3. [4] Let u : ] = FRr and ty € (0, T), with u(t, r) and #(t, r) both differentiable at t,.
We say that
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1. uis [(i) — gH]-differentiable at t, if
W]y (to) = [w't, 0, @(t,7)]. (11)

2. wis [(it) — gH]-differentiable at t if
Wy gy (to) = [ (t,7), 0/ (8,7)] (12)

Theorem 1. [6]Let u: ] — Frand ¢ : | = Rand t € J. Suppose that ¢(t) is differentiable function at t and the
fuzzy-valued function u is gH-differentiable at t. So

(wp)y(t) = ('), (1) + (ug’), (). (13)

Definition 4. [5] Let u : | —» ¥R and u;H(t) be gH-differentiable at ty € (0, T), moreover there isn’t any switching
point on (0, T) and u(t, r) and u(t, r) both differentiable at to. We say that

o v’ is [(i) — gH]-differentiable at t, if
i (to) = [E”(t, n,u’(x, r)].

o v’ is [(ii) — gH]-differentiable at t, if
ff a(to) = [0 (t,7), (1, 17)]

2.3. Fuzzy fractional derivative
The extended fuzzy fractional derivative and its characteristics are presented.

Definition 5. [9] Let u € L'%(]). The fuzzy Riemann-Liouville integral of u is given by:

t
I u(t) = L o} f (t—9)T'ou(s)ds, 0<s<t 0<g<l. (14)
I'(q) 0
Definition 6. [6] Let u € L"%(]). The fuzzy Riemann-Liouville derivative of u is given by:
_1 o (i)n fs(s — "L o u(t)dt n-l<g<n
T(n - d ’ -
wDlyu(s) = {08 AR 1)
(%) u(s), g=n-1.

Definition 7. [6] In the definition of RL fractional derivative, assume the integer degree of the derivative is an
operator inside of the integral and operating on function u € Fr,t € J. We get the definition of Caputo gH derivative

of u

1 ) H—q— n
gHun(t) _ 1_(; _n_ql) @j(; (t—s"11o u(ﬁ){(s)ds, n-1l<g<mn, »
(%) u(t), g=n-1
Also we call u is [(i) — gH]-differentiable at ¢ if
Dlu(x, t;r) = [Dqg(x, t;r), Dii(x, t; r)] , VYq€(0,1) (17)

and u is [(ii) — gH]-differentiable at f, if

gDu(x, ;1) = [Dax, 1), u(x,t7)],  ¥q € (0,1). (18)
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Definition 8. [10] Let u : ] — T C Fr be a continuous function such as e™ © u(s) is integrable. So the fuzzy
Laplace transformation of u, expressed by L[u(t)], is

T
Lu(t)] := U(s) = f et O u(t)dt, t > 0. (19)
0

A fuzzy mapping u is exponent bounded of rank g if there’s M > 0 and
Aty > 0,d(u(t),0) < MeP', vt > t,
Proposition 1. If u(t) is a fuzzy peacewise continuous map on | and of exponential order B, then
L((u x 0)(1)) = L(u(t)) © L(v(t)). (20)
where v(t) is a peace-wise continuous real function on J.

Proof.

T T
L(u(t)) © L(v(t)) = (f(; eto M(T)d’[) ©) (f(; e’ 0o v(a)da)

T T
= f ( f 6_5(T+G)®u(”[)d”[)®v(0)d0-
0 0

Let us to hold 7 fixed in the interior integral, substituting f = 7 + ¢ and do = dt, we obtain

T, AT
L(u(t)) @ L(v(t)) = fo (f et ou(t) oot — T)dt) dt

)

:f(; e @(j(; u(t—a)@v(o)df)da

= L((u % 0)(t)).

T T
= f e o u(t) @ v(t — 1)dtdt
0
T t

O
Definition 9. [15]

1. The Gamma function is defined as
+00
Vs>0, I(s)= f w e Vdw. (21)
0
2. The B function is defined by
1
Yu,v>0, Buv)= f st — 1) ds. (22)
0

Proposition 2. [15] We have

T@rp)
(g +p)
2) Forallg>0,I'(g + 1) = qI'(g).

1) Forallg,p €e R}, B(q,p) =
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It is easy to show the following proposition.

Proposition 3. For all g > 0, we get the following result

t
f Eq,1 (ASq) ds = tquz (Atq) .
0

Proof.

t t an
E 1 (AsT)ds = f ——A'ds
Jy i 1Y G

n

= tE,2 (A1),
O
Proposition 4. Forall g €[1,2]ands >0,
1. 771 (s7 = A)7" = L (Egn (A1) (s),
2. 5172 (s7 = A)™' = L(tEg2 (A1) (5),
3. ("= A" = 5L ([t = 5)72Eqa (AsT) ds).

Proof. 1. Fors >0,

L(Ep1 (A1) (9 = L [Z T
n=0
+00 : An
- ;L(tq ) I'ign+1)

+00
-5
nq+1
n=0 S

=511 (s1-A).

2. Fors > 0,571 (s — A) ™" = L(E,1 (At)) (s), then

§172(s1— A) P = 57111 (57 — A) !
= L)) L (Eqr (A)) (5)
=L (1+Eq1 (A1) (s)

t
L( [ e (Am) ©

= L (tE;2 (t74)) (s).

7614

(23)
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3. From (1), we get
(57— A)" = 5" (Ep (A1) (5)

112
=L (m) L (Eq,l (Al’q)) (S)

_ 12 A
= L(m * Eg1 (At ))(5)

top_ syg-2
=L( fo %EM (Aéq)dé) ),

hence the desired result. [
Lemma 1. [10]
(1) Letu,v:] — T be continuous functions, c1,c, € R*. Then

Lci ©u(t) + c; ©v(t)] = c1 © L[u(t)] + ¢ © L[v(#)].
(2) Letu:] — T bea continuous function. Then

L[e‘”@u(t)] =U(s—a),s—a>0.

(3) Let u € CY(J,T) be exponent bounded of order . Then
(i) if uis (i)-gH differentiable, then L [D;Hu(t)] =50 Lu(t)] © u(0),
(ii) if u is (ii)-gH differentiable, then L [Z)ZHu(t)] = (-1)ou(0) & (-s) © L[u(®)].

Following that, the Kuratowski measure of non compactness is defined, and some of its key aspects are
examined.

Definition 10. [18] The Kuratowski measure of non compactness M(-) constructed on the bound subset V of E is
indeed:
M(V) = 'mf{s >0:V=ULViand diam (V) < ¢ fori = 1,2,...,n}.

The Kuratowski measure of non compactness has the very next well-known features.

Lemma 2. [18] Let E be a Banach space and u,v C E be bounded. The following aspects are met:

(1) M(u) < M) ifucy;

(2) M(p) = M(@) = M(convu)

(3) M(u) = 0 iff u is relatively compact;

(4) M(Ap) = |AM(u), where A € R;

(5) M(uUv)=max{M(u), M(v)};

(6) M(u+v) < M(u)+ M), where p+v={w|w=m+nme ynecvj

(7) M(u+y) = M(u),Vy € E.
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Lemma 3. [20] Assume V C C(I, E) to be bound and equicontinuous subset. Therefore, the function s — M(V(s))
is continuous on I :
Mc(V) = max M(V(s)),
SE

M(flu(s)ds) < IM(W(S))dS,

Next consider Darbo’s fixed-point theorem.

and

where V(s) = {u(s) :u € V},sel

Theorem 2. (Darbo’s fixed-point theorem [18]). Suppose M be a non-empty, bounded, convex, and closed subspace
of a Banach space X and L : M — M is a continuous operator fulfilling u(LZ) < Ku(Z) for any non-empty subspace
Z of M and for a constant K € [0, 1). Therefore, L has at least one fixed point in M.

3. Definition of a mild solution

The following theorem demonstrates the relationship between a fuzzy fractional differentiation equation
(1) and a fuzzy integro-differential equation.

Theorem 3. Let A be the infinitesimal generator of a strongly continuous semi-group {T(t)}=0 on T, the unique
solution of (1) is provided by

1 t t ~
w0 = 7y fo f (t — 6)12Eq 1 (A — ) f(5, u(s))dods
1 t t S > (24)
+F(a—1)£ js‘ jo‘(t—é)q Eg1 (A6 = 35)T) p(s — x)g(x, u(x))dodxds
+ Eg1 (A7) (ug — m(u)) + tE; 2 (A7) (uy — n(u)).
Proof. By the Laplace transform, we may get
m=1
L (D! A) = A(Lu)(A) = ) AT (Dlu) (0
(DIu®) (1) = A(Lu)(A) ; (D'u) (0) -

= A(Lu)(A) — A7 u(0) — A972u/(0).

It follows that
¢
AT(Lu)(A) = AT 1u(0) — A772u’(0) = A(Lu)(A) + (LF)(A) + (L f p(t = s)g(s, u(s))ds)(A),
0
t
(A1 = A) (Lu)(A) = (Lf)(A) + (L fo q(t — s)g(s, u(s))ds)(A) + A7 u(0)
+ A2 (0),

t

(Lu)(A) = (AT - A)™! [(Lf)(A) +(L fo q(t — 5)g(s, u(s))ds)(A)

+AT1(0) + A7 (0)],
(Lu)(A) = (A = A (LF)(A)

t
FIT-A (L f p(t - 5)g(s, u(=)ds)(A)
0
+ AT AT = A) T u(0) + A2 (A = A) L 0),
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Then, by Lemma 4 we get

t
(Lu)(A) = ﬁl( fo (t=5)"Ega (Asq)dS) (L)

+ F(ql_ 1)L (f(:(t - S)q—qu,1 (As?) ds) L ([)t p(t —s)g(s, M(S))ds) (1)
+ L (Ega (A1) (Du(0) + L (tE42 (A1) () 0)

Using the proposition 1, we obtain

(Lu)(A) = ﬁL(Im j(;_ (t—x- s)q’qu,l (Asq)f(x,u(x))dsdx) (A)

+ ﬁL(‘[:o j; ’ j:(t —-x— s)"’qull (AsT) p(x — s)g(s, u(s))dsdsdx) (A)
+ L (Eg1 (A1) ()u(0) + L (tEq2 (A7) (A’ (0),
Then,
(Lu)(A) =

1 t t .
T(q- 1)L( fo fs (t = 0)"?Eq1 (A ~5)) f(s, u(s))déds) )

t t
+ #L (f f f(t - 6)"‘2qu1 (A —9)D) p(s — x)g(x, u(x))dédxds) A)
I'lg-1) 0 Js Jo

+ L(Eg1 (A#)) ()u(0) + L (tEq2 (A1) (D)1t (0),
Now (24) follows easily by applying the inverse Laplace transform. This conclude the evidence. [
Definition 11. A function u € C(J,7") is called a mild solution of (1) if it satisfies the operator equation

1
I'g-1)
1 £ t S
+ — f f f (t- 5)’472Eq,1 (A6 = 95)) p(s — x)g(x, u(x))dddxds
r(q - 1) 0 Js JO

+ Ey1 (A7) (ug — m(u)) + tE; 2 (At7) (uy — n(u)).

t t
u(t) = fo f (t- 6)‘7‘2Eq,1 (A5 —9)7) f(s, u(s))dods

(26)

4. Existence Criteria

We will start with the introduction of some principals hypotheses:

(Hyp1) E,;.(At7) is a compact operator for all t € ] and n € N ie, There’'s M > O such as Vt € ],
E;.(AtT) < M,

(Hyp2) f,9:]x7 — 7 is continuous and for every k > 0 there’s a positive functions px, vi € L* (J,R*) such
as
sup d(f(t/ 1/[), 0) < Hk(t)r sup d(g(t/ M), 0) < Vk(t)‘
d(u,0)<k d(u,0)<k
(Hyp3) There exist g1 € [0,4), B, := {u €T ,d(u,0) < )\} c7,A>0,and p(.),0(.) € L (J, R*) such that for any
u,v € C(J,By) we have
d(f(t, u(t), f(t,0(t)) < p(B)d(u(t), o(t)), t € J.
d(g(t, u(t)), g(t, (b)) < o(B)d(u(t), v(t), t € .
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(Hyp4) m,n:9 — D(A) is continuous, and there’s a constants 6, 1 such as

d (m(u), m(v)) < 0d(u,v), dmnu),n@) <ndu,v), wveT,

We shall now demonstrate the existence findings for the Eq. (1). Our initial discovery is founded on
Darbo’s fixed-point principle.

Theorem 4. Assume that (Hyp1)-(Hyp4) holds, and

T Tq+1
ol g ey PTG

Ta+l) ' T@+2

+0+Tn|<1. (27)

Then, the Eq. (1) has at least one solution on C (], 7).

Proof. Consider the operator
L:C(UT)=>CUT), (28)

defined by
1
Ig-1)

t t S
’ F(ql— 1) fo f fo (t = 0)"2Eq1 (A(6 — )) p(s — x)g(x, u(x))dodxds
+ Ey1 (A7) (ug — m(u)) + tEg 2 (A7) (uq — n(u)).

t t
u(t) = fo f (t = 8)T2En (A(S — 5)7) f(s, u(s))ddds

The operator L : C(J,7) — C(J,7),in (28) is clearly defined based on the characteristics of fractional
integrals and the continuity of functions. Consequently it is sufficient to demonstrate that the operator £
possesses a fixed point u, and that fixed point corresponds to a solution of the Eq. (1).

oo T el oo " Ta+1 _ . .
Allow A > M [“H Hlf(a(f[i)) L ”Lr(,;’;r]kz)) + Z] and consider the following set:

By={ueC(7),d(u) <A

Obviously, B, is nonempty, convex, bounded, and closed.
In five phases, we will demonstrate that £ fulfills Theorem 2.

Step 1: L (B,y) € (By).
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For u € B,, by Proposition 2 and (Hyp2), we get

a(Lu(t),0) = ( f f 8)" 2,1 (A — 5Y) £(5,u(s))dods

‘11)

F(a 1) f f f (t = 6)TEq1 (A(6 = 5)7) p(s — x)g(x, u(x))ddxds
Eqq1 (At7) (g — m(u)) + tEgp (At7) (ur — n(u)), 0)

t t
gnjlnjifa-@%mQ@M@LQw@

F(q 1) f f f - 0)*7d (g(x, u(x)), 0) dodxds

+Md ((u0 — m(u)), o) + TMd ((u1 — n(w)), o)

= % f | f t(t—é)a_zlvlk(s)déds
F(a 1) f f f (t = 0)T 2 vi(x)dodxds

+Md ((u0 — m(u)), o) + TMd ((u1 — n(w)), o)

Mgl ) 42
< —/——mF— Ta—1) ff(t 0)1dbds

MPHVT’”L“ ]R"') f f f 5
t — 6)17°dddxds
l"(q 1) )

+ Md (o, 0) + Md (m(u), 0) + TMd (1, 0) + TMd (n(u), 0)

<M ltrllisgrot®  pllvlls gret™! .’
T(q+1) I'(g+2)

<M lrlle=grn T pllvellisgre) T +Z| <A
T(g+1) I'(g+2)

Where p = maxe; fot Ip(t — s)|ds and Z = d(uo, 0) +d (m(u),()) +Td (ul,()) +Td (n(u), G)
which means that £ (B;) C (B,).

Step 2: P is continuous.
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We assume that the sequence u,, converges tou in C(J,7) and t € J. So,

t t
(L), Lu(h) < Ml) [ [ e=oraess mon, s, o) doas

I(g-1) f f f (£ = 0172 (g(5, un(s)), g5, u(s))) doddsddx
+ Md ((uo — m(uy)), (uo — m(u))) + TMd (11 — n(uy), u1 — n(u)))

M t t .
sr(q 1) f f (t = 0)172d (f (5, un(s)), f(s, u(s))) dods

- 1)f f f (t = 6)172d (g(s, un(8)), g(s, u(s))) dodsdx (29)
+ Md ((ug — m(un)) (ug — m(u))) + TMd (17 — n(u,,), uy — n(u)))
Mlpll & ! Mpliell, e 19 (11, 11)
< Wd(“"'” * (g +2)
+ MOd (u,, u) + TMnd (1, u)
ol g e T Plell g, T
SM[ CES) + TG +2) + 60+ Tn|d(u,,u).

Hence, we obtain

d(Lu,(t), Lu(t)) - 0 as n — oo.

As result, L is a continuous on C (J, 7).
Step 3: L(B,) is bounded in C (], 7).
According to Step 1, we have £ (B,) C (B,) . This implies that £ (B,) is bounded setin C (], 7).
Step 4: L (B,) is equi-continous set in C(J, 7).

For arbitrary t1,t, € ], with t; < t,, let u € B,. Estimate
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t b
d(Lu(ty), Lu(t)) =d (ﬁ f(; fs (tr - 5)’1—25’1/1 (A6 = 5)7) f(s, u(s))dods

* r(ql_ 1 f(: 2 f 2 fo (t2 = 0)T2Ey1 (A( = 5)7) p(s — x)g(x, u(x))dddxds
+ Eq1 (A1) (o — m(u)) + taEqg2 (At]) (w1 — n(u),

ty t
I(q-1) fo f (11 = O)*Eq1 (A3 = 5)") (s, u(s)dods

t ty s
’ r(ql— 1) fo f fo (1 = 8)TEq; (A6 = 5)") p(s — x)g(x, u(x))ddddxds
+Eq1 (A1) (o = m(u)) + 1 Ega (AH]) (1 = n(u))

5] ty
Sd(F(ql— 1)fo f (t2 = )7 Ey1 (A(® = 5)") f(s, u(s))dods,

t t
[ [ e-oreaae-mse u(s))déds)

I'g-1)

(F(q 1)f f f (t2 = 8)T2Eq1 (A5 — 5)7) p(s — x)g(x, u(x))dodxds,

1
T(7- 1)f f f (1 = 8)T2Eq1 (A(S = 5)") pls — 1)g(x, u(x))dédxds)

+d (Eqn (A#]) (o = m(w)), Eq (A#]) (uo — m(u)))
( 2 (At") (w1 = n(u)), t1Eq2 (A]) (a1 = n(u)))

r(q 1) f f (t2 = 0)7Eq1 (A(d = 5)") (5, u(s))ddds

+ r(q — 1) f f (tz - 6)q_2Eq,1 (A(6 - s)q)f(sl M(S))déds,

51

t t
e I [ e-orEn ac-onse u(s))dads)
t t
+d(r(q1—1) fo f f: (t2 = )" 2Eg1 (A = 8)7) p(s — x)g(x, u(x))dddxds

* F(ql— 1) fz fz j(; (t2 - 5)‘7_2Eq,l (A6 = 5)T) p(s — x)g(x, u(x))dodxds,
Ho Jh

t t S
T fo f fo (1 - 612E, <A<6—s)q)p(s—x)g(aau(x»dédxds)
+ (o — m())d (Eqn (A1), Eq1 (AH]))
+ (= n(u))d (E2 (At]), tiEq2 (A1)
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1 Lo ph
<d (m fo L (t, — 6)q_2Eq,1 (A6 = 5)7) f(s,u(s))dods,
1 Ho b
m fo f; (t1 — 6)q_2Eq,1 (A6 - s)q)f(s,u(s))déds)

1 to ts ) )
+d(r(q—1)fﬁ ft (t2 = O Ey (A<5—SW)f(s,u(s))déds,o)

+d (ﬁ j(;l fl f(;(tz - 6)‘7’2]5%1 (A6 = 5)1) p(s — x)g(x, u(x))dddxds,

t t S
ﬁ f(; f j; (t — 6)‘7*2Eq,1 (A —9)D) p(s — x)g(x, u(x))dédxds)

ty tr S
+d (—r(ql— 5 ftl ftl fo (t2 — O)T2Ey1 (A(S — 8)7) p(s — 2)g(x, u(x))dddxds, 0)
+ (g — m(u))d (Eqn (AH]), Eq1 (AH]))

+ (M1 - n(u))d (tqu,Z (Atg) , tlEq,Z (Al’z))

1 forh ) )
=T(- 1)[ f d((t2 = 0), (t1 = )1%) Eqa (A(S — 5)7) £(5, u(s))ddds

+d(r(q 1) f (t2 - (3)”’ Zqu (A —S)q)f(s u(S))d(SdS O)

+ m I) j; jo‘ d (b = 0)T72,(H — 6)’7_2) Eg1 (A6 = 5)T) p(s — x)g(x, u(x))dodxds

ty to
+d (—F(ql— D jt: j; f(;(tz = 8)172E 1 (A(6 — 8)T) p(s — x)g(x, u(x))dddxds, 0)
+ (g — m(u))d (Eq1 (AH), Eq1 (A))

+ (w1 — n(u))d (tqu,Z (Atg) , tlqu (Al’z)) ,

Hence,

d(Lu(ty), Lu(t))) = 0 as t; — ty.

. This implies that £ (B,) is equi-continuous.
Step 5: L is K-set contraction.

For Z C B,,t € ], we obtain
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ML) = M{(Lu)(t),u € Z})

t t
) M({ T(ql— 1) fo f (t = 0)TEq1 (A(6 = 5)7) f(5, u(s))ddds

t f S
* F(ql— 1) fo f fo (t = 0)"2Eq,1 (A6 = 8)) p(s — 2)g(x, u(x))dodxds

+Eq1 (A#) (g — m(u)) + tEq2 (A#) (11 = n(u)), u € Z})
1
I'(g-1)

t t S
* F(ql— 1) fo f fo (t = 0)T2Eq1 (A(® = )") p(s = OM ({g(x, u(x)), u € Z}) dodxds

+ Eq1 (At M ({(uo — m(u)), u € Z}) + tEq2 (At M ({(ur — n(w)), u € Z})

el . M(Z)

1 t t
L (JR*) 2
t—0)T"E,1 (A(D — s)7)dods
L fof( Y2E, (AG5 Y1)

ol 4 e M@)ot i o
Y TT-D fo f fo (£ = 8)T2Ey 1 (A(6 — 5)") p(s — x)dodxds

+ Eg1 (At M({m(u), u € Z}) + tEq 2 (A1) M (fn(u), u € Z})

q q+1
T”p”ﬁ(mw pT “@”L%(LJR*)

Ta+1) | T@+2)

<

t t
f f (t = 8)12Eq1 (A6 — 8)") M({f(s, u(s)), u € Z})dods
0 s

+ 0+ Tn|M(Z)

Thus, by (27), we conclude that L is a K-set contraction, and

T1 Tq+1
IlpIILﬁ(W) p IIQIILﬁ(m)

Tg+1) | T@G+2)

K::M[ +0+Tn

Hence, since all conditions of Theorem 2 are meets we refer that £ has a fixed point u € Bj.
Consequently, the problem (1) has at least one solutionu € C(J,7). O

5. Generalized Ulam Hyers stability results

Existence criteria are necessary when we study the qualitative behavior of solutions to (1).

7623

We begin by defining Ulam-Hyers and Generalised-Ulam-Hyers stability in relation to the Eq. (1), as

below.
Allow u € C(J,7") and ¢ > 0. Given the subsequent inequality

{ Dfu(t) —Au(t) + f(t,u(t)) + J;p(t —5)g(s, u(s))ds < g, t € ],
u)+mu)=up€7, WO +nu)=u; €7,

(30)

Definition 12. Assume that, Ve > 0 and Yu € C(J,T") satisfying (30), there exist a unique v € C(J,T") satisfying

(1) and a constant Q1 > 0 such that
du(t),v(t) < Qe

then problem (1) is called Ulam-Hyers (UH) stable.
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Definition 13. Assume that, Ve > 0 and Yu € C(J, T") satisfying (30), there exist a unique v € C(J, T") satifying (1)
and x € C (R, R*) with x(0) = 0 such that
d (u(t), o(t)) < x(e)

then problem (1) is called generalized Ulam-Hyers (GUH) stable.
Definition 14. For each ¢ > 0 and for each solution v of (1), the problems (1) is called Ulam-Hyers-Rassias stable
with respect to v € C (J,R*) if

Dfu(t) —Au(t) + f(t,u(t)) +f p(t —s)g(s, u(s))ds < ev(t),t €], (31)
0

and there exist a real number v > 0 and a solution u € C(J,R) of (1) such that
d (u(t),v(t)) < vew(t),t €]
where ¢, is a positive real number depending on .
Remark 1. u € C(J,7") is a solution of inequality (30) iff there exists n € C(J,T") such that
(1) d(n®),0)<ete];
(2) D?u(t) = Au(t) + f(t, u(t)) + fot p(t —s)g(s, u(s))ds + n(t),t € J;
(4) u)y+mw)=uge7d, WO +nw)=u 7.

Theorem 5. Assume that conditions (Hyp1)-(Hyp4) and (27) hold. Then, the Eq. (1) is both Ulam-Hyers and
generalized Ulam-Hyers stable.

Proof. Based on Definition 11, the inequality 30 is solved by

1
" Tg-1)

_r o — 512 — ) -
+ = 1)j0‘ f; fo(t 0)T°E,1 (A(0 = 5)7) [p(s — x)g(x, u(x)) + n(s)] dodxds
+ Ey1 (A7) (ug — m(u)) + tE; 2 (At7) (uy — n(u)).

u(t)

tot
‘fo f (t- 6)q_2Eq,1 (A6 = 9)T) [f(s, u(s)) + n(s)] dods
(32)

According to Theorem 4 and Definition 11, the unique solution v € C(J, 7") of (1) satisfies (26). For all € > 0,
from ,The assumption (Hyp3) and (1) of 1 and using the same calculus as (29), we get
q q+1
TPl & ey N PTTNA 3 ey
I'(g+1) Tg +2)

d(u,v)sM[ +0+Tnle (33)

Therefore, we know from (33) and the definitions 13 and 12 that the problem (1) is both Ulam-Hyers and
generalized Ulam-Hyers stable. The proof is completed. [
Tl L pT™ gl 1

LT (JR*) L1 (JRY)

Theorem 6. Assume that (Hyp3) hold with M < A~!, where A = o) T T2 + 0+ Tn, and there

exists a function v € C (], R*) satisfying the condition (31). Then the problems (1) is Ulam-Hyers-Rassias stable with
respect to v.

Proof. We have from the proof of Theorem 5,
d(u,v) < &.

where ¢, = MA, this completes the proof. O
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6. Example
Take the next FFDE:
T = 5 4 fltu(t, ) + [ p )9 uts ),
ut,0)=u(t,7)=0, u'(t,0)=u'(tn) = (34)

u(tl 0) + Zle a;u (ti/ x) = Mo(X), M’(t, 0) + Zle Ciu (ti/ x) = Ml(X).

Where t € | = [0,1],x € (0,m),1 < g < 2, let E = C([0,7],7) and take the operator A : D(A) C E — E
provided by

ou J*u u
a X 2 [S E} A(H) = ﬁ
Clearly A is dense defined in E and is the infinitesimal generator of a compact Co—semigroup E,, (At7) on
D(A) and allow u, v € C([0, 1], E). Define the operators f : [ X Z = E,g: [ xZ — Eandp: ] — Eby

D(A):{ eE 2

3 e~*lu(s, x)| 3 e
fe = mraaruem M Vmt el
4
m(u)(x) = Zau(sm n(u)() = chu (50,%),

=1
~t

ps—t)=¢
Based on the estimate of the operator E, , (At7), we may get M = 3. in addition

1610~ £l = o |~ | < = ol < ol
R2+elll+u 1+0ll 7 12+¢° 12 '
Thus ||pH ==
1 1 1
(s, u) = g(s,v)ll = € Vil ® 72IIu dl-< 5
Therefore ||Q|| =z
t t
maxf [p(t —s)lds = maxf e lds = maxef —1 < 2.
te[0,T]1 Jo te[0,1] Jo te[0,1]
And

p

() = m@)I| < Zalnm—vnsbnu—vu,

i=

=

() = n(o)] < Z el = Il < dllut = o

Letg=3,0=Y" lal < {5,n=X" lcil < {5. We shall check that condition

T9 Ta+1
||p|| by PTG

TG+1)  T@+2)

K:=Ml +0+Tn

1 1 1 1
12 24
2 _ J—
<3x [r(5/2) rop T2t 12)
< 3% (0.062 + 0,025 + 0,083 + 0,083) = 0,759
< 1.

Finally, based on Theorem 4, we gained that 34 has a unique mild solution.
In addition, according to Theorems 5 and 6, Eq. 34 is UH stable and GUH stable as well as UHR stable.

Remark 2. The developed example demonstrates the potential of the improved existence and stability outcomes.
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7. Conclusions

The boundary-value issue for a Caputo nonlinear fractional differential equation of order 1 < g < 2is
introduced in this study (recalling some recents results as [24-26] and reference therein). Three methodolo-
gies were used to effectively study the analytical solutions: the Kuratowski measure of non-compactness,
Darbo’s fixed-point theorem, and the generalized Ulam-Hyers stability principle. We set existence and sta-
bility requirements for the problem-solving solutions under assessments. At the conclusion, an example is
provided to corroborate and confirm the viability of the acquired findings. We anticipate that the presented
results will inspire scholars to pursue more study on the issue. The outcomes of the determined existence
are critical in the qualitative analysis of the offered problem.
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