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Abstract. A-Berezin radius distance and A-Berezin norm distance are presented in this study. Furthermore,
by employing the notions of A-Berezin radius distance and A-Berezin norm distance, we find A-Berezin
radius inequalities of the product and commutator of functional Hilbert space operators. Moreover, we
generalize the A-Berezin radius distance. Finally, we prove the theorem pertaining to the A-Berezin radius
distance. To recapitulate, the A-Berezin number of operator V on L (H(®)) is defined by the following

special type of quadratic form: bers (V) = sup, o <V/l<\q,llz,, >A , 11 € ©, where IAc,, is the normalized reproducing

kernel on H and a semi-inner product on H, denoted as (Vfc,], IAc,, Yai=(A VlAcn, lAc,, )#,is induced by any positive
operator A.

1. Introduction

We present the A-Berezin norm and radius distances in this publication. Using the notion of A-Berezin
radius distance and A-Berezin norm distance, we also find A-Berezin radius inequalities of the product
and commutator of functional Hilbert space operators. We also extend the concept of the A-Berezin radius
distance. H establishes a non-complex Hilbert space along this work, with associated norm ||| and an
inner product ., .). The algebra of all bounded linear operators operating on H is defined as L (H) . Let the

identity operator on H be represented by the symbol I. N (V), R (V) and R (V) stand for null space, the range
and closure of range of V, respectively, for the operator V € L(H). V* defines the adjoint of V. V € L(H)
is said to be positive if (Vx,x) > 0 for every x € H, shown by V > 0. The absolute value of V, represented
by |V|for V € L(H),is |V]| = (V*V)2. Recall that the functional Hilbert space (shortly FHS) is the Hilbert
space H = H(®) of complex-valued functions on some @ such that the evaluation functionals ¢, (f) = f(1),
n € ©, are continuous on H and for every 1 € © there exist a function f;, € H such that f,(n) # 0 or,
equivalently, there is no 1y € Q such that f(ro) = 0 for all f € H. Then by the Riesz representation theorem
for each 1 € O there exists a unique function k,, € H which is called the reproducing kernel of the space H

such that f(A) = (f,k,) for all f € H. The furlction/k:7 = H%II’ n € ©, is called the normalized reproducing

kernel of H. The prototypical FHSs are the Hardy space H*(ID), the Bergman space L2(ID), the Dirichlet
space D*(D), where D = {z € C : |z] < 1} is the unit disc and the Fock space ¥ (C). A detailed presentation of
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the theory of reproducing kernels and FHSs is given, for instance in Aronzajn [3]. Note that for a bounded
linear operator V on H (i.e., for V € L(H) its Berezin symbol V is defined on ® by (see Berezin [8])

V(A) = (Viy(2), ky(2)), 1 € ©.

In other words, Berezin symbol V is the function on © defined by restriction of the quadratic form (Vx, x)
with x € H to the subset of all normalized reproducing kernels of the unit sphere in . The Berezin set,
Berezin number and Berezin norm of operators are defined, respectively, by (see [11, 27, 28])

Ber (V) = Range (V) = {’17(17) ine G)} ,
ber (V) = sup |F‘7(T])
nee

7

and

Vi, = ”V'EH
IVllger sgg 1|

It is obvious that ber(V) < w(V) < ||V|| and Ber(V) c W(V), where w(V) denotes the numerical radius and
W(V) is the numerical range of operator V.
Let £(H)" represent the positive operator cone, meaning that

LH) ={VeL(H):(Vx,x)y>0VxeH].
A positive semi-definite sesquilinear form
(L) HXH->C (), =(Ax,y), Vx,yeH,

is indicated by an operator V € L (H)" . As expected, this semi-inner product generates a semi-norm ||.||; ,
which is represented by [|x|[4 = /{x,x)4 = ”A%x ,¥x € H. It's obvious that ||x||, = 0iffx € N (A). Therefore,
if and only if A is injective operator, ||x||4 is a norm on H, and iff R (A) is closed in H, the semi-normed space
(L(H),IIll4) is complete. The inner product on the quotient space H/N (A) is known to be induced by
the semi-inner product {.,.)4. If R(A) is not closed in H, then the quotient space H/N (A) is not complete.

Nonetheless, the completion H /N (A) is isometrically isomorphic to the Hilbert space R (Al/ 2) with the
inner product <A1/2x,A1/2y>

Ry <PWx, Pmy>, Vx,y € H, as shown by a classic construction by de

Branges and Rownvak [10]. The Hilbert space (R (Al/ 2) 4., .)7{( Al/z)) for the sequel shall be abbreviated as
R (Al/z) (see to [2]). Given V € L (H),

Vx4
IVll4 = sup T = sup [[Vx|[4 < oo
xeR(A) A xeR(A)
x#0 llxlI=1

if there is ¢ > 0 such that for every x € R(A), [|Vx|l4 < c||V]l4 . Here after, we define
LYH) ={V e LIH):|[VIl4 < oo}

and assume that A # 0 is a positive operator in £ (H). Observe that |V||, = 0 iff V*AV = 0, and L4 (H) is
not a subalgebra of £ (H). Furthermore, we obtain

IVlla = {|<VX, Y| 1y € R(A) and Il = ||y|| = 1}

for Ve LA(H).If(Vx,y), = (x, Yy), holds for every x, y € H, then an operator Y € L (H) for V € L(H)is
termed an A-adjoint of an operator V. On the other hand, a solution to the operator equation AX = V*A can
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be understood as the presence of an A-adjoint of V. The equation AX = V*A has a bounded linear solution
iff R(V*A) € R(A), according to Douglas’ theorem in [12]. If all operators allowing A-adjoint are in L4 (H),
then we get Lo(H) = {V € L(H) : R(V*A) C R(A)}. The unique solution to equation AX = V*A is defined
as VP4 if V € L, (H). Keep in mind that V# = A*V*A, R(V#1) C R(A) and N(V#) C N(V*A), where A' is A’s
Moore—Penrose inverse. Vi1 € L4 (H), (V‘if‘)jiA = P,VP4, and ((VﬁA)ﬁA)ﬁA = V¥ where Py is the orthogonal
projection on m), may all be verified for Vi, Alsoif Y € L4 (H), then VY € L4 (H), and (VY)ﬂA = Yhayha,
Moreover,

1/2
A

1/2

Vila = VAl = [V = Jvve],” g

Recall that the set of all operators admitting A/2-adjoint is denoted by £ 412 (#). Douglas’ theorem may
be used to confirm that

Lap(H)={V e LIH):dc>0,[IVxll4 <clixlla,¥x € H}.

Any operator in L412(H) is defined the A-bounded operator. Furthermore, it was showed in [1] that if
Ve LAUZ(?'{), then

1Vxlla _

IVlla = sup IVxll4 -

N @) [Ix[],4 xeH,||x||I=1

In addition, , then V(N (A)) € N (4) and ||[Vx|l4 < |[VII4 x4, Vx € H if V is A-bounded. Keep in mind that
there are two algebras of L(H) : La (H) and L2 (H). In L4 (H), these two algebras are likewise neither
dense nor closed (see, [1]). Additionally, the subsequent inclusions L4 (H) € L1z (H) € LA (H) € L(H).

Specifically, if AV is selfadjoint, then an operator V € L(H) is A-selfadjoint; this guarantees that
IVIl4 = sup{l{Vx,x)4] : x € H,|Ix|l4 = 1}, as stated in [13]. Provided that AV is positive, an operator
V e L(H)is A-positive. It is obvious that an operator that is A-positive is always an A-selfadjoint operator.
Furthermore, it should be mentioned that both V#V and VV# are A-positive. The authors of [29] examined
the A-numerical radius of operator using these ideas. See [9, 14, 19, 30, 31, 36] for further research on the
A-numerical radius of operators.

Now, we can give the following definitions, which given by Giirdal and Basaran [20].

Definition 1.1. Bery (V) = {(V’IZ,],E»A ‘e @} defines the A-Berezin set of <V’lz,7,7<\,]>A for Ve L(H).

It should be noted that even though H is finite dimensional, Berx (V) is a nonempty subset of C and is
generally not closed.

Definition 1.2. (a) The A-Berezin number of V is the supremum modulus of Bers (V), represented as bery (V), or
(Vi ), |
(b) For operators V € L(H (®)), IVlla_per = sup,ce

bery (V) = Sup, .o

’AVEH/A Hv—{ defines the A-Berezin norm.

We can determine the Berezin number if A = I. Hence, this idea generalizes the Berezin number
of functional Hilbert space operators, which have garnered interest from several writers lately (see, for
example, [4-6, 15-18, 21, 23, 25, 26, 32-34]).

We can consult [20] for further information and proof on A-Berezin radius operators. V = R4 (V) +iJ (V)
can be used to represent any operator V € L (H) . Here,

fla _ Vv
V+V and 3 (V) = 1% 21.V

A-selfadjoint operators are also 34 (V) and R4 (V) . We also obtain [|Ra (V)| 4_per < bera (V)and (|34 (V)| g—per <
ber, (V). Moreover,

max {[|Ra (V)lla-er / 194 (V)llg-per} < bera (V).

Ra(V) =
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Huban [24] discovered the inequality mentioned above. For V € L4 (H), the following inequality

1
3 (IVlla—ger < bera (V) < IVIla—per )

was demonstrated by the same author. Also,

VR a-er < [IVRIla < (VI lIR]L4 - 3)
The A-Crawford number of V € L, (H) is denoted by

ca (V) = inf{[(Vx, )4 : x € H, |Ixll4 = 1}

(see, [36]). The number c4 (V) = infyco <Vk,7,k,]>A' is also shown. That recognizes that c4 (V) < ¢4 (V) <
bera (V). Recently, refinements of A-Berezin radius inequalities are examined by [7, 20, 22, 24].

In this work, we introduce A-Berezin radius distance and A-Berezin norm distance. Also, we discover
A-Berezin radius inequalities of the product and commutator of FHS operators using the concept of A-
Berezin radius distance and A-Berezin norm distance. Furthermore, we generalize the A-Berezin radius
distance. Finally, we prove the theorem related to the A-Berezin radius distance.

2. Preliminaries

We need the following lemmas in work. Let V € L(H). An operator Y € L (H) is called (A, ®)-adjoint
of V if for every 7, u € ©, the identity <kafky>A = @T, Yk#>A holds. We denote the set of all operators in
L (H) admitting (4, ©)-adjoints by L4 e (H) (see, [20]). We denote V# by (A, ©)-adjoint operator of V.

Lemma 2.1 ([24]). Let V € Lae (H) be an (A, ©)-selfadjoint operator. Then

bers (V) = [IVlla-ger - 4)
Lemma 2.2 ([22]). Let V,Y € L4 (H). Then

bery (VY™ % YV) < 2|[Y|l5_per bera (V). (5)
Lemma 2.3 ([19]). Ifz,t € H with t # 0, then

2 2B IHE = Kz, )4l
inf ||z — ut|| = . 6
ol =l 145 ©

Lemma 2.4 ([19]). Let z,t,y € H with p,C € C. Then

(G724 (t7al <1 0al + inf[lz = ]| inf e - O, @)

3. Inequalities of A-Berezin norm distance and A-Berezin radius distance

The A-Berezin norm distance and A-Berezin radius distance are introduced in this section. Furthermore,
we enhance and expand upon a few inequalities concerning the FHS’s A-Berezin radius and A-Berezin norm
distance.

For V € L4 (H), its A-seminorm distance of V from scalar operator is defined by D4 (V), denoted as

DA(V):ir;(fJV—yIHA.

Also, let d4 (V) define the A-numerical radius of V from scalar operators, i.e.,

da (V) = in(f: wa (V —ul).
[JE

By using compactness, we can determine that there exists po such that da (V) = wa (V — pol).
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Definition 3.1. Let ‘H = H (©) be a FHS. For V € L4 (H), the A-Berezin norm of distance denoted by Dy (V), is
defined by A-Berezin norm distance of V from the scalar operators, i.e.,

D (V) = inf |V = Allls_er-

Definition 3.2. Let H = H (®©) be a FHS. For V € L4 (H), the A-Berezin radius of distance denoted by ;i; (V), is
defined by A-Berezin radius distance of V from the scalar operators, i.e.,

da (V) = %r;(fjberA (V-=AID).

Again, applying compactness we can see that there exists Ag such that da (V) = bery (V — Aol).

It is clear that D4 (V) < D4 (V) and da (V) <dy (V).
Let’s now demonstrate the first theorem.

Theorem 3.3. Let H = H (®O) bea FHS and let V € L (H). Then

VB2 (V) 4+ 2 (V) < [Vllgper < D5 (V) + b (V). ®)

Proof. From (6), we can write that

Vx|l5 IAxI5 — KVx, Ax
1nf||Vx—)\ AR = IVl AxI; = K Yal? , ©)
lIAx|5

where x € H. Now, replacing x by?c\,] in (9), we reach

N N
],
= V& - vk &) |
v, -]

< IVIE per = &4 (V).

i) -

By taking the supremum over n € ®, we obtain
D5 (V) + T (V) < VI g (10)

which has the first inequality at the theorem. Next, we prove the second inequality. From Lemma 2.3, we
get

I 1AL = Kz, D0l = I, inf l1z = AL (11)
Replacing z by Vic\,, and ¢ by/k\n in (11), we reach

|V, - A?n”:

L I, -, =

AeC
That is

IVl ] =

|VE7 - AE,H? + |<V/k\,1,’k\,]>A|2 .
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Taking the supremum over 1 € © in the above inequality, we have
IVIE: per < Inf IV = ATIE;_pe, + ber (V) = D (V) + ber’; (V). (12)
By combining (10) and (12), we get
D3 (V) + T (V) < VI _per < D (V) + bery (V).
Consequently, we have

VB2 (V) 4+ 2 (V) < Vllg-er < D2 (V) + b, (V).

We completes the proof. [

In [35], Yamanci and Karli show thatif V € L4 (H), then
ber” (V) + ber (V2) < inf [V~ AP (13)
The inequality (13) is generalized by the following theorem.
Theorem 3.4. If V € L4 (H), then we have
bery (V) <21 (ber;1 (Vz) + 5{%{ (V)) ,
foranyr>1.

Proof. Let ) € © be an arbitrary. Replacing z by V7<\,,, tby Vuﬁc\,] and y by7c\,, in (7), we have

VB, (VT < (R VT, e, - 5 -
Hence,
N e o B e R e B

T r T
From the elementary inequality (HTy) <: ;y ,x,y>0andr>1, we get

r .
inf
A &eC

.
+ inf
AeC

Vi, - Ak,

|Viik, - k,

)

— — 2r — ~
(Ve[ <2 (v, ),
Taking the supremum in the inequality above over ) € ®, we have
2r r—1 r 2 . . r
ber? (V) <2 (berA (v3)+ I IV = AUl g inf [vi - 51||A_Ber).
Finally, by taking the infimum A, £ € C, we reach
ber (V) < 2" (ber), (V2) + D/, (V) D}, (V™).
Moreover, for every V € L4 (H) and for every A € C one can see that

IV = Allg-per = | (V = 2D

| A—Ber
= va _XPHA—Ber - ||(V - AP)ﬂA

=V = APl|a-per -

A-Ber
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Hence, we get

BA (VﬂA) = ;ltlgqf: ”VﬂA - /\I“A—Ber = inf ”VﬂA - AP”A—Ber

AeC
. —\fa
- )1\2“1; (V - /\I) A-Ber
= inf IV =2, g,
=Dy (V).

Thus,
ber (V) < 2" (ber), (V2) + D¥ (V).
The evidence is now complete. O

Specifically, taking into account that » = 1 in Theorem 3.4, we obtain the subsequent corollary.

Corollary 3.5. If V € L (H), then

bers (V) < yJbera (V2) + D2 (V).

Now, applying compactness argument can see that there exists Ay € C such that 5A (V,R) = infy,ec IV — ARl s—Ber-

Utilizing this generalizing distance D, (V, R), and proceeding similarly as in Theorem 3.3, we get the sub-
sequent consequence.

Corollary 3.6. If V,Y € L4 (H), then

V0 D5 (V,) + E (Y V) JIVIE e D2 (V,Y) + ber, (Y V)

< NVIlper < — ,
Y 1l4—Ber ABer iia (Y)

where i (Y) = infyco 'Y/k\q”A.

We shall now demonstrate the subsequent theorem.

Theorem 3.7. Let H = H (©) bean FHS and let V,Y € Lo (H). Then

bera (VY) < [Vll4per bera (Y) + % min {bery (VY + YV*), bera (VY = YV )}, (14)
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Proof. Let O € R. Itis clear that R4 (eie VY) is an (A, ©)-selfadjoint operator. Hence, we have

||‘RA (efGVY)” -

o Ra (¢OVY)) (by (4)

€T

era
(
bera 5
bers
(

(7VY + ey v ))

NIHNI’—‘

(VY + e VY 4 YV - Oy
= ber (V3 (¢9Y) + 567 (¥ v - vy ")
= ber (VR4 ( Y)) + bera (;e_’g (Y v - VY”A))

< |[vo, (¢9Y + Lber, (Y Vv — vy
[y ()], ., + bera )

A—Ber

+ %berA (Y”" v VY“A)

< ||V||A—Ber SRA (eieY)HA—Ber

< [Vlla_per bera (Y) + %berA (Y v —vy™).
Therefore, by taking the supremum over all 0 € R, we have
bera (VY) < IVll4_per bera (Y) + %berA (Y v —vy™). (15)
On the other hand, for n € ® we observe that
(v = vy i Te) | = [V Vi, Te), - (VX T) |

= (Y Ve, k), — (P VP T ki) |

< R(A) "7 R(A)

Hence, we have

|<(YﬁA VﬁA _ VYﬁA )’En/llzr]>A| _ YﬁA VﬁA kn/ kr]> <(VﬁA )”A YﬁA'IEV'En> ‘
A

{
o)
{

(vy-vv' )k k)|

It follows that ber, (Yﬁ*‘ V- VY”") = bery (VY —YV* ) So, the following inequality have been by (15):

1
bera (VY) < [[VIla-per bers (Y) + 5 bera (vy-yv*). (16)
Also, by replacing V by iV in (15), we obtain
1
bera (VY) < [[VIls-per ber (Y) + 3bera (vy+yv*). 17)

Thus, the proof is completed by combining (16) together with (17). O
We are now prepared to demonstrate the subsequent theorem.

Theorem 3.8. If V, Y € L4 (H), then we have

bers (VY) < min {(|[Vlla-per + Da (V) ber (V). (IIVlla-per + Da (V) bera (V)}. (18)
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Proof. Let n € © be an arbitrary. There exists Ay € C such that 5A (V) = infr,ec IV — Aollla—ger- If Ap =0,
then by the inequalities in (2), we have

bera (VY) < IVYla-per < 1VIla-ger Vlla-ger < 2IVlla-per IVlla-ger = (IVlla-per + Da (V) bera (¥).
Next, we choose Ag # 0 and & = % Then, from the inequality (14), we have
1 —
bera (V'Y) < bera (§VY) < [IVlla-per bera (Y) + sbera (evy- 5YV“A)

fa

= 1Vlls-per bera (1) + bers (EY”A Vi -g(vh) Y“A)
= [IVll4_per bera (V) + %berA (5 (VM )ﬁA (Y”A )ﬁA 3 E(Y”A )ﬁA Vﬂ/\)

fa
_ E (YﬁA )uA ((VuA )uA ~ /\OI) }

bera (1)) oy &)

= ||Vl s—ger beTA (Y) + %berA [cf ((V”A )M _ /\OI) (yﬁA )uA

#A fa
< Vil serbers 00+ (V) = Aot

A—Ber

pa\M
< Vil perbera 00+ (V) = Aot

ber, (Y).
A-Ber

Next, by using the ||Y”A

= ||Y||g—ger, for all Y € L4 (H) we can see that
er

A-B
fa
fa _ ||yt _ _ _ & — _
H(V ) Bl AOI A—Ber B HV AOPHAfBer B ||(V /\OI) A-Ber ”V AOI”A_BH )
Hence,
bera (VY) < IVla-ger bera () + IV = Aollls_ger bera (V) = (IIVla_ger + Da (V) bera (¥) (19)

Replacing V by Y and Y by V* in the above inequality and since D4 (YﬁA) = D4 (Y), we have
bera (VY) < (IIYllaper + Da (V) bera (V). (20)
Combining the inequalities in (19) and (20), we reach the inequality
bera (VY) < min {(|Vlla-ger + Da (V) bera (Y), (I¥ll4-per + Da (Y)) bera (V)}.
0

Corollary 3.9. If V,Y € L4 (H), then we have
Da (V) < IVlla_per and Da (Y) < Ylla_per ,

(I1VlLaper + Da (V) bera (¥) < 2[|Vl|4-per bera (Y),

and

(I1Yllaper + Da (Y)) bera (V) < 2|[Yl|4-per bera (V).

Now, we obtain the following inequalities, which is A-Berezin distance da (V).
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Theorem 3.10. Let H = H (®) be a FHS and let V € L4 (H). Then
IVll—per < bera (V) +da (V) < 2bery (V). (21)

Proof. There exists Ay € C such that ;{f‘, (V) = infjecbera (V — Agl). If Ap = 0, then ||V|[4_ger < 2bers (V) =
bers (V) + bers (V — Agl) = bera (V) +da (V).

Next, we choose Ag # 0 and & = Ij\\_gl Hence,

IVIla-er = IEVIIA-Ber = [Ra (EV) + i34 (EV)lla—per
< NRA EV)lla—ger + 1134 (EV)la—per
= [|Ra (EV)lla—ger + 134 (€ (V = AoD)l| a-per
< bery (V) +bery (V — Agl).

Therefore, [|V||s—per < bera (V) + EA(V). The second inequality follows from the fact that %(V) <
bers (V). O

Corollary 3.11. Let V,Y € L4 (H). Then
IVYlla-per < (bera (V) +da (V) (bera (Y) +da (Y)) < 4bera (V) bera (Y).

Proof. There exists Ag € C such that cil; (V) = infjec bera (V — Agl). If Ap = 0, then ||V||4_ger < 2bers (V) =
bers (V) + bery (V — Al) = bery (V) +da (V).
Next, we choose Ag # 0 and & = Iﬁ_gl Hence,
VY llaer < IVlla-per IYlla-per < (bera (V) +da (V) (bera (Y) + da (Y)) (by (21))
< dber, (V) bers (Y) (by bers (V) > dy (V).
0
Assuming V to be A-positive, we then obtain the following inequalities.
Theorem 3.12. Let H = H (©) bea FHS and V,Y € L2 (H). If V is A-positive, then
bera (VY) < [[Vll4-per bera (Y) and bera (YV) < ||Y]|o_per bera (V).
Proof. For all g € [0,1], we get
bera (VY) =bera (V=BIIVIage: DY + BlIVIla_per Y)
< bera (V = BlVIla-per D) Y) + BIIVla-per bera (Y)
<[|(V = BIVIIA-per D ][ 1_per + BIVIIA-per bera (Y)
< ||V = BIVllazper I|| ,_gor 1Y NaBer + BIVIA-per bera (Y).
Since V is A-positive, we can see that “V = BlIVlls—per IHA_Ber = (1= B)IVlla_per for all B € [0,1]. Hence
bery (VY) < IVllg-per (1 = BLIIY1la-per + Bera (V) (22)
Therefore, by considering § = 1 in (22), we have
bera (VY) < [[V]l4-per bera (Y).
Similarly,
bera (YV) < [[Ylla-per bera (V).

This completes the proof. [
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The following Berezin radius inequalities for the product of FHS operators are obtained by taking A = I
in Theorem 3.12.
Corollary 3.13. If V,Y € L(H),V > 0, then we have
ber (VY) < ||V||ger ber (Y) and ber (YV) < ||Y/|ge; ber (V).
We shall now demonstrate the next theorem.
Theorem 3.14. If V,Y € L (H), then we have
bers (VY FYV) < 4bery (V) bery (Y). (23)
Proof. (2) and (3) imply that
bery (VY + YV) < berg (VY) + bers (YV)
< |IVllg—per bera (Y) + [[Y1l4_per bera (V) (by Theorem 3.12)
< 2bery (V) berg (Y) + 2berg (V) bery (Y)
= 4bery (V) bery (Y).
This completes the evidence. [J
We derive the following theorem from Theorem 3.14,
Theorem 3.15. Let H = H (©) be a FHS and V,Y € L (H). Then
bery (VY = YV) < 4d, (V) da (Y) < 4bery (V) ber (Y).

Proof. Let Ay, &g € C such that ;l:; (V) = inf),ec bera (V — Apl) and (Fi; (Y) = infgec bera (Y — &ol). Then, we
get

bery (VY = YV) =bera (V — Aol) (Y = &ol) — (Y = &oI) (V = Aol))
< dbery (V — Aol) bera (Y — &) (by (23))

<4da(V)da(Y).
Thus,
bera (VY = YV) < 4d, (V)da (Y).
The second desired inequality follows from the fact that L (V) < bers (V) and 124 (Y) <bers (Y). O

We need the following theorem to prove the next corollary.
Theorem 3.16. Let H = H (®) be a FHS and let V1,V Y1, Y2 € La(H). Then

bera (V1Y1 £ YaVa) < VAV + VoV |, o [V Y7 + Y0 Y|,
Proof. Let ) € © be an arbitrary. An application of Cauchy-Schwarz inequality obtains
(vays oV, Je) | < [(Vivik, &), + (Yavaky o) |
= [(vik,, Vi'ky), + (Vaky, i) |

< (], 2%,

+ ”VZE)
A

fa 7
A

J
<l var )bl « i)
= \/((ng Va+ ViVt )iy k), \/((Yif* Y1+ VaX5 ey k),

VY + vy,

< \/Hvﬁf‘ Vi+ VoVl

HA—Ber “A—Ber'
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Hence,

|<(V1Y1 + YZVZ)/I-{\'T"E’»A' < \/HV”{‘ Vi+ VzV;A \/”YlyulA + Y’;A Y,

HA—Ber “A—Ber'

By taking the supremum over 1 € © in the above inequality, we get

bera (V1Y1 + Y2V3) < \/”Vif‘ Vi + VoV | e, \/||Y1Y§A + Y2 Y|, o
The proof is now complete. [
Corollary 3.17. If V,Y € L4 (H), then we have
bera (VY FYV) < 2V2||V|l4_per bera (V). (24)

Proof. By putting V1 = V, = Vand Y7 = Y, = Y in Theorem 3.16 and then using the inequality in [22,
Corollary 1] we have

bera (VY £ YV) < f[VVe + viv]|, vy + vy,

<2|lvv v, bers (v)
< 2V2|[Vilg-ger bets (Y) (by (1)
The proof is now complete. []
Corollary 3.17 may be generalized to provide the following conclusion.

Corollary 3.18. Let V,Y € L (H). Then

bera (VY F YV) < 2 V2min (|[Vll4-per bera (Y), 1Yl4-per bera (V) (25)
Proof. By replacing V by Y and Y by V respectively in (24), we have the desired result. [

It is clear that (25) provides an upper bound for the A-Berezin radius of the commutator VY - YV.
We can now demonstrate the following theorem.

Theorem 3.19. Let H = H (©) be a FHS and V,Y € L (H). Then

bera (VY = YV) <2V2min {Da (V) da (Y), Da (Y)da (V)} < 2 V2||VI|s_per bera (V).
Proof. Let A, & € C such that Dy (V) = inf,ec ||V — Aoll|g—per and ;l:q (Y) = infg,ec bera (Y — &ol). Then, we
get
bera (VY = YV) = bera (V = AoD) (Y = &) = (Y = &) (V = AD))
< 2 V2|V = Aolllsper bera (Y = &)
=2V2DA(V)da (Y).

Thus, bers (VY — YV) < 22D (V) d, (Y).
Replacing V by Y and Y by V in the above inequality, we get

bers (YV = VY) <2V2D4 (Y)da (V).

The first inequality is obtained by combining the two above inequality. Since 5/1 (V) < IV]lg—ger and
da (Y) < bery (Y), the second inequality is inferred. [
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Next, we generalize the A-Berezin distance zZq (V,Y) as following from: For VY € L (H)
da(V,Y) = bera (V = &Y).
Utilizing this generalized A-Berezin distance ds (V,Y), we get the following inequalities.

Theorem 3.20. Let H = H (®) be a FHS and let V,Y, W € L4 (H) be such that W commutes with both V and W.
Then

bera (VY = YV) < 4da (V, W) da (Y, W) < dber, (V) bera (Y).

PVOOf. Let Ao, (S() € C such that (Zq (V, W) = iangEC berA (V — A()W) and &;\ (Y, W) = il’lfgoec berA (Y — 50W)
Then, we get

bers (VY —YV) = bera (V — AW) (Y = EW) — (Y = EW) (V = AgW))
<4dbery (V — AgW)bers (Y — EgW)
= 4d, (V,W)da (Y, W).

Thus, bera (VY — YV) < 4d, (V, W) da (Y, W).
The second desired inequality follows from fact that d4 (V, W) < bera (V) and da (Y, W) < bers (Y). O

Theorem 3.21. Let H = H (®) be a FHS and let V,Y, W € L4 (H) be such that W commutes with both V and W.
Then

bers (VY - YV) < 2V2min{Dy4 (V, W)da (Y, W), Da (Y, W)d (V, W)}.

Proof. Let Ay, & € C such that 5/1 (V,W) = infyec ||V = AoW||s_ger and 2& (Y, W) = infs ccbera (Y — EW).
Then, we get

bers (VY = YV) = bers (V = AgW) (Y = EW) — (Y — & W) (V = AgW))
< 2V2||V = AgWl|o_per bera (Y — EW) (by (24))
< 2V2D, (V, W) dy (Y, W).

Thus, bera (VY = YV) < 2V2Da (V, W) da (Y, W).
In the inequality above, if we replace V by Y and Y by V, we obtain

bers (YV = VY) < 2V2D4 (Y, W) du (V, W).

Combining the above two inequalities we obtain the first inequality. Since D (V,W) < |IV]ls—er and
da (Y, W) < bery (Y), the second inequality is inferred. [

Finally, we will prove the theorem related to the A-Berezin distance.
Theorem 3.22. Let H = H (©) bea FHS and V,Y € L (H). Then

bers (VY + YV) < 2min {ber (V) (bera (Y) + da (Y)), bera (Y) (bera (V) + d m)}
< dbery (V) bera (Y).
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Proof. Let Ao, & € C such that zZq (V) = inf),ec bera (V — Apl). If Ag = 0, then we have
bera (VY + YV) < 2bera (V) (bera (Y) +da (Y))
=4bery (V) bery (Y).

Ao

As in the Theorem 3.8 proof, we may take Ay # 0O and & = s

for granted. Then, we have

bers (VY + YV) =bera (V(EY) + (EY) V)
<bers (VRA(EY) +iVIA(EY) + Ra(EY) V + +iJa (EY) V)
< bera (VRA(EY) + Ra (EY) V) + bera (V3Ia (EY) +IJa (EY) V).

It is simple to verify that

ﬁA uA
R (V) =(R) (€Y) and T (V) = (3) V).
Hence, from (5),
bera (VR4 (£Y) + VR4 (£Y)) = bera (R (£Y) V" + VR (&)
A
= bery (V“A (7)) @)+ 9% @Y V"*‘)
< 2 ||§Rf: (éy)“A—Ber berA (VﬁA)
<2 ||mA (‘EY)”A—Ber berA (V) .
Similarly,
bera (V34 (EY) +Ja (EY) V) < 2[|34 (EY)l|o—per beTA (V).
Therefore,

bera (VY +YV) < 2bers (V) (R4 (EV)lla-ger + 134 (EV)la-per)
= 2bera (V) (IR (EV)la—per + 134 (€ (Y = AdoD)la-per) -

Since [[Ra (EY)lla-per < bera (£Y) and [|34 (£ (Y = AoD)lla-per < bera (& (Y = Aql)), we have
bers (VY + YV) < 2bery (V) (bera (Y) + bera (£ (Y — Agl))) < 2bery (V) (berA (Y)+ &l;\ (Y)).
Now, replacing V by Y and Y by V in the above inequality, we obtain

bera (VY + YV) < 2bera (Y) (bera (V) +da (V).

Combining the above inequalities we reach the first theorem. For second inequality, since 13:4 (V) < 2bery (V)
and dy4 (Y) < 2bery (Y), we have
bera (VY + YV) < 2min {ber, (V) (bera (Y) + da (), bera (Y) (bera (V) + da (V))}
< 2bery (V) (bera (Y) +da (Y))
< dbery (V)bery (Y).
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