

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On generalized forms of Hilbert's inequality

Santosh Kaushika, Satish Kumarb, Harindri Chaudharyc, Taqseer Khand,

^aDepartment of Mathematics, Bhagini Nivedita College, University of Delhi, New Delhi - 110043, India
 ^bDepartment of Mathematics, University of Delhi, New Delhi - 110007, India
 ^cDepartment of Mathematics, Deshbandhu College, University of Delhi, New Delhi - 110019, India
 ^dDepartment of Mathematics, Jamia Millia Islamia University, New Delhi - 110025, India

Abstract. In this paper, we obtain the generalized form of Hilbert's inequality by using series of non-negative terms and convexity, sub-multiplicity of a function on positive real numbers and prove results for integral and discrete forms.

1. Introduction

For any two sequences (a_{η}) and (b_{η}) of non-negative real numbers, the well-known Hilbert's inequality [5] is

$$\sum_{n=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{a_{\eta} b_{\theta}}{\theta + \eta} \le \pi \left(\sum_{n=0}^{\infty} a_{\eta}^2 \right)^{\frac{1}{2}} \left(\sum_{\theta=0}^{\infty} b_{\theta}^2 \right)^{\frac{1}{2}},\tag{1}$$

provided $\sum_{\eta=0}^{\infty}a_{\eta}^2$ and $\sum_{\eta=0}^{\infty}b_{\eta}^2$ are finite. The constant π in the above inequality is best possible and equality will occur if (a_{η}) and (b_{η}) both are null sequences. The extended form of above inequality is

$$\sum_{\eta=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{a_{\eta} b_{\theta}}{\theta + \eta} \le \frac{\pi}{\sin \frac{\pi}{\rho}} \left(\sum_{\eta=0}^{\infty} a_{\eta}^{\rho} \right)^{\frac{1}{\rho}} \left(\sum_{\theta=0}^{\infty} b_{\theta}^{\rho'} \right)^{\frac{1}{\rho'}}, \tag{2}$$

where ρ and ρ' are two parameters such that $\rho' = \frac{\rho}{\rho-1}$, for $\rho > 1$ and $\sum_{\eta=0}^{\infty} a_{\eta}^{\rho}$ and $\sum_{\theta=0}^{\infty} b_{\theta}^{\rho'}$ are finite. The integral analogue of (1) and (2) are (see[5])

$$\int_0^\infty \int_0^\infty \frac{f(\varkappa)g(\varphi)}{\varkappa + \varphi} \, d\varkappa \, d\varphi < \pi \left(\int_0^\infty f^2(\varkappa)d\varkappa \right)^{\frac{1}{2}} \left(\int_0^\infty g^2(\varphi)d\varphi \right)^{\frac{1}{2}} \tag{3}$$

and

$$\int_0^\infty \int_0^\infty \frac{f(\varkappa)g(\varphi)}{\varkappa + \varphi} \, d\varkappa \, d\varphi < \frac{\pi}{\sin(\frac{\pi}{\rho})} \bigg(\int_0^\infty f^{\rho}(\varkappa) d\varkappa \bigg)^{\frac{1}{\rho}} \bigg(\int_0^\infty g^{\rho'}(\varphi) d\varphi \bigg)^{\frac{1}{\rho'}}$$

2020 Mathematics Subject Classification. 26D10; 26D15, 46E35.

Keywords. Hilbert's inequality, Non-conjugate exponents, convex function, Hölder's inequality, Jensen's inequality.

Received: 06 December 2023; Accepted: 07 March 2024

Communicated by Eberhard Malkowsky

Email addresses: santoshkaushikk@gmail.com (Santosh Kaushik), satishdagar@4@gmail.com (Satish Kumar), harindri2@dbc@gmail.com (Harindri Chaudhary), tkhan4@jmi.ac.in (Taqseer Khan)

^{*} Corresponding author: Taqseer Khan

respectively, with the best possible constant. If we use $\varkappa = \tilde{X} + \frac{\alpha}{2}$, $\varphi = \tilde{Y} + \frac{\alpha}{2}$, $F(\tilde{X}) = f(\tilde{X} + \frac{\alpha}{2})$ and $G(\tilde{Y}) = g(\tilde{Y} + \frac{\alpha}{2})$, $\alpha \in \mathbf{R}$, in (3), we have

$$\int_{-\frac{\alpha}{2}}^{\infty} \int_{-\frac{\alpha}{2}}^{\infty} \frac{F(\tilde{X})G(\tilde{Y})}{\tilde{X}+\tilde{Y}+\alpha} \; d\tilde{X} \; d\tilde{Y} < \bigg(\int_{-\frac{\alpha}{2}}^{\infty} F^2(\tilde{X})d\tilde{X}\bigg)^{\frac{1}{2}} \bigg(\int_{-\frac{\alpha}{2}}^{\infty} G^2(\tilde{Y})d\tilde{Y}\bigg)^{\frac{1}{2}}.$$

For a non-conjugate exponent pair (ρ, ϱ) , we have the following inequality (see[5])

$$\sum_{\eta=1}^{\infty} \sum_{\theta=1}^{\infty} \frac{a_{\theta} b_{\eta}}{(\theta+\eta)^{\lambda}} \le K \left(\sum_{\theta=1}^{\infty} a_{\theta}^{\rho}\right)^{\frac{1}{\rho}} \left(\sum_{\eta=1}^{\infty} b_{\eta}^{\varrho}\right)^{\frac{1}{\varrho}},\tag{4}$$

where $\rho > 1$, $\varrho > 1$, $\frac{1}{\rho} + \frac{1}{\varrho} \ge 1$, $0 < \lambda = 2 - (\frac{1}{\rho} + \frac{1}{\varrho}) \le 1$ and the constant factor $K = K(\rho, \varrho)$ is the best possible. The integral version of (4) is given by

$$\int_0^\infty \int_0^\infty \frac{f(\varkappa)g(\varphi)}{(\varkappa+\varphi)^\lambda} \, d\varkappa \, d\varphi \leq K \bigg(\int_0^\infty f^\rho(\varkappa) d\varkappa \bigg)^\frac{1}{\rho} \bigg(\int_0^\infty g^\varrho(\varphi) d\varphi \bigg)^\frac{1}{\varrho}.$$

The following inequalities, for $0 < \alpha < 1$, were given by Ingham [7] in 1936

$$\sum_{n=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{b_{\eta} b_{\theta}}{\theta + \eta + \alpha} \le \pi \sum_{\theta=0}^{\infty} b_{\theta}^{2}$$

and

$$\sum_{\eta=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{b_{\eta} b_{\theta}}{\theta + \eta + \alpha} \leq \frac{\pi}{\sin(\alpha \pi)} \sum_{\theta=0}^{\infty} b_{\theta}^{2},$$

for any $\alpha \ge \frac{1}{2}$ and $0 < \alpha < \frac{1}{2}$, respectively. In 1979, Hu [6] gave a refinement of (3) as an improved Hölder's inequality

$$\int_0^\infty \int_0^\infty \frac{f(\varkappa)g(\varphi)}{\varkappa + \varphi} \, d\varkappa \, d\varphi < \pi \bigg[\Big(\int_0^\infty f^2(\varkappa) d\varkappa \Big)^2 - \frac{1}{4} \Big(\int_0^\infty f^2(\varkappa) \cos \sqrt{\varkappa} d\varkappa \Big)^2 \bigg]^{\frac{1}{2}}.$$

The revised form of the inequality (1) has been obtained as (see[11])

$$\sum_{n=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{a_{\eta} b_{\theta}}{\theta + \eta + 1} \le \pi \left(\sum_{n=0}^{\infty} a_{\eta}^2\right)^{\frac{1}{2}} \left(\sum_{\theta=0}^{\infty} b_{\theta}^2\right)^{\frac{1}{2}}.$$
(5)

Since for any a_{η} , $b_{\theta} \ge 0$, $\alpha \ge 1$, we have

$$\sum_{n=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{a_{\eta} b_{\theta}}{\theta + \eta + \alpha} \leq \sum_{\eta=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{a_{\eta} b_{\theta}}{\theta + \eta + 1},$$

which on using (5) yields

$$\sum_{n=0}^{\infty} \sum_{\theta=0}^{\infty} \frac{a_{\eta} b_{\theta}}{\theta + \eta + \alpha} \le \pi \left(\sum_{n=0}^{\infty} a_{\eta}^2\right)^{\frac{1}{2}} \left(\sum_{\theta=0}^{\infty} b_{\theta}^2\right)^{\frac{1}{2}}.$$
(6)

An equivalent form of the inequality (6) is

$$\sum_{n=0}^{\infty} \left(\sum_{\theta=0}^{\infty} \frac{b_{\theta}}{\theta + \eta + \alpha} \right)^2 < \pi^2 \sum_{\theta=0}^{\infty} b_{\theta}^2,$$

where, $1 \le \alpha < 2$. An inequality similar to (3) was proved by B. G.Pachpatte [16] in 1998 as

$$\int_0^a \int_0^b \frac{f(\varkappa)g(\varphi)}{\varkappa + \varphi} \, d\varkappa \, d\varphi < \frac{\sqrt{ab}}{2} \bigg[\int_0^a (a - \varkappa) f'^2(\varkappa) d\varkappa \bigg]^{\frac{1}{2}} \bigg[\int_0^b (b - \varphi) g'^2(\varphi) d\varphi \bigg]^{\frac{1}{2}}.$$

where a, b > 0. More work of B. G. Pachpatte can be seen in [17].

In the literature a lot of work has been published on Hilbert's inequality as extensions, refinements and generalizations; some of which are in [1–3, 8–10, 13, 15, 18, 19]. We introduce another generalization of Hilbert's inequality. The main purpose of this paper is to describe the certain class of generalized Hilbert's inequality by introducing the series consisting of non-negative terms with the help of Jensen's inequality, Hölder's inequality involving a pair of non-conjugate exponents ρ , $\varrho \ge 0$. We prove that Pachpatte's results proved in [16] are the particular cases of our derived inequality. Furthemore, the integral and discrete forms of this inequality are give.

2. Main Results: Discrete Form

Throughout this section, we assume that $\rho > 1$, $\varrho > 1$ are non-conjugate exponents such that $\frac{1}{\rho} + \frac{1}{\rho'} = 1$; $\frac{1}{\varrho} + \frac{1}{\varrho'} = 1$ and $\{a_{\theta}\}, \{b_{\eta}\}$ are the non-negative real sequences valid for $1 \le \theta \le \kappa$ and $1 \le \eta \le \omega$, with $\kappa, \omega \in \mathbf{N}$ and $A_{\theta} = \sum_{\xi=1}^{\theta} a_{\xi}, B_{\eta} = \sum_{\zeta=1}^{\eta} b_{\zeta}$. First, we prove the following results.

Theorem 2.1. Let ρ , ϱ and $\{a_{\theta}\}$, $\{b_{\eta}\}$, A_{θ} , B_{η} be defined as above. Then, we have

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{A_{\theta}^{\rho} B_{\eta}^{\rho}}{\theta + \eta} \leq C(\rho, \varrho, \kappa, \omega) \left(\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) (a_{\theta} A_{\theta}^{\rho - 1})^{\rho'} \right)^{\frac{1}{\rho'}} \times \left(\sum_{\eta=1}^{\omega} (\omega - \eta + 1) (b_{\eta} B_{\eta}^{\rho - 1})^{\varrho'} \right)^{\frac{1}{\varrho'}}, \tag{7}$$

provided that $\{a_{\theta}\}$ and $\{b_{\eta}\}$ are zero-sequence, where $C(\rho,\varrho,\kappa,\omega) = \frac{1}{2}\rho\varrho\kappa^{\frac{1}{\rho}}\omega^{\frac{1}{\varrho}}$ is the constant term.

Proof. From the inequality in Lemma 1 [4, 14], we have

$$\left(\sum_{\theta=1}^{\eta} z_{\theta}\right)^{\alpha} \leq \alpha \sum_{\theta=1}^{\eta} z_{\theta} \left(\sum_{\kappa=1}^{\eta} z_{\kappa}\right)^{\alpha-1},$$

for $\alpha \ge 1$ and $z_{\theta} \ge 0$ ($\theta = 1, 2, ...$), we obtain

$$A_{\theta}^{\rho} \le \rho \sum_{\xi=1}^{\theta} a_{\xi} A_{\xi}^{\rho-1} \qquad 1 \le \theta \le \kappa$$

and

$$B_{\eta}^{\varrho} \leq \varrho \sum_{\zeta=1}^{\eta} b_{\zeta} B_{\zeta}^{\varrho-1} \qquad 1 \leq \eta \leq \omega$$

and, therefore,

$$A^{\rho}_{\theta}B^{\varrho}_{\eta} \quad \leq \quad \rho\varrho\bigg(\sum_{\xi=1}^{\theta}a_{\xi}A^{\rho-1}_{\xi}\bigg)\bigg(\sum_{\zeta=1}^{\eta}b_{\zeta}B^{\varrho-1}_{\zeta}\bigg)$$

$$\leq \rho \varrho \theta^{\frac{1}{\rho}} \eta^{\frac{1}{\varrho}} \left(\sum_{\xi=1}^{\theta} (a_{\xi} A_{\xi}^{\rho-1})^{\rho'} \right)^{\frac{1}{\rho'}} \left(\sum_{\zeta=1}^{\eta} (b_{\zeta} B_{\zeta}^{\varrho-1})^{\varrho'} \right)^{\frac{1}{\varrho'}} \\
\leq \frac{1}{2} \rho \varrho (\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\varrho}}) \left(\sum_{\xi=1}^{\theta} (a_{\xi} A_{\xi}^{\rho-1})^{\rho'} \right)^{\frac{1}{\rho'}} \left(\sum_{\zeta=1}^{\eta} (b_{\zeta} B_{\zeta}^{\varrho-1})^{\varrho'} \right)^{\frac{1}{\varrho'}}. \tag{8}$$

Clearly, the second inequality in above is obtained by applying the Hölder inequality and the last inequality is the result of the inequality $(cd)^{\frac{1}{2}} \leq \frac{1}{2}(c+d)$. On dividing (8) by $\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\varrho}}$ and running the summation over η and θ , we get

$$\begin{split} \sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{A_{\rho}^{\theta} B_{\eta}^{\theta}}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\rho}}} & \leq & \frac{1}{2} \rho \varrho \Big[\sum_{\theta=1}^{\kappa} \Big(\sum_{\xi=1}^{\theta} (a_{\xi} A_{\xi}^{\rho-1})^{\rho'} \Big)^{\frac{1}{\rho'}} \Big] \Big[\sum_{\eta=1}^{\omega} \Big(\sum_{\zeta=1}^{\eta} (b_{\zeta} B_{\zeta}^{\varrho-1})^{\varrho'} \Big)^{\frac{1}{\varrho'}} \Big] \\ & \leq & \frac{1}{2} \rho \varrho \kappa^{\frac{1}{\rho}} \omega^{\frac{1}{\varrho}} \Big[\sum_{\theta=1}^{\kappa} \Big(\sum_{\xi=1}^{\theta} (a_{\xi} A_{\xi}^{\rho-1})^{\rho'} \Big)^{\frac{1}{\rho'}} \Big[\sum_{\eta=1}^{\omega} \Big(\sum_{\zeta=1}^{\eta} (b_{\zeta} B_{\zeta}^{\varrho-1})^{\varrho'} \Big) \Big]^{\frac{1}{\varrho'}} \\ & \leq & \frac{1}{2} \rho \varrho \kappa^{\frac{1}{\rho}} \omega^{\frac{1}{\varrho}} \Big[\sum_{\xi=1}^{\kappa} (a_{\xi} A_{\xi}^{\rho-1})^{\rho'} \Big(\sum_{\theta=\xi}^{\kappa} 1 \Big) \Big]^{\frac{1}{\rho'}} \Big[\sum_{\zeta=1}^{\omega} (b_{\zeta} B_{\zeta}^{\varrho-1})^{\varrho'} \Big(\sum_{\eta=\zeta}^{\omega} 1 \Big) \Big]^{\frac{1}{\varrho'}} \\ & = & \frac{1}{2} \rho \varrho \kappa^{\frac{1}{\rho}} \omega^{\frac{1}{\varrho}} \Big[\sum_{\xi=1}^{\kappa} (a_{\xi} A_{\xi}^{\rho-1})^{\rho'} (\kappa - \xi + 1) \Big]^{\frac{1}{\rho'}} \\ & \times & \Big[\sum_{\zeta=1}^{\omega} (b_{\zeta} B_{\zeta}^{\varrho-1})^{\varrho'} (\omega - \zeta + 1) \Big]^{\frac{1}{\varrho'}} \\ & = & C(\rho, \varrho, \kappa, \omega) \Big[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) (a_{\xi} A_{\xi}^{\rho-1})^{\rho'} \Big]^{\frac{1}{\rho'}} \\ & \times & \Big[\sum_{\omega=1}^{\omega} (\omega - \eta + 1) (b_{\zeta} B_{\zeta}^{\varrho-1})^{\varrho'} \Big]^{\frac{1}{\varrho'}}. \end{split}$$

In the above, the second inequality results as an application of Hölder's inequality and the third one is obtained by interchanging the order of summation [14, 15] and $C(\rho, \varrho, \kappa, \omega) = \frac{1}{2}\rho\varrho\kappa^{\frac{1}{\rho}}\omega^{\frac{1}{\varrho}}$. This completes the proof of the theorem. \square

Theorem 2.2. Let $\{a_{\theta}\}$, $\{b_{\eta}\}$, A_{θ} , B_{η} be given as in Theorem 1 and $\{\rho_{\theta}\}$, $\{\varrho_{\eta}\}$, the positive sequences with $1 \leq \theta \leq \kappa$ and $1 \leq \eta \leq \omega$; and $P_{\theta} = \sum_{\xi=1}^{\theta} \rho_{\xi}$, $Q_{\eta} = \sum_{\zeta=1}^{\eta} \varrho_{\zeta}$. Let Φ and Υ be the non-negative, sub-multiplicative and convex functions on the set of real numbers. Then, we obtain

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\Phi(A_{\theta}) \Upsilon(B_{\eta})}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}}} \leq M(\kappa, \omega) \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\theta} \Phi(a_{\theta}/\rho_{\theta}) \right)^{\rho'} \right]^{\frac{1}{\rho'}} \times \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\eta} \Upsilon(b_{\eta}/\varrho_{\eta}) \right)^{\varrho'} \right]^{\frac{1}{\varrho'}}, \tag{9}$$

where $M(\kappa, \omega) = \frac{1}{2} \left[\sum_{\theta=1}^{\kappa} \left(\frac{\Phi(P_{\theta})}{P_{\theta}} \right)^{\rho} \right]^{\frac{1}{\rho}} \left[\sum_{\eta=1}^{\omega} \left(\frac{\Upsilon(Q_{\eta})}{Q_{\eta}} \right)^{\varrho} \right]^{\frac{1}{\varrho}}$.

Proof. Using sub-multiplicity of Φ , Jensen's [12] and Hölder's inequalities, we obtain

$$\Phi(A_{\theta}) = \Phi\left(\frac{P_{\theta} \sum_{\xi=1}^{\theta} \rho_{\xi} a_{\xi} / \rho_{\xi}}{\sum_{\xi=1}^{\theta} \rho_{\xi}}\right)$$

$$\leq \Phi(P_{\theta})\Phi\left(\frac{\sum_{\xi=1}^{\theta}\rho_{\xi}a_{\xi}/\rho_{\xi}}{\sum_{\xi=1}^{\theta}\rho_{\xi}}\right)$$

$$\leq \frac{\Phi(P_{\theta})}{P_{\theta}}\sum_{\xi=1}^{\theta}\rho_{\xi}\Phi(a_{\xi}/\rho_{\xi})$$

$$\leq \theta^{\frac{1}{p}}\frac{\Phi(P_{\theta})}{P_{\theta}}\left[\sum_{\xi=1}^{\theta}\left(\rho_{\xi}\Phi(a_{\xi}/\rho_{\xi})\right)^{\rho'}\right]^{\frac{1}{p'}}.$$
(10)

Similarly,

$$\Upsilon(B_{\eta}) \le \eta^{\frac{1}{\varrho}} \frac{\Upsilon(Q_{\eta})}{Q_{\eta}} \left[\sum_{\zeta=1}^{\eta} \left(\varrho_{\zeta} \Upsilon(b_{\zeta}/\varrho_{\zeta}) \right)^{\varrho'} \right]^{\frac{1}{\varrho'}}. \tag{11}$$

From (10) and (11) and using the inequality $c^{\frac{1}{2}}d^{\frac{1}{2}} \leq \frac{c+d}{2}$, we derive

$$\Phi(A_{\theta})\Upsilon(B_{\eta}) \leq \frac{(\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}})}{2} \frac{\Phi(P_{\theta})}{P_{\theta}} \frac{\Upsilon(Q_{\eta})}{Q_{\eta}} \left[\sum_{\xi=1}^{\theta} \left(\rho_{\xi} \Phi(a_{\xi}/\rho_{\xi}) \right)^{\rho'} \right]^{\frac{1}{\rho'}} \\
\times \left[\sum_{\zeta=1}^{\eta} \left(\varrho_{\zeta} \Upsilon(b_{\zeta}/\varrho_{\zeta}) \right)^{\varrho'} \right]^{\frac{1}{\varrho'}}.$$
(12)

On dividing (12) by $(\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}})$ and summing over η from 1 to ω and θ from 1 to κ and then using Hölder's inequality, the following is obtained

$$\begin{split} \sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\Phi(A_{\theta}) \Upsilon(B_{\eta})}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}}} & \leq & \frac{1}{2} \bigg[\sum_{\theta=1}^{\kappa} \frac{\Phi(P_{\theta})}{P_{\theta}} \bigg\{ \sum_{\xi=1}^{\theta} \left(\rho_{\xi} \Phi(a_{\xi}/\rho_{\xi}) \right)^{\rho'} \bigg\}^{\frac{1}{\rho'}} \bigg] \\ & \times & \left[\sum_{\eta=1}^{\omega} \frac{\Upsilon(Q_{\eta})}{Q_{\eta}} \bigg\{ \sum_{\zeta=1}^{\eta} \left(\varrho_{\zeta} \Upsilon(b_{\zeta}/\varrho_{\zeta}) \right)^{\varrho'} \right\}^{\frac{1}{\varrho'}} \bigg] \\ & \leq & \frac{1}{2} \bigg[\sum_{\theta=1}^{\kappa} \left(\frac{\Phi(P_{\theta})}{P_{\theta}} \right)^{p} \bigg]^{\frac{1}{\rho}} \bigg[\sum_{\eta=1}^{\omega} \left(\frac{\Upsilon(Q_{\eta})}{Q_{\eta}} \right)^{\theta} \bigg]^{\frac{1}{\varrho}} \\ & \times & \left[\sum_{\theta=1}^{\kappa} \sum_{\xi=1}^{\theta} \left(\rho_{\xi} \Phi(a_{\xi}/\rho_{\xi}) \right)^{\rho'} \right]^{\frac{1}{\rho'}} \bigg[\sum_{\eta=1}^{\omega} \sum_{\zeta=1}^{\eta} \left(\varrho_{\zeta} \Upsilon(b_{\zeta}/\varrho_{\zeta}) \right)^{\varrho'} \bigg]^{\frac{1}{\varrho'}} \\ & \leq & M(\kappa, \omega) \bigg[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \Big(\rho_{\theta} \Phi(a_{\theta}/\rho_{\theta}) \Big)^{\rho'} \bigg]^{\frac{1}{\rho'}} \\ & \times & \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \Big(\varrho_{\eta} \Upsilon(b_{\eta}/\varrho_{\eta}) \Big)^{\varrho'} \right]^{\frac{1}{\varrho'}}, \end{split}$$

where the last inequality is obtained by interchanging the order of the summations. This completes the proof. \Box

Theorem 2.3. Let $\{a_{\theta}\}$, $\{b_{\eta}\}$ be given as in Theorem 2.1 and Φ and Υ , the functions defined as in Theorem 2.2. If $A_{\theta} = \frac{1}{\theta} \sum_{\xi=1}^{\theta} a_{\xi}$ and $B_{\eta} = \frac{1}{\eta} \sum_{\zeta=1}^{\eta} b_{\zeta}$ with $1 \leq \theta \leq \kappa$ and $1 \leq \eta \leq \omega$, then

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\theta \eta}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}}} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq C(1, 1, \kappa, \omega) \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\Phi(a_{\theta}) \right)^{\rho'} \right]^{\frac{1}{\rho'}}$$

$$\times \left[\sum_{n=1}^{\omega} (\omega - \eta + 1) \left(\Upsilon(b_{\eta})\right)^{\varrho'}\right]^{\frac{1}{\varrho'}},\tag{13}$$

where $C(1, 1, \kappa, \omega)$ is the constant obtained by putting $\rho = \varrho = 1$ in $C(\rho, \varrho, \kappa, r)$ of Theorem 1.

Proof. Making use of Jensen's and Hölder's inequalities, we arrive at

$$\Phi(A_{\theta}) \leq \frac{1}{\theta} \theta^{\frac{1}{\rho}} \left[\sum_{\xi=1}^{\theta} \left(\Phi(a_{\xi}) \right)^{\rho'} \right]^{\frac{1}{\rho'}}$$

and

$$\Upsilon(B_{\eta}) \leq \frac{1}{\eta} \eta^{\frac{1}{\varrho}} \left[\sum_{\zeta=1}^{\eta} \left(\Upsilon(b_{\zeta}) \right)^{\varrho'} \right]^{\frac{1}{\varrho'}}.$$

The rest of the proof follows by mimicing the proofs of Theorems 2.1, 2.2. \Box

Theorem 2.4. Let $\{a_{\theta}\}, \{b_{\eta}\}, \{\rho_{\theta}\}, \{\varrho_{\eta}\}, P_{\theta}, Q_{\eta}$ be the same as in Theorem 2.2 and Φ, Υ defined as in Theorem 2.3. If $A_{\theta} = \frac{1}{P_{\theta}} \sum_{\xi=1}^{\theta} \rho_{\xi} a_{\xi}$ and $B_{\eta} = \frac{1}{Q_{\eta}} \sum_{\zeta=1}^{\eta} \varrho_{\zeta} b_{\zeta}$ with $1 \leq \theta \leq \kappa$ and $1 \leq \eta \leq \omega$, then

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{P_{\theta} Q_{\eta}}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}}} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq C(1, 1, \kappa, \omega) \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\xi} \Phi(a_{\xi}) \right)^{\rho'} \right]^{\frac{1}{\rho'}} \\
\times \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\zeta} \Upsilon(b_{\zeta}) \right)^{\varrho'} \right]^{\frac{1}{\varrho'}}, \tag{14}$$

where $C(1, 1, \kappa, \omega)$ is same as defined before.

Proof. By using Jensen's and Hölder's inequalities, we obtain

$$\Phi(A_{\theta}) \leq \frac{1}{P_{\theta}} \theta^{\frac{1}{\rho}} \left[\sum_{\xi=1}^{\theta} \left(\rho_{\xi} \Phi(a_{\xi}) \right)^{\rho'} \right]^{\frac{1}{\rho'}},$$

and

$$\Upsilon(B_{\eta}) \leq \frac{1}{Q_{\eta}} \eta^{\frac{1}{\varrho}} \left[\sum_{\zeta=1}^{\eta} \left(\varrho_{\zeta} \Upsilon(b_{\zeta}) \right)^{\varrho'} \right]^{\frac{1}{\varrho'}}.$$

The remaining proof follows from the proofs of Theorems 2.1, 2.2. \Box

3. Useful Remarks

Putting $\rho = \varrho = 2$, in Theorems 2.1 – 2.4, the following inequalities are obtained

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{A_{\theta}^{2} B_{\eta}^{2}}{\theta + \eta} \leq 2\sqrt{\kappa\omega} \left(\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1)(a_{\theta} A_{\theta})^{2} \right)^{\frac{1}{2}} \left(\sum_{\eta=1}^{\omega} (\omega - \eta + 1)(b_{\eta} B_{\eta})^{2} \right)^{\frac{1}{2}}, \tag{15}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\Phi(A_{\theta}) \Upsilon(B_{\eta})}{\theta + \eta} \leq \frac{1}{2} \left(\sum_{\theta=1}^{\kappa} \left(\frac{\Phi(P_{\theta})}{P_{\theta}} \right)^{2} \right)^{\frac{1}{2}} \left(\sum_{\eta=1}^{\omega} \left(\frac{\Upsilon(Q_{\eta})}{Q_{\eta}} \right)^{2} \right)^{\frac{1}{2}}$$

S. Kaushik et al. / Filomat 38:21 (2024), 7377-7388

$$\times \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\theta} \Phi(a_{\theta}/\rho_{\theta}) \right)^{2} \right]^{\frac{1}{2}}$$

$$\times \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\eta} \Upsilon(b_{\eta}/\varrho_{\eta}) \right)^{2} \right]^{\frac{1}{2}}, \tag{16}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\theta \eta}{\theta + \eta} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq C(1, 1, \kappa, \omega) \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\Phi(a_{\theta}) \right)^{2} \right]^{\frac{1}{2}}$$

$$\times \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\Upsilon(b_{\eta}) \right)^{2} \right]^{\frac{1}{2}}, \tag{17}$$

with $C(1, 1, \kappa, \omega) = \frac{\kappa \omega}{2}$.

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{P_{\theta} Q_{\eta}}{\theta + \eta} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq C(1, 1, \kappa, \omega) \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\xi} \Phi(a_{\xi}) \right)^{2} \right]^{\frac{1}{2}} \times \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\zeta} \Upsilon(b_{\zeta}) \right)^{2} \right]^{\frac{1}{2}}. \tag{18}$$

The inequality (15) is a Hilbert's type inequality and (16) – (18) are results of Pachpatte.

4. Generalized Discrete Form

Using $c^{\frac{1}{2}}d^{\frac{1}{2}} \leq \frac{c+d}{2}$, the inequalities (7), (9), (13) and (14), respectively, take the following forms.

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{A_{\theta}^{\rho} B_{\eta}^{\rho}}{\theta + \eta} \leq \frac{1}{2} C(\rho, \varrho, \kappa, \omega) \left[\left(\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) (a_{\theta} A_{\theta}^{\rho-1})^{\rho'} \right)^{\frac{2}{\rho'}} + \left(\sum_{\eta=1}^{\omega} (\omega - \eta + 1) (b_{\eta} B_{\eta}^{\rho-1})^{\varrho'} \right)^{\frac{2}{\rho'}} \right], \tag{19}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\Phi(A_{\theta}) \Upsilon(B_{\eta})}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}}} \leq \frac{1}{2} M(\kappa, \omega) \left\{ \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\theta} \Phi(a_{\theta}/\rho_{\theta}) \right)^{\rho'} \right]^{\frac{2}{\rho'}} + \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\eta} \Upsilon(b_{\eta}/\varrho_{\eta}) \right)^{\rho'} \right]^{\frac{2}{\theta'}} \right\}, \tag{20}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\theta \eta}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\rho}}} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq \frac{1}{2} C(1, 1, \kappa, \omega) \left\{ \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\Phi(a_{\theta}) \right)^{\rho'} \right]^{\frac{2}{\rho'}} + \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\Upsilon(b_{\eta}) \right)^{\rho'} \right]^{\frac{2}{\rho'}} \right\}, \tag{21}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{P_{\theta} Q_{\eta}}{\theta^{\frac{2}{\rho}} + \eta^{\frac{2}{\theta}}} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq \frac{1}{2} C(1, 1, \kappa, \omega) \left\{ \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\xi} \Phi(a_{\xi}) \right)^{\rho'} \right]^{\frac{2}{\rho'}} \right\}$$

$$+ \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\zeta} \Upsilon(b_{\zeta})\right)^{\varrho'}\right]^{\frac{2}{\varrho'}}\right\}. \tag{22}$$

The inequalities (19) – (22) are revised forms of our results. Moreover, for $\rho = \varrho = 2$, we obtain the following inequalities.

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{A_{\theta}^{2} B_{\eta}^{2}}{\theta + \eta} \leq \frac{1}{2} C(2, 2, \kappa, \omega) \left[\left(\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) (a_{\theta} A_{\theta})^{2} \right) + \left(\sum_{\eta=1}^{\omega} (\omega - \eta + 1) (b_{\eta} B_{\eta})^{2} \right) \right], \tag{23}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\Phi(A_{\theta}) \Upsilon(B_{\eta})}{\theta + \eta} \leq \frac{1}{2} M(\kappa, \omega) \left\{ \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\theta} \Phi(a_{\theta}/\rho_{\theta}) \right)^{2} \right] + \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\eta} \Upsilon(b_{\eta}/\varrho_{\eta}) \right)^{2} \right] \right\}, \tag{24}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{\theta \eta}{\theta + \eta} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq \frac{1}{2} C(1, 1, \kappa, \omega) \left\{ \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\Phi(a_{\theta}) \right)^{2} \right] + \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\Upsilon(b_{\eta}) \right)^{2} \right] \right\}, \tag{25}$$

$$\sum_{\theta=1}^{\kappa} \sum_{\eta=1}^{\omega} \frac{P_{\theta} Q_{\eta}}{\theta + \eta} \Phi(A_{\theta}) \Upsilon(B_{\eta}) \leq \frac{1}{2} C(1, 1, \kappa, \omega) \left\{ \left[\sum_{\theta=1}^{\kappa} (\kappa - \theta + 1) \left(\rho_{\xi} \Phi(a_{\xi}) \right)^{2} \right] + \left[\sum_{\eta=1}^{\omega} (\omega - \eta + 1) \left(\varrho_{\zeta} \Upsilon(b_{\zeta}) \right)^{2} \right] \right\}.$$
(26)

5. Main Results: Integral Form

In this section, we present integral analogues of our results proved in Theorems 2.1 - 2.4. We prove

Theorem 5.1. Let $\rho > 1$, $\varrho > 1$ and $f(u) \ge 0$, $g(v) \ge 0$ and $0 < u < \varkappa, 0 < v < \varphi$ with $0 < \varkappa, \varphi < \infty$ and define $F(\xi) = \int_0^{\xi} f(u) du$, $G(\zeta) = \int_0^{\zeta} g(v) dv$, where $0 < \xi < \varkappa, 0 < \zeta < \varphi$. Then

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{F^{\rho}(\xi)G^{\varrho}(\zeta)}{\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}} d\zeta d\xi \leq \frac{1}{2} D(\rho, \varrho, \varkappa, \varphi) \left[\left(\int_{0}^{\varkappa} (\varkappa - \xi) \left(F^{\rho - 1}(\xi) f(\xi) \right)^{\rho'} d\xi \right)^{\frac{2}{\rho'}} + \left(\int_{0}^{\varphi} (\varphi - \zeta) \left(G^{\varrho - 1}(\zeta) g(\zeta) \right)^{\varrho'} d\zeta \right)^{\frac{2}{\varrho'}} \right], \tag{27}$$

unless f or g is identically zero and $D(\rho, \varrho, \varkappa, \varphi) = \frac{1}{2}\rho\varrho\varkappa^{\frac{1}{\rho}}\varphi^{\frac{1}{\varrho}}$.

Proof. By the hypothesis, it is easily seen that

$$F^{\rho}(\xi) = \rho \int_0^{\xi} F^{\rho-1}(u)f(u)du, \qquad \xi \in (0, \varkappa), \tag{28}$$

and

$$G^{\varrho}(\zeta) = \varrho \int_0^{\zeta} G^{\varrho - 1}(v) g(v) dv, \qquad \zeta \in (0, \varphi).$$
 (29)

From (28), (29) and using Hölder's inequality and the inequality $c^{\frac{1}{2}}d^{\frac{1}{2}} \leq \frac{c+d}{2}$, we obtain

$$F^{\rho}(\xi)G^{\varrho}(\zeta) \leq \frac{\rho\varrho}{2} (\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}) \left(\int_{0}^{\xi} \left(F^{\rho-1}(u)f(u) \right)^{\rho'} du \right)^{\frac{1}{\rho'}} \times \left(\int_{0}^{\zeta} \left(G^{\varrho-1}(v)g(v) \right)^{\varrho'} dv \right)^{\frac{1}{\varrho'}}. \tag{30}$$

Divide (30) by $\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}$ and integrate over ζ from 0 to φ and then integrate over ξ from 0 to \varkappa , one obtains

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{F^{\rho}(\xi)G^{\varrho}(\zeta)}{\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}} d\xi d\zeta \leq \frac{\rho\varrho}{2} \left\{ \int_{0}^{\varkappa} \left(\int_{0}^{\xi} \left(F^{\rho-1}(u)f(u) \right)^{\rho'} du \right)^{\frac{1}{\rho'}} d\xi \right\} \\
\times \left\{ \int_{0}^{\varphi} \left(\int_{0}^{\zeta} \left(G^{\varrho-1}(v)g(v) \right)^{\varrho'} dv \right)^{\frac{1}{\varrho'}} d\zeta \right\} \\
\leq \frac{\rho\varrho}{2} \varkappa^{\frac{1}{\rho}} \varphi^{\frac{1}{\varrho}} \left\{ \int_{0}^{\varkappa} \left(\int_{0}^{\xi} \left(F^{\rho-1}(u)f(u) \right)^{\rho'} du \right) d\xi \right\}^{\frac{1}{\rho'}} \\
\times \left\{ \int_{0}^{\varphi} \left(\int_{0}^{\zeta} \left(G^{\varrho-1}(v)g(v) \right)^{\varrho'} dv \right) d\zeta \right\}^{\frac{1}{\varrho'}} \right\} \\
= D(\rho, \varrho, \varkappa, \varphi) \left(\int_{0}^{\varkappa} (\varkappa - \xi) \left(F^{\rho-1}(\xi)f(\xi) \right)^{\rho'} d\xi \right)^{\frac{1}{\rho'}} \\
\times \left(\int_{0}^{\varphi} (\varphi - \zeta) \left(G^{\varrho-1}(\zeta)g(\zeta) \right)^{\varrho'} d\zeta \right)^{\frac{1}{\varrho'}} \\
\leq \frac{1}{2} D(\rho, \varrho, \varkappa, \varphi) \left[\left(\int_{0}^{\varkappa} (\varkappa - \xi) \left(F^{\rho-1}(\xi)f(\xi) \right)^{\rho'} d\xi \right)^{\frac{2}{\rho'}} \\
+ \left(\int_{0}^{\varphi} (\varphi - \zeta) \left(G^{\varrho-1}(\zeta)g(\zeta) \right)^{\varrho'} d\zeta \right)^{\frac{2}{\varrho'}} \right],$$

where second inequality is achieved by applying Hölder's inequality and the last inequality is the result of the inequality $c^{\frac{1}{2}}d^{\frac{1}{2}} \leq \frac{c+d}{2}$. This completes the proof of the theorem. \square

Theorem 5.2. Let us consider f,g,F,G defined as in Theorem 5.1. Let $\rho(u)$ and $\varrho(v)$ be positive functions with $0 < u < \varkappa, 0 < v < \varphi$ and define $P(\xi) = \int_0^\xi \rho(u) du$ and $Q(\zeta) = \int_0^\zeta \varrho(v) dv$ with $0 < \xi < \varkappa, 0 < \zeta < \varphi$ and $\varkappa, \varphi \in \mathbf{R}_+$. Let Φ and Υ be the same as in Theorem 2.2. Then

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{\Phi(F(\xi))\Upsilon(G(\zeta))}{\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}} d\xi d\zeta \leq \frac{1}{2} L(\varkappa, \varphi) \left\{ \left[\int_{0}^{\varkappa} (\varkappa - \xi) \left(\rho(\xi) \Phi\left(\frac{f(\xi)}{\rho(\xi)}\right) \right)^{\rho'} d\xi \right]^{\frac{2}{\rho'}} + \left[\int_{0}^{\varphi} (\varphi - \zeta) \left(\varrho(\zeta) \Upsilon\left(\frac{g(\zeta)}{\varrho(\zeta)}\right) \right)^{\varrho'} d\zeta \right]^{\frac{2}{\varrho'}} \right\}, \tag{31}$$

where $L(\varkappa,\varphi) = \frac{1}{2} \left(\int_0^\varkappa \left(\frac{\Phi(P(\xi))}{P(\xi)} \right)^\rho d\xi \right)^{\frac{1}{\rho}} \left(\int_0^\varphi \left(\frac{\Upsilon(Q(\zeta))}{Q(\zeta)} \right)^\varrho d\zeta \right)^{\frac{1}{\varrho}}.$

Proof. From the hypothesis, we get

$$\Phi(F(\xi)) = \Phi\bigg(\frac{P(\xi)\int_0^\xi \rho(u)\frac{f(u)}{\rho(u)}du}{\int_0^\xi \rho(u)du}\bigg).$$

Making use of sub-multiplicity of Φ and Jensen's and Hölder's inequalities, the following is attained

$$\Phi(F(\xi)) \leq \frac{\Phi(P(\xi))}{P(\xi)} \int_{0}^{\xi} \rho(u) \Phi\left(\frac{f(u)}{\rho(u)}\right) du$$

$$\leq \xi^{\frac{1}{\rho}} \frac{\Phi(P(\xi))}{P(\xi)} \left\{ \int_{0}^{\xi} \left(\rho(u) \Phi\left(\frac{f(u)}{\rho(u)}\right)\right)^{\rho'} du \right\}^{\frac{1}{\rho'}}.$$
(32)

Similarly, we find

$$\Upsilon(G(\zeta)) \le \zeta^{\frac{1}{\varrho}} \frac{\Upsilon(Q(\zeta))}{Q(\zeta)} \left\{ \int_0^{\zeta} \left(\varrho(v) \Upsilon\left(\frac{g(v)}{\varrho(v)}\right) \right)^{\varrho'} dv \right\}^{\frac{1}{\varrho'}}. \tag{33}$$

From (32) and (33), we have

$$\Phi(F(\xi))\Upsilon(G(\zeta)) \leq \xi^{\frac{1}{\rho}} \zeta^{\frac{1}{\varrho}} \frac{\Phi(P(\xi))}{P(\xi)} \frac{\Upsilon(Q(\zeta))}{Q(\zeta)} \left\{ \int_{0}^{\xi} \left(\rho(u) \Phi\left(\frac{f(u)}{\rho(u)}\right) \right)^{\rho'} du \right\}^{\frac{1}{\rho'}} \\
\times \left\{ \int_{0}^{\zeta} \left(\varrho(v) \Upsilon\left(\frac{g(v)}{\varrho(v)}\right) \right)^{\varrho'} dv \right\}^{\frac{1}{\varrho'}} \\
\leq \left(\frac{\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}}{2} \right) \left(\frac{\Phi(P(\xi))}{P(\xi)} \right) \left(\frac{\Upsilon(Q(\zeta))}{Q(\zeta)} \right) \left\{ \int_{0}^{\xi} \left(\rho(u) \Phi\left(\frac{f(u)}{\rho(u)}\right) \right)^{\rho'} du \right\}^{\frac{1}{\rho'}} \\
\times \left\{ \int_{0}^{\zeta} \left(\varrho(v) \Upsilon\left(\frac{g(v)}{\varrho(v)}\right) \right)^{\varrho'} dv \right\}^{\frac{1}{\varrho'}}. \tag{34}$$

Divide (34) by $\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}$ and integrate over ζ from 0 to φ and then ξ from 0 to \varkappa and using Hölder's inequality, we obtain

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{\Phi(F(\xi))\Upsilon(G(\zeta))}{\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varphi}}} d\zeta d\xi \leq \frac{1}{2} \left[\int_{0}^{\varkappa} \left(\frac{\Phi(P(\xi))}{P(\xi)} \right) \left\{ \int_{0}^{\xi} \left(\rho(u) \Phi\left(\frac{f(u)}{\rho(u)} \right) \right)^{\rho'} du \right\}^{\frac{1}{\rho'}} d\xi \right] \\
\times \left[\int_{0}^{\varphi} \left(\frac{\Upsilon(Q(\zeta))}{Q(\zeta)} \right) \left\{ \int_{0}^{\zeta} \left(\varrho(v) \Upsilon\left(\frac{g(v)}{\varrho(v)} \right) \right)^{\varrho'} dv \right\}^{\frac{1}{\varrho'}} d\zeta \right] \\
\leq \frac{1}{2} \left[\int_{0}^{\varkappa} \left(\frac{\Phi(P(\xi))}{P(\xi)} \right)^{\rho} d\xi \right]^{\frac{1}{\rho}} \left[\int_{0}^{\varphi} \left(\frac{\Upsilon(Q(\zeta))}{Q(\zeta)} \right)^{\varrho} d\zeta \right]^{\frac{1}{\varrho}} \\
\times \left[\int_{0}^{\varkappa} \int_{0}^{\xi} \left(\rho(u) \Phi\left(\frac{f(u)}{\rho(u)} \right) \right)^{\rho'} du d\xi \right]^{\frac{1}{\rho'}} \\
\times \left[\int_{0}^{\varphi} \int_{0}^{\zeta} \left(\varrho(v) \Upsilon\left(\frac{g(v)}{\varrho(v)} \right) \right)^{\varrho'} dv d\zeta \right]^{\frac{1}{\varrho'}} \\
= L(\varkappa, \varphi) \left[\int_{0}^{\varkappa} (\varkappa - \xi) \left(\rho(\xi) \Phi\left(\frac{f(\xi)}{\rho(\xi)} \right) \right)^{\rho'} d\xi \right]^{\frac{1}{\rho'}} \\
\times \left[\int_{0}^{\varphi} (\varphi - \zeta) \left(\varrho(\zeta) \Upsilon\left(\frac{g(\zeta)}{\varrho(\zeta)} \right) \right)^{\varrho'} d\zeta \right]^{\frac{1}{\varrho'}} \\
\leq \frac{1}{2} L(\varkappa, \varphi) \left[\int_{0}^{\varkappa} (\varkappa - \xi) \left(\rho(\xi) \Phi\left(\frac{f(\xi)}{\rho(\xi)} \right) \right)^{\rho'} d\xi \right]^{\frac{2}{\rho'}}$$

+
$$\left[\int_0^{\varphi} (\varphi - \zeta) \left(\varrho(\zeta) \Upsilon\left(\frac{g(\zeta)}{\varrho(\zeta)}\right)\right)^{\varrho'} d\zeta\right]^{\frac{2}{\varrho'}}$$
.

Hence, the theorem is proved. \Box

Theorem 5.3. Let us consider f, g as in Theorem 5.1 and Φ , Υ as in Theorem 2.2. Let $F(\xi) = \frac{1}{\xi} \int_0^{\xi} f(u) du$ and $G(\zeta) = \frac{1}{\xi} \int_0^{\zeta} g(v) dv$ with $0 < \xi < \varkappa, 0 < \zeta < \varphi$ for the positive real numbers \varkappa, φ . Then

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{\xi \zeta}{\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\varrho}}} \Phi(f(\xi)) \Upsilon(G(\zeta)) d\xi d\zeta \leq \frac{1}{4} \varkappa^{\frac{1}{\rho}} \varphi^{\frac{1}{\varrho}} \left\{ \left[\int_{0}^{\varkappa} (\varkappa - \xi) \left(\Phi(f(\xi)) \right)^{\rho'} d\xi \right]^{\frac{2}{\rho'}} + \left[\int_{0}^{\varphi} (\varphi - \zeta) \left(\Upsilon(g(\zeta)) \right)^{\varrho'} d\zeta \right]^{\frac{2}{\varrho'}} \right\}.$$
(35)

Proof. The proof runs similar as the proof of Theorem 5.2. \Box

Theorem 5.4. Let $f, g, \rho, \varrho, P, Q$ be the same as in Theorem 5.2 and Φ , Υ as in Theorem 2.2. Let $F(\xi) = \frac{1}{P(\xi)} \int_0^{\xi} \rho(u) f(u) du$ and $G(\zeta) = \frac{1}{Q(\zeta)} \int_0^{\zeta} \varrho(v) g(v) dv$ with $\xi \in (0, \varkappa)$, and $\zeta \in (0, \lt \varphi)$, for the positive real numbers \varkappa, φ . Then

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{P(\xi)Q(\zeta)\Phi(F(\xi))\Upsilon(G(\zeta))}{\xi^{\frac{2}{\rho}} + \zeta^{\frac{2}{\rho}}} d\xi d\zeta \leq \frac{1}{4}\varkappa^{\frac{1}{\rho}}\varphi^{\frac{1}{\varrho}} \left\{ \left[\int_{0}^{\varkappa} (\varkappa - \xi) \left(\rho(\xi)\Phi(f(\xi)) \right)^{\rho'} d\xi \right]^{\frac{2}{\rho'}} + \left[\int_{0}^{\varphi} (\varphi - \zeta) \left(\varrho(\zeta)\Upsilon(g(\zeta)) \right)^{\rho'} d\zeta \right]^{\frac{2}{\varrho'}} \right\}.$$
(36)

Proof. The proof follows in a similar way as of Theorem 5.2. \Box

6. Conclusions

On considering $\rho = \varrho = 2$, inequalities (27), (31), (35) and (36) take the forms

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{F^{2}(\xi)G^{2}(\zeta)}{\xi + \zeta} d\zeta d\xi \leq \frac{1}{2} D(2, 2, \varkappa, \varphi) \left[\left(\int_{0}^{\varkappa} (\varkappa - \xi) \left(F(\xi) f(\xi) \right)^{2} d\xi \right) + \left(\int_{0}^{\varphi} (\varphi - \zeta) \left(G(\zeta) g(\zeta) \right)^{2} d\zeta \right) \right], \tag{37}$$

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{\Phi(F(\xi))\Upsilon(G(\zeta))}{\xi + \zeta} \leq \frac{1}{2} L'(\varkappa, \varphi) \left[\int_{0}^{\varkappa} (\varkappa - \xi) \left(\rho(\xi) \Phi\left(\frac{f(\xi)}{\rho(\xi)}\right) \right)^{2} d\xi \right] + \left[\int_{0}^{\varphi} (\varphi - \zeta) \left(\varrho(\zeta) \Upsilon\left(\frac{g(\zeta)}{\varrho(\zeta)}\right) \right)^{2} d\zeta \right], \tag{38}$$

where $L'(\varkappa,\varphi) = \frac{1}{2} \left(\int_0^\varkappa \left(\frac{\Phi(P(\xi))}{P(\xi)} \right)^2 d\xi \right)^{\frac{1}{2}} \left(\int_0^\varphi \left(\frac{\Upsilon(Q(\zeta))}{Q(\zeta)} \right)^2 d\zeta \right)^{\frac{1}{2}}$,

$$\int_{0}^{\varkappa} \int_{0}^{\varphi} \frac{\xi \zeta}{\xi + \zeta} \Phi(f(\xi)) \Upsilon(G(\zeta)) d\xi d\zeta \leq \frac{1}{4} \varkappa^{\frac{1}{2}} \varphi^{\frac{1}{2}} \left\{ \left[\int_{0}^{\varkappa} (\varkappa - \xi) \left(\Phi(f(\xi)) \right)^{2} d\xi \right] + \left[\int_{0}^{\varphi} (\varphi - \zeta) \left(\Upsilon(g(\zeta)) \right)^{2} \right] \right\}, \tag{39}$$

$$\int_0^\varkappa \int_0^\varphi \frac{P(\xi)Q(\zeta)\Phi(F(\xi))\Upsilon(G(\zeta))}{\xi+\zeta} d\xi d\zeta \ \leq \ \frac{1}{4}\varkappa^{\frac{1}{2}}\varphi^{\frac{1}{2}} \left\{ \left[\int_0^\varkappa (\varkappa-\xi) \left(\rho(\xi)\Phi(f(\xi))\right)^2 \right] \right.$$

$$+ \left[\int_0^{\varphi} (\varphi - \zeta) \Big(\varrho(\zeta) \Upsilon(g(\zeta)) \Big)^2 \right]$$
 (40)

respectively. Clearly Pachpatte's main results [16] are the special cases of our derived inequalities (37)-(40).

References

- [1] L. E. Azar, Two new form of Hilbert integral inequality, J. Math. Inequal. Appl. 17(3) (2014), 937-946.
- [2] T. Batbold, L. E. Azar A new form of Hilbert integral inequality, J. Math. Inequal. 12(2) (2018), 379–390.
- [3] N. Das, S. Sahoo, New inequalities similar to Hardy-Hilbert's inequality, Turk. J. Math. 34(2) (2010), 153–165.
- [4] G. S. Davies, G. M. Peterson, On an inequality of Hardy's(II), Quart. J. Math (Oxford) 15 (1964), 35-40.
- [5] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, U. K., 1934.
- [6] K. Hu, A few important inequalities, J. Jianxi Teach. Coll. Nat. Sci. Math. 3(1) (1979), 1–4.
- [7] A. E. Ingham, A note on Hilbert's inequality, J. Lond. Math. Soc. 11 (1936), 237–240.
- [8] J. Jin, L. Debnath, On a Hilbert-type linear series operator and its applications, J. Math. Anal. Appl. 371(2) (2010), 691–704.
- [9] S. Kaushik, S. Kumar, Certain form of Hilbert-type inequality using non-homogeneous kernel of hyperbolic functions, Korean J. Math. 31(2) (2023), 189–201.
- [10] Q. Liu, A Hilbert-type integral inequality under configuring free power and its applications, J. Inequal. Appl. 2019(91) (2019).
- [11] G. Mingzhe, On Hilbert's inequality and its applications, J. Math. Anal. Appl. 212 (1997), 316–323.
- [12] D. S. Mitrinovic, Analytic Inequalities, Springer, Berlin, New York, 1970.
- [13] H. Mo, B. Yang, On a new Hilbert-type integral inequality involving the upper limit functions, J. Inequal. Appl. 2020(5) (2020).
- [14] J. Nemeth, Generalizations of the Hardy-Littlewood inequality, Acta. Sci. Math. (Szeged) 32 (1971), 295-299.
- [15] B. G. Pachpatte, A note on some series inequalities, Tamkang. J. Math. 27 (1996), 77–79.
- [16] B. G. Pachpatte, On some new inequalities similar to Hilbert's inequality, J. Math. Anal. Appl. 226 (1998), 166-179.
- [17] B. G. Pachpatte, Mathematical Inequalities, Elsevier, Amsterdam, 2005.
- [18] P. Vukovic, Note on Hilbert-type inequalities, Turk. J. Math. 36(2) (2012), 253–262.
- [19] M. You, Y. Guan, On a Hilbert-type integral inequality with non-homogeneous kernel of mixed hyperbolic function, J. Math. Inequal. 13(4) (2019), 1197–1208.