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Abstract. In this paper, we obtain the generalized form of Hilbert’s inequality by using series of non-

negative terms and convexity, sub-multiplicity of a function on positive real numbers and prove results for
integral and discrete forms.

1. Introduction

For any two sequences (a,) and (b,) of non-negative real numbers, the well-known Hilbert’s inequality

[5] is
PY =T (1) o

n=0 6=

o

provided };7, a% and Y%, bfl are finite. The constant 7 in the above inequality is best possible and equality
will occur if (a,) and (b,) both are null sequences. The extended form of above inequality is
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where p and p’ are two parameters such that p’ = P—pl forp > 1and };° Oa and Yo bp are finite. The
integral analogue of (1) and (2) are (see[5])
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respectively, with the best possible constant. If we use x = X+ %, = Y+ 4,F(X) = f(X + %) and
G(Y)=g(Y + 5),a € R, in (3), we have
FZ(X)dX)Z( f

ff FRGSM) 1% av < (f
g X+Y+a _ g

a
2

1
GZ(Y)dY) .
For a non-conjugate exponent pair (p, ¢), we have the following inequality (see[5])

iil eaibn)a < (i“g);(ibﬁ);f @

77:1 0=1 f]=1

wherep > 1,0 > 1,% + % >1,0<A=2- (% + %}) < 1 and the constant factor K = K(p, o) is the best possible.
The integral version of (4) is given by

f f (%lg;q)? dx dip <Kf fp(%)d%) (jo‘wg@((p)d@)i‘

The following inequalities, for 0 < a < 1, were given by Ingham [7] in 1936
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forany a > 1 and 0 < a < 1, respectively. In 1979, Hu [6] gave a refinement of (3) as an improved Hélder’s
inequality

* f(09(p)
f o ddp <7 f F00dx) —-f f(%)cos«/_d%)].
The revised form of the inequality (1) has been obtained as (see[11])
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Since for any a,,bg > 0,a > 1, we have

An equivalent form of the inequality (6) is
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where, 1 < @ < 2. An inequality similar to (3) was proved by B. G.Pachpatte [16] in 1998 as

b
f605() , ,
[ [ 259 g < Y] ["tamsagoais] | [ - prr@rie]

where a,b > 0. More work of B. G. Pachpatte can be seen in [17].

In the literature a lot of work has been published on Hilbert’s inequality as extensions, refinements and
generalizations; some of which are in [1-3, 8-10, 13, 15, 18, 19]. We introduce another generalization of
Hilbert’s inequality. The main purpose of this paper is to describe the certain class of generalized Hilbert’s
inequality by introducing the series consisting of non-negative terms with the help of Jensen’s inequality,
Holder’s inequality involving a pair of non-conjugate exponents p, ¢ > 0. We prove that Pachpatte’s results
proved in [16] are the particular cases of our derived inequality. Furthemore, the integral and discrete forms
of this inequality are give.

2. Main Results: Discrete Form

Throughout this section, we assume that p > 1, ¢ > 1 are non-conjugate exponents such that % + % =

1;% + ol = 1 and {ag}, {b,} are the non-negative real sequences valid for 1 < 6 < x and 1 < n < w, with
x,w € Nand Ag = ):gzl ag, B, = 22:1 be.
First, we prove the following results.

Theorem 2.1. Let p, o and {ag}, {b,}, Ao, B, be defined as above. Then, we have
L) APB

Z Z Clp, 0%, a))( ZK:(K -0+ 1)(a9Ag_1)P’)?
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X

provided that {ag} and {b,} are zero-sequence, where C(p, 0, k, w) = % pQK%w% is the constant term.

Proof. From the inequality in Lemma 1 [4, 14], we have

1 o 1 1 a—1
6=1 0=1 =1
fora>1andzg >0(6 =1,2,...), we obtain
0
Ag<p2a5A§ 1<0<x
&=1

and
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Clearly, the second inequality in above is obtained by applying the Holder inequality and the last inequality

is the result of the inequality (cd)? < 1(c +d). On dividing (8) by 0F + r}i and running the summation over
nand 0, we get
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In the above, the second inequality results as an application of Holder’s inequality and the third one is

obtained by interchanging the order of summation [14, 15] and C(p, 9, k, @) = } pQK%a)%‘. This completes the
proof of the theorem. O

Theorem 2.2. Let {ag}, {b,}, A, B, be given as in Theorem 1 and {pe},{0,}, the positive sequences with 1 < 0 < «
and 1 < n < w; and Pg = Zgzl pe, Qp = 221 oc. Let © and Y be the non-negative, sub-multiplicative and convex
functions on the set of real numbers. Then, we obtain
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Proof. Using sub-multiplicity of @, Jensen’s [12] and Hélder’s inequalities, we obtain
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Similarly,
Y(B,) <1’ 5”)[2( oc(ee/oo)) ] a
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From (10) and (11) and using the inequality cidr < ﬂ, we derive
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On dividing (12) by (97’ + r]Z) and summing over 7 from 1 to w and 6 from 1 to x and then using Holder’s
inequality, the following is obtained
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where the last inequality is obtained by interchanging the order of the summations. This completes the
proof. [

Theorem 2.3. Let {ag}, {b,} be given as in Theorem 2.1 and ® and Y, the functions defined as in Theorem 2.2. If
Ag = %Zgzla(gand&, = %Zgzlbgwithl <0<xandl <n<w,then

K @
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2]

x [Yw-n+ 1)(Y(b,,))@']?, (13)

n=1
where C(1,1, x, w) is the constant obtained by putting p = o = 1 in C(p, o, x, r) of Theorem 1.
Proof. Making use of Jensen’s and Holder’s inequalities, we arrive at

1

0
D(Ag) < %ei[; (as)) ]

and

4 3

Y(8,) < %’7[2 (Y(bc))g]" .

=1
The rest of the proof follows by mimicing the proofs of Theorems 2.1,2.2. [J

Theorem 2.4. Let {ag}, {by}, {p@} {gn},Pg, Q) be the same as in Theorem 2.2 and ®,Y defined as in Theorem 2.3. If
Zg L peag and By = 3 o Z Locbcwith1 <0 <xand1 <1 < w, then

QQII; q)(AQ)T(Bn) < C(l, 1, K, w)[i(K -0+ 1)(péq)(a§))p,]?l
=1 =1 9; +ne =1
y [Z(w - 1)((_0CT(bC))Q,]?/ (14)
n=1

where C(1,1, x, w) is same as defined before.

Proof. By using Jensen’s and Holder’s inequalities, we obtain

Z Pé‘P(ﬂé) ]
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and

1
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The remaining proof follows from the proofs of Theorems 2.1,2.2. [

3. Useful Remarks
Putting p = ¢ = 2, in Theorems 2.1 — 2.4, the following inequalities are obtained

@ AZB
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with C(1, 1, x, w) = 5.
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The inequality (15) is a Hilbert’s type inequality and (16) — (18) are results of Pachpatte.

4. Generalized Discrete Form

Using c2d? < %’l, the inequalities (7), (9), (13) and (14), respectively, take the following forms.

oy AP < 1C( K w)[(i(K -0+1)a Apl)p')pz/
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[

+ [2«» 0+ (e Y00 ]} (22)
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The inequalities (19) — (22) are revised forms of our results. Moreover, for p = ¢ = 2, we obtain the following
inequalities.

A2 BZ K

Z Z < %C(Z, 2,%, a))[(Z(K 0+ 1)(aeAe)2)
6=1 =1 0=1
" (i(a) — 0+ )02, (23)
=1
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0=1
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0=1 =1 6=1
+ [Z(a} n+ 1) 1))) ]} 25)
n=1
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n=1
5. Main Results: Integral Form
In this section, we present integral analogues of our results proved in Theorems 2.1 — 2.4. We prove

Theorem 5.1. Letp>1,Q>1andf(u)20,g(v)20und0<u<%,0<v<(pwith0<%,(p<ooanddeﬁne
F(&) = fo u)du, G(C) = fo (v)dv, where 0 < & < 1,0 < { < @. Then

fok f FPE(E)JFGZZC) dcds < %D(p,p,%,(p)[( fo X(x—g)(Fp—l(é)f(é))p'dg)”%

([ - <:>(G@-1(C)g<c>)<"dc)‘”z'], @)

N

unless f or g is identically zero and D(p, o, %, ¢) = 2po %%(p .
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Proof. By the hypothesis, it is easily seen that

&
FrE) = p fo Flafady, & e (0,%), (28)

and

C
GO = 0 fo Pl )gdo,  Ce0,p). (29)

1

From (28), (29) and using Hélder’s inequality and the inequality c2d -

d: < &£, we obtain
FP(E)GD) < %0(5% +C§)(‘f0‘ (Fp_l(u)f(u))p du)p

X ( fo C (G (v)g(v))y/dv);/. (30)

Divide (30) by 5% + C§ and integrate over C from 0 to ¢ and then integrate over £ from 0 to %, one obtains

f f F’;(f)-’-GZ(QC) dEdc < %{fok (f: (Fp—l(u)f(u))P’du)idé}

X {fj(l; (Gé"l(v)g(v))g/dv)ydC}
%M@Z{j:(fg (FP*l(u)f(u))P/du)dE}?
X { fo (P( f (¢ @) dv)dc}nl

- Do [ ee-ofF©ro) )

A

IA

x| fo qU((p—<:>(G@-1<c>g<c>)“”’dc)”l'

IN

e ol fo - 5>(F"‘1(é>f<é))p'dé);

+

P . 0 \7
([Mw-olc @) «)]

where second inequality is achieved by applying Holder’s inequality and the last inequality is the result
of the inequality c2d? < ¢4 This completes the proof of the theorem. [

Theorem 5.2. Let us consider f,g,F,G defined as in Theorem 5.1. Let p(u) and o(v) be positive functions with

0 <u<x0<v<q@anddefine P(§) = f(f p(u)du and Q(C) = foc' o) dvwith0 <& <x,0<C<@andxn, ¢ € R,.
Let © and Y be the same as in Theorem 2.2. Then

[r @(FS :réc Dagac < Stooof] [ ee-ofponi3) )

[ [w0-ofeo(ZD) dc]?}, &)

D)

where L(x, ¢) = 1 ( s (qal(’lzg))) ) ( f@(
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Proof. From the hypothesis, we get
PE) [ pl 2 du)
fo p(u)du

Making use of sub-multiplicity of ® and Jensen’s and Holder’s inequalities, the following is attained

oF@e) < 2P f p(u)D( p()

() = o

- P
1 D(P(S)) fu)
= P(&) {L ( (u )(D( ())) du} (32)
Similarly, we find
1 Y(Q(0)) g 7
Y6 = =550 fo (g(v)T(@)) w) . -

From (32) and (33), we have

e f (oo (S au}”

x {fo ( (0 )Y(gi ;)) dv}
P J NP LA
< (é ;rC )(CD(IZS)))(Ygg(g))){f0 (P(”)‘D(%))pdu}

x {f ( (v )Y(gz ;)) do } (34)

Divide (34) by & b +Cand integrate over C from 0 to ¢ and then £ from 0 to # and using Holder’s inequality,
we obtain

[rr PG e [ (B [ (o
<1J Y(QQ(S)) (et g(v)) } ]
<3l (Q)ﬁg)) 1 (Yﬁf;?)) ]
x f f p(0)( ))

x f f ()Y * 0 dC

= Lo0p) f oo P(E)‘D(f g)) dé]“l’

[ [l claort29 uf

< 31600 fo - 9(pee(LS) g)) dg]“z'

A
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9(0) v
| f (- oecrr(22 e )) dc] .

Theorem 5.3. Let us consider f,q as in Theorem 5.1 and ®, Y as in Theorem 2.2. Let F(&) = % fog f(u)du and
G(0) = % foc g()dv with 0 < & < x,0 < C < @ for the positive real numbers », . Then

Hence, the theorem is proved. [

ff &+ ‘®(f e dedc < iKé(Pé{[f:(%—é)(q><f<é>>)p/dé];

¢ 0 1%
v | [ w-ofreo) ) (35)
0
Proof. The proof runs similar as the proof of Theorem 5.2. [

Theorem 5.4. Let f,g,p,0,P,Q be the same as in Theorem 52 and ®, Y as in Theorem 2.2. Let F(&) =

ﬁ fog p(u) f(u)du and G(C) = @ foc o(v)g(v)dv with & € (0,x), and C € (0,< @), for the positive real num-
bers »,@. Then

fx f(p P(é)Q(Q(Ij(F(éZ)Y(G(C))
Er+Ce o,
Aol o]}

e = }l%;(p;{[fok(%_‘S)(P(E)q)(f(é)))p’dé];

Proof. The proof foloows in a similar way as of Theorem 5.2. [J

6. Conclusions

On considering p = ¢ = 2, inequalities (27), (31), (35) and (36) take the forms
F2(&)G? 1 %
f f (5) (C) deds < 5DQ,2,%, (p)[( fo (¢ — O(FEf( 5))2(15)

+ ff (- 0(c@9E) )| (37)

f f(ﬂ @(F(i)féG Q) < %L (%, ) f (- 5) p(é)q)(fgg)) dé]
[ fo - 0fe0r(2Y 8 )) |, (39)
where Lc,9) = §( 7 (%02 'ae) (7 (299ac)

1

o ([ - ofoven) a

([ 0-ofru)]) 9)

1

asdc < pxlolf f () P(£)<D(f(£)))]
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o [ [0 ofwerwe) ) 0

respectively. Clearly Pachpatte’s main results [16] are the special cases of our derived inequalities (37)-(40).
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