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Impulsive discrete Dirac equation with spectral parameter
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Abstract. In this study, an impulsive problem which consists a Dirac equation with eigenparameter de-
pendent boundary conditions is studied. Scattering solutions ensuring existence of Jost solution, resolvent
operator and scattering function of this impulsive problem are delivered. Furthermore, discrete spectrum
and asymptotic behavior of Jost function of the problem are investigated. An example illustrating the main
results is given.

1. Introduction

In the present work, we study the scattering analysis of an impulsive discrete Dirac problem on the
aspect of scattering solutions, scattering function, resolvent operator, Jost function and eigenvalues. While
these aspects are well-known in many cases for both Schrödinger and Sturm-Liouville equations [1, 2, 5,
6, 19, 21, 22], there are numerous open questions about scattering analysis of impulsive Dirac equations
or the Dirac-Maxwell systems. The readers can find little kinds of studies about scattering analysis of
impulsive Dirac equations [9, 10, 20]. But, none of them does not consist spectral parameter in boundary
conditions. This property gives a new perspective to the problem. In that way, the results can be used more
in applicable science such as in physics, applied mathematics, medicine and engineering.
The Dirac equation is a modern presentation of the relativistic quantum mechanics of electrons that makes
valuable and accessible mathematical and physical results. The basic and comprehensive results about
Dirac equation were given in [23]. In [16], eigenfunction for one-dimensional Dirac operators describing
the motion of a particle in quantum mechanics is examined. Inverse nodal, spectral, eigenvalue and
scattering problems for Dirac system have been studied by various authors [3, 7, 13–15, 26–28, 30, 31]. Some
of these undertaking studies consist spectral parameter both in the equation and boundary conditions.
Problems with spectral parameter in equations and conditions form an important part of spectral and
scattering analysis of Sturm-Liouville and Dirac equations [7, 8, 11, 12, 29]. On the other hand, this kind
of problems generated by Dirac equations sometimes have discontinuities inside on interval at one or
more than one points. These points are called impulsive points which create extra conditions named by
impulsive conditions. Note that impulsive conditions also are known as jump conditions, transmission
conditions and point interactions in literature [1, 2, 5, 11]. Despite having both impulsive conditions and
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boundary conditions with spectral parameter leads additional difficulties to the problems, it increases the
value and applications of them in physics, robotics, population dynamics, ecology, biology, optimal control,
electronics and etc. Spectral and scattering problems for Dirac equations with impulsive (jump) conditions
have been studied in [9, 17, 18, 20, 25]. But scattering properties of impulsive discrete Dirac equation
consisting of eigenparameter in boundary conditions have not been studied yet. The works [9, 20], are also
about the scattering properties of impulsive discrete Dirac equations, but their boundary conditions do not
consist eigenparameter. This paper is concerned with the investigation of a discrete Dirac equation with
impulsive at a single point and with boundary conditions depending on spectral parameter. In Section 2,
required preliminary information about the problem and some notations are given. Section 3 and Section
4 consist the main results. Jost solution, scattering function and its properties are obtained in section 3.
The resolvent operator and discrete spectrum of the problem is discussed in section 4. Finally, an example
about the main results is examined in section 5.

2. Preliminaries

In this section, we firstly introduce our problem and present some notations that we will use. Throughout
the work, we will use the following notations for the following given sets

N := {1, 2, 3, ...} ,

N0 := {0, 1, 2, ...} ,

N∗m0
:=N \ {m0} ,

Nm0 := {m0 + 1,m0 + 2, ...} ,

Nm0 := {1, 2, ...,m0 − 2,m0 − 1} ,

N (m0) :=N \ {m0 − 1,m0,m0 + 1} ,

here m0 ≥ 3 is an integer number.
Now, let us introduce the Hilbert space l2

(
N,C2

)
consisting of all vector sequences y =

{
yn

}
,
(
yn ∈ C2,n ∈N

)
,

such that
∑
∞

n=1 || yn ||
2
C2< ∞ with the inner product < y, z >=

∑
∞

n=1
(
yn, zn

)
C2 , where C2 is 2-dimensional

Euclidean space || . ||C2 and (., .)C2 denote the norm and inner product in C2, respectively. Furthermore, we
denote by L the operator generated in l2

(
N,C2

)
by the difference systeman+1y(2)

n+1 + bny(2)
n + pny(1)

n = λy(1)
n

an−1y(1)
n−1 + bny(1)

n + qny(2)
n = λy(2)

n , n ∈N (m0)
(1)

with the boundary condition(
γ0 + γ1λ

)
y(2)

1 + (υ0 + υ1λ) y(1)
0 = 0, γ0υ1 − γ1υ0 , 0, γ1 ,

υ0

a0
(2)

and the impulsive conditionsy(1)
m0+1

y(2)
m0+2

 = B

y(2)
m0−1

y(1)
m0−2

 , (3)

where γ j, υ j are real numbers for j = 0, 1, B =
(
δ11 δ12
δ21 δ22

)
is a real matrix, det B > 0, λ = 2 sin

z
2

is a spectral

parameter and {an}n∈N0 , {bn}n∈N,
{
pn

}
n∈N,

{
qn

}
n∈N are real sequences that satisfy the following condition∑

n∈N∗m0

(
| 1 − an | + | 1 + bn | + | pn | + | qn |

)
< ∞ (4)
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with an , 0, n ∈N0 and bn , 0, n ∈N.
If an ≡ 1, n ∈N∗m0

∪ {0} and bn ≡ 1, n ∈N∗m0
, then the system (1) becomes the following form∆y(2)

n + pny(1)
n = λy(1)

n ,

−∆y(1)
n−1 + qny(2)

n = λy(2)
n , n ∈N (m0) ,

(5)

where ∆ is a forward difference operator defined by ∆yn = yn+1 − yn. System (5) is the discrete analog of the
well-known canonical Dirac system [23](

0 1
−1 0

) (
y′1
y′2

)
+

(
p(x) 0

0 q(x)

) (
y1
y2

)
= λ

(
y1
y2

)
.

Therefore, the system (5) is called a canonical discrete Dirac system.

3. Jost solution and scattering function of L

In this section, we analyze spectral properties of the discrete Dirac operator L on the aspect of scattering
solutions, Jost solution, Jost function and scattering function. Assume that

P(z) = {Pn(z)}n∈Nm0
=

{(
P(1)

n (z)
P(2)

n (z)

)}
n∈Nm0

and

Q(z) = {Qn(z)}n∈Nm0
=

{(
Q(1)

n (z)
Q(2)

n (z)

)}
n∈Nm0

are the fundamental solutions of (1) for z ∈ C and n ∈Nm0 fulfilling the initial conditions

P(1)
0 (z) = 0, P(2)

1 (z) = −1

and
Q(1)

0 (z) =
1
a0
, Q(2)

1 (z) = 0.

It is easy to see

deg
[
P(1)

n

(
2 arcsin

λ
2

)]
= 2n − 1, deg

[
P(2)

n

(
2 arcsin

λ
2

)]
= 2n − 2 (6)

and

deg
[
Q(1)

n

(
2 arcsin

λ
2

)]
= 2n − 2, deg

[
Q(2)

n

(
2 arcsin

λ
2

)]
= 2n − 3 (7)

for all n ∈ Nm0 . On the other hand, under the condition (4) for λ = 2 sin
z
2
, n ∈ Nm0 and z ∈ C+ :=

{z ∈ C : Imz ≥ 0} , equation (1) has the following bounded solutions [4]

fn(z) =
(

f (1)
n (z)

f (2)
n (z)

)
=

I2 +

∞∑
m=1

Anmeimz


e

iz
2
−i

 einz

and

f (1)
0 (z) = α11

0

e
iz
2

1 +
∞∑

m=1

A11
0meimz

 − i
∞∑

m=1

A12
0meimz

 ,
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where I2 is 2x2 identity matrix,

αn =

(
α11

n α12
n

α21
n α22

n

)
, Anm =

(
A11

nm A12
nm

A21
nm A22

nm

)
.

Here, Anm is expressed in terms of
(
pn

)
and

(
qn

)
, n ∈N. Also Ai j

nm for i, j = 1, 2 satisfy

| Ai j
nm |≤ C

∞∑
k=n+

[m
2

]
(
| 1 − ak | + | 1 + bk | + | pk | + | qk |

)
,

where
[m

2

]
is the integer part of

m
2

and C > 0 is a constant. The asymptotic equality of the solution

f (z) =
{
fn(z)

}
n∈Nm0 can be given as

fn(z) = [I2 + o(1)]

e
iz
2
−i

 einz, z ∈ C+, n→∞. (8)

It is known that the function f (z) =
{
fn(z)

}
n∈Nm0 is analytic with respect to z in C+ := {z ∈ C : Imz > 0} ,

fn (z + 4π) = fn(z) for all z in C+ and continuous up to the real axis [4]. Let us define the following
semi-strips

D0 := {z ∈ C : 0 ≤ Rez ≤ 4π, Imz > 0} , D := D0 ∪ [0, 4π] .

Definition 3.1. The Wronskian of two solutions {Yn(z)}n∈N∗m0
=

{(
y(1)

n (z)
y(2)

n (z)

)}
n∈N∗m0

and {Un(z)}n∈N∗m0
=

{(
u(1)

n (z)
u(2)

n (z)

)}
n∈N∗m0

of the equation (1) is defined by

W [Yn(z),Un(z)] = an

[
y(1)

n (z)u(2)
n+1(z) − y(2)

n+1(z)u(1)
n (z)

]
.

From the definition of Wronskian, we obtain that

W [P(z),Q(z)] = 1, z ∈ C and W
[

f (z), f (z)
]
= 2i cos

z
2
, z ∈ R.

Now, we consider the following solution of (1)-(3) using f (z), P(z) and Q(z)

En(z) =

k(z)Pn(z) + l(z)Qn(z), n ∈Nm0

fn(z), n ∈Nm0
(9)

for z ∈ D. By the help of the impulsive condition (3), we get

k(z) =
am0−2

det B

(
b(z) f (2)

m0+2(z) − c(z) f (1)
m0+1(z)

)
(10)

and

l(z) = −
am0−2

det B

(
d(z) f (2)

m0+2(z) − 1(z) f (1)
m0+1(z)

)
(11)

for z ∈ D, where
b(z) = δ11Q(2)

m0−1(z) + δ12Q(1)
m0−2(z)

c(z) = δ21Q(2)
m0−1(z) + δ22Q(1)

m0−2(z)
d(z) = δ11P(2)

m0−1(z) + δ12P(1)
m0−2(z)

1(z) = δ21P(2)
m0−1(z) + δ22P(1)

m0−2(z).

(12)
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The vector sequence E(z) = {En(z)}n∈N∗m0
=

{(
E(1)

n (z)
E(2)

n (z)

)}
n∈N∗m0

is called the Jost solution of (1)-(3). Using (2)

and (9), we find the Jost function of L by

ψ(z) = −
(
γ0 + γ1λ

)
k(z) + (υ0 + υ1λ)

l(z)
a0
. (13)

We see directly from (10) and (11) that the Jost function is analytic in C+ and continuous in C+.On the other
hand, for z ∈ [0, 4π] \{π, 3π}, (1) admits another solution

Fn(z) =

 φn(z), n ∈Nm0

m(z) fn(z) + η(z) fn(z), n ∈Nm0 ,
(14)

where φn =
{
φn(z)

}
n∈N∗m0

is the solution of (1) satisfying the boundary condition (2), defined by

φn(z) = (υ0 + υ1λ) Pn(z) + a0
(
γ0 + γ1λ

)
Qn(z).

By means of (3) and (12), m(z) and η(z) can be gotten as

m (z) =
am0+1

2i cos z
2

{[
(υ0 + υ1λ) d (z) + a0

(
γ0 + γ1λ

)
b (z)

]
f (2)
m0+2 (z) (15)

−
[
(υ0 + υ1λ) 1 (z) + a0

(
γ0 + γ1λ

)
c (z)

]
f (1)
m0+1 (z)

}
,

η (z) = −
am0+1

2i cos z
2

{[
(υ0 + υ1λ) d (z) + a0

(
γ0 + γ1λ

)
b (z)

]
f (2)
m0+2 (z) (16)

−
[
(υ0 + υ1λ) 1 (z) + a0

(
γ0 + γ1λ

)
c (z)

]
f (1)
m0+1 (z)

}
.

From (12), (13), (15) and (16), since b(z) = b(z), c(z) = c(z), d(z) = d(z) and 1(z) = 1(z), the following equalities
are provided

m(z) = η(z) =
a0am0+1

2iam0−2

det B

cos
z
2

ψ(z). (17)

Lemma 3.2. For z ∈ [0, 4π] \ {π, 3π} , the following equation holds

W [En(z),Fn(z)] =


−

am0−2

am0+1

2i cos
z
2

det B
η(z), n ∈Nm0

2i cos
( z

2

)
η(z), n ∈Nm0 .

Proof. Using Definition 3.1, it is easy to write

W [En(z),Fn(z)] = a0k(z)
(
γ0 + γ1λ

)
− l(z) (υ0 + υ1λ)

for n ∈Nm0 . In accordance with (13) and (17), we find

W [En(z),Fn(z)] = −
am0−2

am0+1

2i cos
z
2

det B
η(z), n ∈Nm0 .

Similarly, we obtain

W [En(z),Fn(z)] = 2i cos
( z

2

)
η(z), n ∈Nm0 .
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Theorem 3.3. For all z ∈ [0, 4π] \{π, 3π}, η(z) , 0, where η(z) is defined in (16).

Proof. Assume that there exists a z0 in [0, 4π] \{π, 3π}, such that η (z0) = 0. By the help of (17), we get
m (z0) = η (z0) = 0. Then the solution Fn(z) is equal to zero identically and this gives a contradiction, i.e., for
all z ∈ [0, 4π] \{π, 3π}, η(z) , 0.

Definition 3.4. The scattering function S(z) of L is defined by

S (z) :=
ψ(z)
ψ(z)

, z ∈ [0, 4π] \{π, 3π}.

From (17) and Definition 3.4, S(z) has following representation

S(z) =
ψ(z)
ψ(z)

=
η(z)
η(z)

z ∈ [0, 4π] \{π, 3π}. (18)

Theorem 3.5. The function S(z) satisfies

S−1 (z) = S (z), | S (z) |= 1

for all z ∈ [0, 4π] \{π, 3π}.

Proof. For z ∈ [0, 4π] \{π, 3π}, by using (13) and (17), we write

S−1 (z) =
ψ (z)

ψ (z)
= S (z).

It is evident from that | S (z) |= 1.

4. Resolvent operator and eigenvalues of L

In this part, we define an unbounded solution of (1)-(3) in order to obtain the resolvent operator of
our problem. Then, we express the set of eigenvalues of L by using the singularities of the kernel of the
resolvent operator.

Let us define the unbounded solution G (z) = {Gn (z)} of L as follows

Gn(z) =

 φn(z), n ∈Nm0

r(z) fn(z) + p(z) f̂n(z), n ∈Nm0
(19)

for z ∈ D\{π, 3π}, where f̂n(z) =
{

f̂n(z)
}

n∈Nm0
=


 f̂ (1)

n (z)
f̂ (2)
n (z)


n∈Nm0

that satisfies the following asymptotic

equality

lim
n→∞

e
i

n+
1
2

z
f̂ (1)
n (z) = lim

n→∞
einz f̂ (2)

n (z) = 1, z ∈ C+.

Note that it is clear that
W

[
fn(z), f̂n(z)

]
= 2i cos

z
2
, z ∈ D\{π, 3π}.

By the help of (3) and (12), the coefficients r(z) and p(z) are obtained as follows
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r (z) =
am0+1

2i cos z
2

{[
(υ0 + υ1λ) d (z) + a0

(
γ0 + γ1λ

)
b (z)

]
f̂ (2)
m0+2 (z) (20)

−
[
(υ0 + υ1λ) 1 (z) + a0

(
γ0 + γ1λ

)
c (z)

]
f̂ (1)
m0+1 (z)

}
,

p (z) = −
am0+1

2i cos z
2

{[
(υ0 + υ1λ) d (z) + a0

(
γ0 + γ1λ

)
b (z)

]
f (2)
m0+2 (z) (21)

−
[
(υ0 + υ1λ) 1 (z) + a0

(
γ0 + γ1λ

)
c (z)

]
f (1)
m0+1 (z)

}
for z ∈ D\{π, 3π}. From (16) and (21), it is obvious that η(z) = p(z).

Similar to Lemma 3.2, for z ∈ D, the Wronskian of the solutions En(z) and Gn(z) is found as

W [En(z),Gn(z)] =


−

am0−2

am0+1

2i cos
z
2

det B
η(z), n ∈Nm0

2i cos
( z

2

)
η(z), n ∈Nm0 .

Theorem 4.1. For all z ∈ D\{π, 3π} and η(z) , 0, the resolvent operator of L is defined by

Rλ (L) hn := U

 n∑
k=1

V


ak−1

ak
G(1)

k−1

G(2)
k


(
E(1)

n

E(2)
n

)
+

∞∑
k=n+1

V


ak−1

ak
E(1)

k−1

E(2)
k


(
G(1)

n

G(2)
n

) ,
where U := −

1
W [En(z),Gn(z)]

and V :=
(
h(1)

k−1, h
(2)
k

)
.

Proof. To obtain the resolvent operator of L, it is necessary to solve the following system of equationsan+1y(2)
n+1 + bny(2)

n + pny(1)
n − λy(1)

n = h(1)
n

an−1y(1)
n−1 + bny(1)

n + qny(2)
n − λy(2)

n = h(2)
n , n ∈N (m0) .

(22)

Since En(z) and Gn(z) are the fundamental solutions of (1)-(3), the general solution of (22) can be written as

H(i)
n = unE(i)

n (z) + tnG(i)
n (z), i = 1, 2, (23)

where un, tn are coefficients and are different from zero. Using the method of variation of parameters, we
find un and tn by

un = −

n−1∑
k=0

akh(1)
k (z)G(1)

k (z) + ak+1h(2)
k+1(z)G(2)

k+1(z)

ak+1W [En(z),Gn(z)]
(24)

and

tn = −

∞∑
k=n

akh(1)
k (z)E(1)

k (z) + ak+1h(2)
k+1(z)E(2)

k+1(z)

ak+1W [En(z),Gn(z)]
, (25)

respectively.
By using (23), (24) and (25), we get the resolvent operator of L. It completes the proof of Theorem 4.1.

Using Theorem 4.1 and the definition of eigenvalues [24], we obtain the set of eigenvalues of (1)-(3) as
follows

σd (L) =
{
λ = 2 sin

z
2

: z ∈ D0, η(z) = 0
}
.
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Theorem 4.2. η(z) satisfies the following asymptotic equation for z ∈ D

η(z) = e5iz [A + o(1)] , | z |→ ∞,

where A = am0+1

[
δ11υ1 (−1)m0−1 K2 (m0 − 1)α22

m0+2

]
, δ11 , 0.

Proof. It is known from [9] that

lim
|z|→∞

P(1)
n (z)e

i

n−
1
2

z
= i (−1)n K1(n), z ∈ C+,

lim
|z|→∞

P(2)
n (z)ei(n−1)z = i (−1)n K2(n), z ∈ C+, (26)

where

K1(n) := −

b1

n∏
k=2

akbk


−1

, K2(n) := −

 n∏
k=2

akbk−1


−1

.

By the help of (6), (7) and (8), we get

lim
|z|→∞

d(z) f (2)
m0+2(z) = δ11 (−1)m0−1 K2 (m0 − 1)α22

m0+2e4iz (27)

and

lim
|z|→∞

e(z) f (1)
m0+1(z) = δ21 (−1)m0−1 K2 (m0 − 1)α12

m0+1e3iz. (28)

From (27) and (28), n(z) can be written as

η(z)e−5iz = A + o(1),

where
A = am0+1

[
δ11υ1 (−1)m0−1 K2 (m0 − 1)α22

m0+2

]
.

5. An example

In this part, we present a special impulsive discrete Dirac system as an example. We get the Jost solution,
Jost function and scattering function of this example. Then, we determine a region for the eigenvalues of
this problem.

Let us consider the following discrete Dirac systemy(2)
n+1 − y(2)

n = λy(1)
n

y(1)
n−1 − y(1)

n = λy(2)
n , n ∈N (2)

(29)

with the boundary condition(
γ0 + γ1λ

)
y(2)

1 + (υ0 + υ1λ) y(1)
0 = 0, γ0υ1 − γ1υ0 , 0, γ1 ,

υ0

a0
(30)

and the impulsive conditions(
y(1)

3
y(2)

4

)
=

(
δ1 0
0 δ2

) (
y(2)

1
y(1)

0

)
, (31)
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where γ j, υ j are real numbers for j = 0, 1, δ1 and δ2 are real numbers such that δ1δ2 , 0. By using (9) and
(13), we obtain the Jost solution and Jost function of (29)-(31)

En(z) =

k(z)Pn(z) + l(z)Qn(z), n = 0, 1
fn(z), n = 3, 4, ...,

(32)

ψ(z) = δ2
(
γ0 + γ1λ

)
e

7iz
2 − iδ1 (υ0 + υ1λ) e4iz, (33)

respectively. In accordance with Definition 3.4 and (33), we find the scattering function of (29)-(31)

S(z) = e−8iz


δ2

(
γ0 + γ1λ

)
e

iz
2 + iδ1 (υ0 + υ1λ)

δ2
(
γ0 + γ1λ

)
e
−

iz
2 − iδ1 (υ0 + υ1λ)

 .
By the help of the definition of eigenvalues [24], we write

σd (L) =
{
λ = 2 sin

z
2

: z ∈ D0, ψ(z) = 0
}
.

For the simplicity on calculations, if we choose γ0 = υ1 = 1 and γ1 = υ0 = 0 in (30), we easily find that

eiz =
δ2

δ1
− 1.

Let δ2 =Mδ1, M ∈ R. From last equation, we write

zk = −i ln |M − 1 | +Ar1 (M − 1) + 2kπ, k ∈ Z.

There appear two special cases:
Case1. If 0 < M < 1, then

zk = −i ln |M − 1 | + (2k + 1)π.

In this case, the problem (29)-(31) has eigenvalues if and only if k = 0, 1.
Case2. If 1 < M < 2, then

zk = −i ln |M − 1 | +2kπ.

Likewise the other case, for k = 1, there are eigenvalues.
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