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Higher-order and Weil Grassmannian as a space of subalgebras
of a Weil algebra
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Abstract. Let Gr
k,m be the subgroup of the jet group Gr

k formed by elements projectable to Gr
m ≃ Gr

m ×

{ jr
0 idRk−m }. We define a partitionV on reg Jr

0(Rk,Rm)0 of Gr
m-orbits with respect to the left action defined by

the jet composition. Elements of reg Jr
0(Rk,Rm)0 are considered as vectors from Rk with the standard inner

product over them. The r-th order Grassmannian Gr(r, k,m) is defined as the basis of the principal bundle
p̂# : reg Jr

0(Rk,Rm)0 → V identified with the reduction of the principal bundle p̂ : Gr
k → Gr

k,m\G
r
k to the

structure group Gr
m ≃ Gr

m × { jr
0 idRk−m }. Adding the claim of the first-order orthonormality and modifying

V to VOrt we obtain the geometrical structure over Gr(r, k,m) in the form of the so-called orthonormal
Grassmann bundle p̂#

Ort. We construct an atlas on Gr(r, k,m) from a finite system of local sections of p̂#
Ort and

define the r-th order Grassmannian bundle functor with standard fiber Gr(r, k,m) on the categoryMfm of
m-dimensional manifolds and local diffeomorphism.

For the jet algebra Dr
k, a Weil algebra A = Dr

k/I and the projection homomorphism pA : Dr
k → A we

define the partitionVA on reg TA
0R

m formed by orbits of the left action of the group of all TA
0 h; h ∈ Diff0Rm,

which is by [29] identified with Gr
m. We prove that the local sections of p̂#

Ort above satisfy some kind of
TA-respecting property and determine an atlas on VA. We define the Weil Grassmannian Gr(A,m) = VA

and the bundle functor GrA defined onMfm with Gr(A,m) as its standard fiber. We prove the coincidence
of Gr(A,m) with the quotient ofV by the map [p̃A,Rm ] :V →VA induced by pA.

We define the principle bundle p̂#
A : reg Jr

0(Rk,Rm)0 → Gr(A,m) with the structure group Gr
m. We define

a partition VA on reg TA
0R

m coarser then VA and some auxiliary partitions within reg TA
0R

m. It is proved
that the factorization [p̂#

A] : reg TA
0R

m
→ VA of p̂#

A to reg TA
0R

m can be considered as the disjoint union of
bundles with standard fiber identified with some sublagebra of A of width A = m.

1. Introduction

We give the contribution to the theory of homogeneous spaces studied from the point of view of jet
spaces and the Weil theory. In the centre of our investigations there is a generalization of the classical
Grassmannian (Grassmann manifold) Gr(k,m) considered for k ≥ m. It is the basis of the geometrical
structure called Grassmann bundle, which forms the principal bundle over Gr(k,m). The Grassmannian
itself is usually defined as the space of m-planes containing 0 in the k-dimensional real affine space, in
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other words the space of all m-dimensional linear subspaces of Rk. Gr(k,m) is a fundamental example of a
homogeneous space obtained from orthogonal groups as O(k)/O(m) × O(k − m). From this point of view,
Gr(k,m) is obtained from the right action of the orthogonal group O(k) onRk acting transitively on Gr(k,m).
Since the isotropy group of the plane Rm

× {0}k−m is identified with O(m) × O(k − m) (see [9], Section 10),
Gr(k,m) coincides with the homogeneous space above. We recall some other ways of defining Gr(k,m), e.g.
by the so-called Plücker coordinates, see [7].

In [9], Section 12 and in [11], [12] Gr(k,m) is defined and studied by means of the contact elements
and is generalized to higher orders. By [9], 12.16 and 12.17, Gr(k,m) can be considered as the r-th order
contact element space (Kr

mR
k)0 = reg Jr

0(Rm,Rk)0/Gr
m, by reg indicating immersions. It is a standard fiber

of the bundle functor Kr
m of contact elements defined on the categoryMfk. The space Kr

mM consists of all
jr0ψ ∈ reg Jr

0(Rm,M) corresponding to local parametrizations ψ of m-dimensional submanifolds factorized
by the parametrizations determining locally the same submanifold.

In the present paper we essentially follow the results of Grigore and Krupka from [5], besides those from
[11],[12] (see also [13]). In [5] there was properly investigated and described the geometrical structure over
the higher-order Grassmanniannian manifold in the form of a principal bundle (the so-called Grassmann
bundle) with the total space reg Tr

kM and the structure group Gr
m. In addition to that there were studied

problems of invariants on such spaces.
We apply another approach, defining Gr(k,m) as the standard fiber of a natural bundle defined on the

categoryMfm, in contrary to Kr
m defined onMfk. In this situation, reg indicates submersions. Without loss

of generality, a tangent space to a submanifold M of Rk at any x can be replaced by a linear subspace of
T0Rk

≃ Rk of dimension m, applying the obvious translation map and the coordinate system of M adopted
to a coordinate system of Rk. A linear operator transforming a basis dy1, . . . dym on TxM ≃ T0M induced by
such coordinates to the system of linearly independent vectors expressed in the natural coordinates of Rk

can be identified with an element of the geometrical structure over Gr(k,m). Elements of Gr(k,m) themselves
are obtained by the factorization of the elements of the geometrical structure to the linear subspaces of the
target space Rk. From the mechanical point of view, basis tangent vectors at points of M corresponding
to the spatial coordinates are transformed to the linearly independent tangent vectors considered in the
reference configuration. Every M above can be considered as a submanifold of M×Rk−m. Since the concepts
of the tangent space and subspace are of local character, the system of Gr(k,M) can be considered as the
bundle functor onMfm, with possible insertions of objects to k-dimensional manifolds containing them as
their submanifolds.

In the next step of generalization, tangent spaces and linear subspaces are replaced by higher-order
jet algebras and their subalgebras while linear maps are replaced by higher-order jets. The investigations
are continued to Weil algebras, their subalgebras, Weil functors and Weil functor morphisms. Besides the
higher-order and Weil generalization of Grassmannian we also investigate and discuss the geometrical
structures or its modifiactions from the point of view of the Weil theory.

The studied objects are also put to context with generalized frames and frame bundles (see Section 2
below) and some elementary concepts of mechanics from [4]. We remark that in [30] we have sketched
some simple ideas of mechanical applications of the discussed concepts in connection with the uniformity
of elastic materials, following [4]. Nevertheless, exact proofs have not been performed.

If the orthogonality in the forefront of the definition of Grassmannian is not required we can define it by
means of the homogeneous space G1

k,m\G
1
k in the classical case and by Gr

k,m\G
r
k in the higher-order case (see

Section 2). Roughly speaking, the r-th order Grassmannian Gr(r, k,m) will be identified with the space of
orbits of the jet group Gr

m acting on the jet space reg Jr
0(Rk,Rm)0 from the left. On the other hand, in Section

2 and 3 we present the constructions preserving orthonormality of elements of the geometrical structure in
the first order.

1.1. Elementary categories on manifolds and jet bundle functors
Let us recall the elementary concepts of r-jet bundle functor from [9]. For a smooth curve γ : R → M,

the r-jet jrt0
γ expresses the equivalence class of all curves having the r-th order contact at x = γ(t0) ∈ M

while for a smooth map f : M→ N between manifolds the r-jet jrx f conceptually expresses the set of dim N-
valued Taylor polynomials obtained in individual coordinate systems on M centered at x. The composition
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of jets is correctly defined by jry1 ◦ jrx f = jrx(1 ◦ f ) where y = f (x). The jet spaces determine the bundle
functor Jr : M fm ×Mf → FM. By M fm we denote the category of m-dimensional manifolds with local
diffeomorphisms, byM f the category of smooth manifolds with smooth maps and by FM the category
of fibered manifolds with smooth fibered maps. A bundle functor is defined as a functor F : C → M f
defined on a suitable admissible category (e.g. M f ,M fm orFM) satisfying the base preserving and locality
conditions (for rigorous definitions see [9]). The jet functor Jr assigns the space of r-jets Jr(M,N) of smooth
maps M→ N to any couple (M,N) ∈ Obj(M fm ×M f ) and the map Jr(1, h) : Jr(M1,N1)→ Jr(M2,N2) defined
by jrx f 7→ jrf (x)h◦ jrx f ◦ ( jrx1)−1 to any couple (1, h) ∈Morph(M fm×M f ). For 0 ≤ s ≤ r there is the subordinate
natural transformation πr

s : Jr
→ Js mapping jrx f onto jsx f . A bundle functor defined on the categoryM fm

is said to be a natural bundle.

1.2. Weil functors
Weil functors are bundle functors of the principal meaning. Their history goes back to 1953 when A.

Weil in [32] defined and investigated spaces of infinitely near points on manifolds. This entailed to the
contravariant definition of Weil functor. Nevertheless, we prefer the covariant approach presented below.
By the classical result of Kainz and Michor ([6]) and others ([2], [15]), they are exactly those bundle functors
onM f which preserve products. On the other hand, Weil functors generalize many significant geometrical
spaces like tangent, iterated tangent, higher-order velocity bundles Tr

k, non-holonomic and semi-holonomic
velocity bundles. They have been studied by many authors in e.g. [1], [8], [14], [17], [21], [28], [33].

Every Weil functor is associated to a Weil algebra. It is an algebra of the form A = R ⊕ NA where NA
is its nilpotent ideal. Respecting our aims, we prefer defining A as E(k)/I where E(k) is the algebra of
germs of smooth functions Rk

0 → R factorized by an ideal I of finite codimension. Germs from E(k) are
decomposition classes of the algebra of functions C∞(Rk

0,R) associated to the equivalence ≃ defined by
f ≃ 1 if and only if f and 1 coincide on some neighbourhood of 0 ∈ Rk. A Weil algebra can be also defined
as A = Dr

k/J for the so called jet algebra Dr
k and its ideal J. In other words, A is considered as an algebra

of polynomials of k indeterminates of order at most r factorized by some of its ideals J. We put width A to
dim(NA/N2

A) and height A to the minimal r for which A = Dr
k/J. By pA : Dr

k → A we denote the projection
homomorphism. A = Dr

k/J is said to be monomial if and only if J is generated by monomials.
The covariant approach to the definition of a Weil functor TA is based on the I-factorization of germs in

the following sense. For A = Dr
k/I two germs germ0 1 : Rk

0 → Mx and germ0 h : Rk
0 → Mx are said to be

I-equivalent if and only if germx γ ◦ germ0 1 − germx γ ◦ germ0 h ∈ I for any function γ : M → R defined
near x. Classes of such equivalence relation are denoted by jA1 and the space of them by TAM. For a
smooth map φ : M → N we define the map TAφ by TAφ( jA1) = jA(φ ◦ 1). Clearly, Tr

k = TD
r
k . There is the

bijective correspondence between Weil algebras and Weil functors determined by the assignments A 7→ TA

and F 7→ FR, applying the product preserving property of Weil functors.

1.3. Automorphism of Weil algebras

By [8] and [9], natural transformations t̃M : TBM→ TAM are in bijection with homomorphisms t : B→ A,
which holds particularly for the projections p̃A : Tr

k → TA. By [8], natural transformations above correspond
bijectively the so-called B-admissible A-velocities defined as follows. For Weil algebras A = E(k)/I, B =
E(p)/J and smooth f : Rk

0 → R
p
0 an A-velocity jA f is said to be B-admissible if and only if

(1.3.1) germ0 φ ∈ J⇒ germ0(φ ◦ f ) ∈ I.

Thus every B-admissible A-velocity jA f is bijectively assigned a natural transformation t̃M : TBM → TAM
defined as follows

(1.3.2) t̃M( jBφ) = t̃ jA f
M ( jBφ) = jA(φ ◦ f ).

In particular, all automorphisms of A are determined by reparametrizations of indeterminates satisfying
the conditions of A-admissibility (1.3.1).
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The jet group Gr
k is defined as inv Jr

0(Rk,Rk)0 with the multiplication defined by the composition of r-jets.
The automorphism t jr01 of Dr

k and the associated natural equivalence t̃ jr01 on Tr
k determined by jr01 ∈ Gr

k are
defined by the assignments

(1.3.3) jr0η 7→ jr0η ◦ ( jr01)
−1 or jr0ηx 7→ jr0ηx ◦ ( jr01)

−1

for every jr0η ∈ D
r
k and jr0ηx ∈ (Tr

k)xM. If M is a numeric space and x = 0 we sometimes use the notation t jr01
for natural equivalences as well. Thus for a B-admissible A-velocity jr01 we have the natural equivalence
t jr01 : TA

→ TB.
For A = Dr

k/I and the projection homomorphism p : Dr
k → A Alonso defined the subgroups GA and

GA
⊆ Gr

k ≃ Aut(Dr
k) ([1]) as follows

(1.3.4) GA = { jr01 ∈ Gr
k; p ◦ t jr01 = p} and GA = { jr01 ∈ Gr

k; Ker(p ◦ t jr01) = Ker p}.

The first subgroup is A-stabilizing while the second one is A-respecting. In [1] it is proved that GA is a normal
subgroup of GA and GA/GA is identified with the group Aut A. Clearly, jr01 determines an automorphism
of A if and only if jr01 ∈ GA.

1.4. Some subalgebras, factors and properties of Weil algebras

Let B = Dr
k/I be a Weil algebra of height r and width k with the projection homomorphism pB : Dr

k → B.
For s ≤ r, denote by B(s) its subordinate Weil algebra obtained by truncating B to the s-th order. For s ≤ q ≤ r
we have the projection homomorphism πq

s,B : B(q) → B(s). For q = r we write simply πs,B : B → B(s) and for
B = Dr

k we have πs,B = πr
s.

Let Dr
i1...im

be the subalgebra of Dr
k of polynomials in indeterminates τi1 , . . . τim only. Dr

i1...im
is obviously

isomorphic toDr
m. There is the subalgebra Bi1...im of B defined by Bi1...im = pB(Dr

i1...im
). There are the insertion

homomorphisms ιi1...im : Dr
m → D

r
k and ιi1...im,B : Bi1...im → B where the first one is obvious and the second one

is defined by pB(τ j) 7→ pB(ιi1...im (τ j)) = pB(τ j) for j ∈ {i1, . . . , im}. Clearly, Bi1...im = D
r
m/Ii1...im for Ii1...im defined by

a ∈ Ii1...im if and only if a ∈ I.
Let Jm,k denote the ideal ⟨τim+1 , . . . , τik⟩ in Dr

k. Then Dr
i1...im

is idetntified with Dr
k/Jm,k. For monomial

B there is the obvious identification of Bi1...im with Dr
k/I ∨ Jm,k. In such case there is the homomorphism

pi1...im,B : B→ Bi1...im defined by

(1.4.1) τi = pB(τi) 7→ pB(Σm
l=1δ

i
il
τi).

Clearly, Im pi1...im,B = Im ιi1...im,B. For B = Dr
k we write simply pi1...im . The notation of the induced natural

transformations (p̃i1...im )M and (p̃i1...im,B)M are simplified to pm
i1...im

and pm
i1...im,B

in case of M = Rm.
An ideal I ⊆ Dr

k is said to be normal if I = J ∨ ⟨τ j1 , . . . , τ jk−l⟩ for an ideal J satisfying J ⊆ ⟨τi1 , . . . , τil⟩
2

provided { j1, . . . , jk−l}∪ {i1, . . . , il} = {1, . . . , k}. A Weil algebra A = Dr
k/I is said to be normal if I is normal. Let

µ = ⟨τ1, . . . , τk⟩ be the maximal ideal of Dr
k. If width A = k then we can reduce the definition of normality

to the condition I ⊆ µ2. Every Weil algebra is isomorphic to a normal one, which is easy to deduce from
(1.3.3) (see also the text after (1.1) in [29]).

Let width A = k. There is the insertion ιr1,k : D1
k → Dr

k, which is a linear map and a section of
πr

1 : Dr
k → D

1
k . Moreover, there is the map

(1.4.2) iA = pA ◦ ι
r
1,k : D1

k → A

and its extension imA : J1
0(Rk,Rm) → TA

0R
m from A = TAR to TARm = Am defined by components. Clearly,

ιr1,k = iDr
k
. In case of normal A the maps iA and imA are global sections. We remark that iA is not a

homomorphism of Weil algebras.
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1.5. The coincidence of A-covelocities and jets to the classical ones
Recall the natural bundle Tr∗M of r-th order covelocities from [9] and [29] defined by Tr∗

x M = Jr
x(M,R)0 on

objects and by Tr∗
x 1( jrx f ) = jrx f◦( jrx1)−1 on morphisms. It is proved that the system of spaces Tr∗M =

⋃
x∈M Tr∗

x M
with their Tr∗-maps determines the natural bundle PrM[Nr

m, ℓ] where Nr
m denotes the nilpotent ideal ofDr

m
and ℓ : Gr

m ×Nr
m → Nr

m denotes the left action on the standard fiber defined by ℓ( jr01, jr0φ) = jr0(φ ◦ 1−1).
In [29] the spaces TA∗M of A-covelocities consisting of all TA

x f : TA
x M → TA

0R ≃ NA are investigated for
a general Weil algebra A and its nilpotent ideal NA. The so-called TA∗-maps are defined by TA∗

x 1(TA
x f ) =

TA
x f ◦ (TA

x 1)−1. It is proved that if height A = r then TA∗M and Tr∗M coincide. For any M ∈ Obj(M fm)
and N ∈ Obj(M f ) there is defined the space JA(M,N) = {TA

x f ; f : M → N} and for a local diffeomorphism
1 : M1 → M2 and a smooth map h : N1 → N2 there is the map JA(1, h) : JA(M1,N1) → JA(M2,N2) defined
by JA(1, h)(TA

x f ) = TA
f (x)h ◦ TA

x f ◦ (TA
x 1)−1. It is proved that the spaces JA(M,N) and Jr(M,N) coincide as well.

Moreover, for m ≤ k = width A, every TA
x f : TA

x M→ TA
0R is determined by its max{m, k} values over linearly

independent 1-jets of elements from TA
x M.

1.6. Homogeneous spaces
For a Lie group G and its closed subgroup K, the homogeneous space G/K is defined as the space of

right cosets 1K for 1 ∈ G with the quotient topology induced by the factor projection π : G → G/K. Such
topology coincides with the unique smooth manifold topology on G/K with respect to whichπ : G→ G/K is
a surjective submersion (see [9], 5.11 and 10.5 and also [26], Chapter 1 and 4). We recall the free right action
r of K on G which preserves fibers of π and is transitive over them. It is obtained from the multiplication in
G and determines the principal bundle structure (G, π,G/K,K) on π.

The right cosets 1K correspond bijectively to the left cosets K1 since 11K = 12K if and only if K1−1
1 = K1−1

2 .
There is the group antiisomorphism −1 : G→ G giving the identification of G/K with K\G by the assignment
1K 7→ K1−1. This particularly yields the transformation of the principal bundle π : G→ G/K to the principal
bundle πℓ : G → K\G, exchanging the right action r of K on G for the left action ℓ. If possible we omit the
index in πℓ and write simply π.

1.7. Some kinds of manifolds, submanifolds, partitions, foliations and group notations
Jets, jet functors and product preserving bundle functors are also studied in context with foliations, e.g.

in [16], [10], [27]. Both kinds of objects are also studied and applied in theoretical physics, e.g. in [24], [4]
and in Riemannian geometry, e.g. in [22]. Investigating foliations requires to distinguish between different
kinds of submanifolds. An n-dimensional submanifold N in the sense of [9], which is an equivalent of a
regular submanifold N in [26] is defined in terms of coordinates on M adapted to N, i.e. by pre-images of
Rn
× {0}m−n with respect to local maps on M. Nevertheless, the formulation of Frobenious theorem requires

the concept of the initial submanifold from [9], Def. 2.14, which is an equivalent of a submanifold in [26],
Chapter 1, Def. 2.2. In the present paper, we will prefer the terminology from [9].

A (regular) foliation on M of codimension m − n is usually defined in terms of a distribution D on M
(without singularities) determining the decomposition of M to maximal integrable submanifolds, the so-
called leaves. The leaves are n-dimensional initial submanifolds in M. By the classical Frobenius theorem,
the existence of a foliation determined byD is equivalent to the involutiveness ofD, see [26], Theorem 4.1.
A foliation can be equivalently defined by an (m − n)-codimensional foliated atlas on M, see [26], Chapter
2, par. 6. Its leaves are again initial submanifolds. In any case they connected.

If a foliation consists of submanifolds, the situation is more simple, particularly for fiber bundles. In
such case we can speak about vertical foliations (see [26]), despite the non-connectivity of fibers. In our
investigations, fibres mostly consist of at most two connected components. Nevertheless, we use the
concept of smooth partition rather than that of foliation in order to avoid a possible misunderstanding.

Notation 1.1. By Diffr,M
x we denote the group inv Jr

x(M,M)x and by Diffr,M
x,0 the group Diffr,M×Rk−m

(x,0) , both with the jet

composition multiplication. By (Diffr,M
k,m)(x,0) we denote the subgroup of Diffr,M

(x,0) of elements projectable to Diffr,M
x . For

jr0αx ∈ inv Jr
0(Rm,M)x denote by jr0ᾱx the element ( jr0αx, jr0 idRk−m ) ∈ inv Jr

0(Rk,M × Rk−m)(x,0). For M = Rm and
x = 0 the groups Diffr,M

x and (Diffr,M
k,m)(x,0) coincide with the jet groups Gr

m and Gr
k,m.
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2. Higher-order Grassmannians

We continue the motivation part started in Introduction. If we do not accent the orthogonality in our
definition of Gr(k,m), we can define its support as the space of orbits of the space reg J1

0(Rk,Rm)0 of bases of
m-dimensional linear subspaces of Rk with respect to the linear group G1

m acting from the left, recalling the
obvious identification of linear morphisms with 1-jets of zero preserving maps. From this point of view,
the i-th basis vector of Rk formed by the i-th component of j10φ ∈ reg J1

0(Rk,Rm)0 is of the form (ai
1, . . . , a

i
k).

Prolonging the definition to higher orders, we define the support of Gr(r, k,m) as the space of orbits on
reg Jr

0(Rk,Rm)0 with respect to Gr
m acting from the left. The topology is introduced by means of that of

the homogeneous space Gr
k,m\G

r
k, from which it is transmitted to Gr(r, k,m) by means of the reduction of

the principal bundle Gr
k → Gr

k,m\G
r
k to the total space reg Jr

0(Rk,Rm)0 × { jr0 idRk−m } and the structure group
Gr

m ≃ Gr
m × { jr0 idRk−m }. Nevertheless, we can insist on the orthonormality when defining the geometrical

structure over Gr(r, k,m), at least in the first order. Before introducing the corresponding inner product we
recall the basic facts concerning frames and frame bundles.

Ther is an concept of the r-th order frame bundle Pr introduced in [9], which forms a natural bundle on
the categoryMfn. For N ∈ Ob(Mfn) we have PrN = inv Jr

0(Rn,N) and for a local diffeomorphism f : N1 → N2
we have the map Pr f : PrN1 → PrN2 defined by jr0φ 7→ jr0( f ◦ φ). The natural equivalences are of the form
t̃ jr01 (see (1.3.3)). Coming back to the first order, let (ai

j) be the matrix coordinate form of elements from

P1
x0
Rk identified with P1

0R
k by the translation map. Then any frame j10η can be considered as a linear map

assigning the vector j10ηi = (a1
i , . . . a

k
i ) to the i-th canonical basis vector of Rk. There is the standard inner

product defined by j10η · j10ζ = η
l
· ζl, which yields ( j10ηi) · ( j10η j) = al

i · a
l
j. Let dim M = m and x ∈ M. We

transmit our deductions to P1
(x,0)(M ×R

k−m), identifying a coordinate system on M mapping x to 0 together
with its prolongation (in the sense of Definition 2.1 below) mapping (x, 0) ∈ M × Rk−m to 0 ∈ Rk with the
local isometry between M andRm defined near x, in case of taking its prolonged form near (x, 0) ∈M×Rk−m.

Let V(k,M)x be the space of the so-called pull-back m-frames j10φ̃ ∈ P1
(x,0)(M ×R

k−m) (see Definition 2.1).
Their meaning is visible from their coordinates ai

j and the assignments

(2.1) dyi
M 7→ ai

jdx j, i = 1, . . . ,m, j = 1, . . . k.

V(k,M)x can be considered as the so-called Stiefel space at x. The Grassmannian space Gr(k,M)x is from
V(k,M)x obtained by the factorization to m-dimensional linear subspaces spanned by elements of V(k,M)x.
For M = Rm and x = 0, the values of the assignments (2.1) over dyi

M are of the form (ai
1, . . . , a

i
k) ∈ Rk.

Then the formula for the inner product on vectors from (2.1) reads

(2.2) j10α · j10β = αl · βl or j10φ
i
· j10φ

j = ai
l · a

j
l ,

the second formula determining the values of the inner product on the images j10φ
i = (ai

1, . . . , a
i
m) and

j10φ
j = (a j

1, . . . , a
j
m) over dyi

Rm and dy j
Rm . We remark that 0 ∈ Rm can be replaced by x0 ∈ Rm, applying the

translation map. Any coordinate system transforming x to 0 can be identified with a local isometry, which
enables to transmit locally the inner product (2.2) to M. Let f : M→ N, 1 : N→ P be local diffeomorphisms.
Then dup

P 7→ 1
p
l dzl

N, dzl
N 7→ f l

i dyi
M and (2.1) implies dup

7→ 1
p
l f l

i ai
jdx j. This corresponds to the composition of

1-jets. We remark that that the Riemannian geometry concepts like isometries, geodesic maps and related
concepts are in details studied in e.g.. [18], [31], [19], [22] etc.

We close the motivation part by giving the intention of generalizing the concepts discussed above from
linear spaces, subspaces, linear bases and maps to Weil algebras, subalgebras, algebraic bases and Weil
functor morphisms.

We give the technical concept of the prolongation map mentioned above. Let prk
1,M and prk

2,M be the
canonical product projections M×Rk−m

→M and M×Rk−m
→ Rk−m. If M = Rm we simplify their notations

to prk
1,m and prk

2,m.
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Definition 2.1. An invertible element jr0φ̃x ∈ reg Jr
0(Rk

0,M × R
k−m)(x,0) is said to be a prolongation of jr0φx ∈

reg Jr
0(Rk,M)x with respect to A if

(2.3) Tr
(x,0) prk

1,M( jr0φ̃x)= jr0φx and jAφ̃x,1= jAφ̃x,2 whenever jAφx,1= jAφx,2.

A local section˜ : reg Jr
0(Rk,M)x → inv Jr

0(Rk,M × Rk−m)(x,0) of Tr
0 prk

1,M is said to be a prolongation map at x
with respect to A if each jr0φx ∈ Dom(̃ ) is assigned some of its prolongations and the map jr0φx 7→ Tr

(x,0) prk
2,M ◦ jr0φ̃x

is constant on every D jr0φx ∈ Vx,M.

We define some equivalences and partitions on fibers of reg Tr
kM and reg TAM.

Definition 2.2. (a) We define the equivalence ρx,M on reg Jr
0(Rk,M)x by

(2.4) ( jr0φx, jr0ψx) ∈ ρx,M if and only if jr0ψx = jrxh ◦ jr0φx

for some jrxh ∈ Diffr,M
x . Further, we define the partition Vx,M on reg Jr

0(Rk,M)x formed by decomposition classes of
ρx,M.

(b) We define the equivalence (ρA)x,M on reg TA
x M by

( jAφx, jAψx) ∈ (ρA)x,M if and only if there are jr0φx,0 ∈ jAφx and

(2.5) jr0ψx,0 ∈ jAψx such that ( jr0φx,0, jr0ψx,0) ∈ ρx,M.

(c) We define the equivalence ρA
x,M on reg TA

x M by ( jAφx, jAψx) ∈ ρA
x,M if and only if there are

(2.6) jr0φx,0 ∈ jAφx and jr0ψx,0 ∈ jAψx such that jrxh ◦ jr0φx,0 ◦ jr01 = jr0ψx,0

for some jr01 ∈ GA and jrxh ∈ Diffr,M
x .

(d) For normal A and M = Rm, we define the relations of equivalence (ρOrt)x,M, (ρA,Ort)x,M and (ρA,Ort)x,M by
adding the claim of the first-order orthonormality to the components of all elements acting in (2.4), (2.5) and (2.6) with
respect to the inner product (2.2). For general M and x, we claim the first-order orthonormality for the components
of all elements acting in (2.4), (2.5) and (2.6) with respect to the inner product introduced by local coordinates, in the
first order acting as local isometries transforming 0 to x. All jrxh ∈ Diffr,M

x above are claimed to cover x-preserving
local isometries on M in the first order.

We must check that the relations (ρA)x,M and ρA
x,M are equivalences, which is a non-trivial step. Then the

relations from (d) are obviously equivalences as well.

Lemma 2.3. The definition condition (2.5) can be equivalently replaced by the claim of the existence of invertible
TA

x h : TA
x M → TA

x M satisfying jAψx = TA
x h( jAφx). The definition condition (2.6) can be equivalently replaced by

the claim of the existence of invertible TA
x h : TA

x M → TA
x M satisfying jAψx = TA

x h ◦ t̃ jr01( jAφx) for some jr01 ∈ GA.
Finally, (ρA)x,M and ρA

x,M are equivalences.

Proof: It is easy to check that (2.5) and (2.6) imply the conditions formulated in the assertion. To prove the
converse recall the rigidity result from Subsection 1.5. It enables to replace TA

x h by jrxh ∈ Diffr,M
x , without

loss of generality. Setting ( jr0φx,0, jr0ψx,0) in (2.5) to ( jr0φx,0, jrxh ◦ jr0φx,0) for arbitrary jr0φx,0 ∈ jAφx verifies the
claim corresponding to (b). As for (c), TA

x h can be due to the rigidity result replaced by jrxh ∈ Diffr,M
x again.

We check that ( jr0φx,0, jr0ψx,0) satisfies (2.6) if we set it to ( jr0φx,0, jrxh◦ t̃ jr01( jr0φx,0)) for any jr0φx,0 ∈ jAφx. Indeed,
for any jr010 ∈ GA we have p̃A,Rm ◦ jrxh ◦ jr0φx,0 ◦ jr010 ◦ jr01

−1 = p̃A,Rm ◦ jrxh ◦ jr0φx,0 ◦ jr01
−1
◦ ( jr01 ◦ jr010 ◦ jr01

−1) =
t̃ jr01◦ jr01

−1
0 ◦ jr01

−1 ( jAψx), applying normality of GA in GA. Now it is obvious that (ρA)x,M and ρA
x,M are equivalences

on reg TA
x M. □
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Since all relations in Definition 2.2 are equivalences we can define the partitions (VA)x,M and (VA)x,M on
reg TA

x M corresponding to (ρA)x,M and ρA
x,M. For normal A we analogously define the partitions (VOrt)x,M,

(VA,Ort)x,M and (VA
Ort)x,M corresponding to the equivalences from Definition 2.2(d). For M = Rm and x = 0

we simplify the notation by omitting indices. We write simply ρ, ρA etc.

Proposition 2.4. There is the unique structure of a smooth manifold on the space of left cosets Gr
k,m\G

r
k for which

the projection p̂ : Gr
k → Gr

k,m\G
r
k is a surjective submersion. Moreover, p̂ determines the principal bundle with the

structure group Gr
k,m and its free left action transitive on fibers.

For any x∈M, the projection p̂x,M : inv Jr
0(Rk,M ×Rk−m)(x,0) → (Diffr,M

k,m)(x,0)\ \ inv Jr
0(Rk,M ×Rk−m)(x,0) defined

for every jr0αx ∈ Pr
xM by some of the formulas

(2.7) jr0ηx 7→ jr0ᾱx ◦ [( jr0ᾱx)−1
◦ jr0ηx]ρ or jr0ᾱx ◦ jr01 7→ jr0ᾱx ◦ [ jr01]ρ,

(see Notation 1.1) determines the unique smooth structure on (Diffr,M
k,m)(x,0)\ invJr

0(Rk,M ×Rk−m)(x,0) for which p̂x,M

is a surjective submersion. Moreover, p̂x,M is principal bundle with the structure group (Diffr,M
k,m)(x,0).

Proof: Gr
k,m is a closed subgroup of Gr

k and the elementary facts of the homogeneous space theory
yield the homogeneous space structure on Gr

k,m\G
r
k, the principal bundle structure on p̂ and the surjective

submersion of p̂.
For a manifold M, select jr0αx ∈ Pr

xM. Then jr01x = jr0ᾱx ◦ jr01 and jr0hx = jr0ᾱx ◦ jr0h ∈ inv Jr
0(Rk,M×Rk−m)(x,0)

share the same left coset with respect to (Diffr,M
k,m)(x,0) if and only if jr0hx ◦ ( jr(0,01x)−1

∈ (Diffr,M
k,m)(x,0) and

jr0h ◦ jr(0,0)1
−1
∈ Gr

k,m. For another jr0βx ∈ Pr
xM we have ( jr0β̄x)−1

◦ jr0ᾱx ∈ Gr
k,m and jr0β̄x ◦ ( jr0ᾱx)−1

∈ (Diffr,M
k,m)(x,0),

which implies the independence of (2.7) and p̂x,M on the choice of a frame. Clearly, (Diffr,M
k,m)(x,0) = jr0ᾱx ◦

Gr
k,m ◦ ( jr0ᾱx)−1 = conj( jr0ᾱx)(Gr

k).
The smooth structure on p̂x,M is transmitted from Gr

k,m\G
r
k by means of frames. Indeed, for any jr0αx∈Pr

xM,
jr0h∈Gr

k,m and ( jr0φ1, jr0φ2)= (Tr
0 prk

1,m( jr0φ), Tr
0 prk

2,m( jr0φ)) ∈ inv Jr
0(Rk,Rk)0 an element jr0ᾱx ◦ jr0h ◦ ( jr0φ1, jr0φ2) is

obtained as ( jr0ᾱx ◦ jr0h ◦ ( jr0ᾱx)−1) ◦ jr0ᾱx ◦ ( jr0φ1, jr0φ2). □

Corollary 2.5. For any x ∈M, there is a smooth manifold structure onVx,M = Diffr
x,M \ reg Jr

0(Rk,M)x. The factor
projection p̂#

x,M : reg Jr
0(Rk,M)x →Vx,M is obtained by the identification ofVx,M with (Diffr,M

k,m)(x,0)\ inv Jr
0(Rk,M ×

Rk−m)(x,0) and the identification of p̂#
x,M with p̂x,M as follows

(2.8) p̂#
x,M = Tr

(x,0) prk
1,m ◦p̂x,M ◦˜ and p̂x,M =˜ ◦ p̂#

x,M ◦ Tr
(x,0) prk

1,M

where ˜ is an arbitrary, locally defined prolongation map with respect toDr
k.

Proof: Clearly, jr0ψ2 = jr(x,0)1 ◦ jr0ψ1 implies jr(x,0) prk
1,M ◦ jr0ψ2 = jr(x,0)1 ◦ jr(x,0) prk

1,M ◦ jr0ψ1 where jr0ψ1, jr0ψ2 ∈

reg Jr
0(Rk,M ×Rk−m)(x,0) and jr(x,0)1 ∈ (Diffr,M

k,m)(x,0), by jr(x,0)1 ∈ Diffr
x,M denoting the subordinate element from

Gr
m. Conversely, jr0φ2 = jrxh ◦ jr0φ1 for jr0φ1, jr0φ2 ∈ Jr

0(Rk,M)x and jrxh ∈ Diffr,M
x implies jr0φ̃2 = jr(x,0)h̄ ◦ jr0φ̃1.

This way, (Diffr,M
k,m)(x,0)-classes are transformed to Diffr

x,M-classes and vice versa. Thus U ⊆ Vx,M will be open

if and only if Ũ ⊆ (Diffr,M
k,m)(x,0)\ inv Jr

0(Rk,M ×Rk−m)(x,0) is open. Since Tr
0 prk

1,m is an open map, the topology
we have just defined coincides with the quotient topology on reg Jr

0(Rk,M)x obtained by p̂#
x,M.

It remains to give a prolongation map ˜ on a neighbourhood of every jr0φ ∈ Jr
0(Rk,Rm)0 with respect to

Dr
k. If there is a universal element jr0θ ∈ Jr

0(Rk,Rk−m)0 satisfying ( jr0φ, jr0θ) ∈ inv Jr
0(Rk,Rk)0 for every jr0φ ∈ U

then the assignment jr0φ 7→ ( jr0φ, jr0θ) determines the required prolongation map. Applying an arbitrary
frame jr0αx with its prolonged form jr0ᾱx (see Notation 1.1) we transmit the prolongation map from an open
subset of reg Jr

0(Rk,Rm)0 to an open subset of reg Jr
0(Rk,M)x. □
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We remark that p̂#
x,M is a surjective submersion, which follows from left formula of (2.8) and the definition

of p̂x,M. Applying the well-known universal property of surjective submersions to p̂#
x,M we observe that ˜

determines a smooth map on p̂#
x,M(U) ⊆ Vx,M whenever U is contained in the domain of .̃

Having the identification of Vx,M with the basis (Diffr,M
k,m)(x,0)\ inv Jr

0(Rk,M × Rk−m)(x,0) of the principal

bundle p̂x,M we can consider the reduction of its structure group to the subgroup Diffr,M
x ×{ jr0 idRk−m } ≃ Diffr,M

x .
By the formula (2.8) of Corollary 2.5 the total space of p̂x,M can be reduced to ˜◦ Tr

(x,0) prk
1,M(Jr

0(Rk,M ×
Rk−m)(x,0)) ≃ reg Jr

0(Rk,M)x, independently on the choice of the prolongation map. Hence we have deduced

Corollary 2.6. p̂# : reg Jr
0(Rk,Rm)0 → V from (2.8) is a principle bundle obtained by the identification of the

reduction of p̂ to the subgroup Gr
m ≃ Gr

m × { jr0 idRk−m } of Gr
k,m and to the subspace ˜◦ (Tr

k)0 prk
1,m(inv Jr

0(Rk,Rk)0)
≃ reg Jr

0(Rk,Rm)0 of its total space inv Jr
0(Rk,Rk)(0,0).

More generally, p̂#
x,M from (2.8) is a principal bundle obtained by the identification of the reduction of p̂x,M to

the subgroup Diffr,M
x ≃ Diffr,M

x ×{ jr0 idRk−m } of (Diffr,M
k,m)(x,0) and to the subspace ˜◦ (Tr

k)(x,0) prk
1,M(inv Jr

0(Rk,M ×
Rk−m)(x,0)) ≃ reg Jr

0(Rk,M)x of its total space inv Jr
0(Rk,M ×Rk−m)(x,0).

Definition 2.7. The basis V of the principal bundle p̂# is said to be the r-th order Grassmannian Gr(r, k,m). The
basisVx,M of the principal bundle p̂#

x,M is said to be the r-th order Grassmann space Gr(r, k,M)x at x ∈M. The space
Gr(r, k,M) with the topology defined in Proposition 2.8 below is said to be the Grassmann manifold over M. Speaking
about Grassmann manifold without specifying M means that M = {0}, 0 ∈ Rm and Grassmann manifold coincides
with Grassmannian Gr(r, k,m). The principal bundle p̂#

x,M or its total space is said to be the geometrical structure over
Gr(r, k,M)x at x. The system p̂#

M =
⋃

x∈M p̂#
x,M is said to be the geometrical structure or Grassmann bundle over the

Grassmann manifold Gr(r, k,M). Speaking about geometrical structure without specifying M means that M = {0},
0 ∈ Rm and the geometrical structure or Grassmann bundle coincides with p̂#.

For r = 1 we write simply Gr(k,m) or Gr(k,M)x instead Gr(1, k,m) and Gr(1, k,M)x. On the other hand we
can writeV1 or (V1)x,M insteadV orVx,M. Further, any prolongation map˜ and (2.8) imply the existence
of a well-defined correspondence between local sections sx,M and s#

x,M of the principal bundles p̂x,M and p̂#
x,M

as follows

(2.9) sx,M = s̃#
x,M ◦ Tr

(x,0) prk
1,M s#

x,M = Tr
(x,0) prk

1,M ◦s ◦ .̃

This way, (Diffr,M
k,m)(x,0)-classes are transformed to Diffr

x,M-classes and vice versa.
For any m-dimensional manifold M put Gr(r, k,M) to

⋃
x∈M Gr(r, k,M)x =

⋃
x∈MVx,M and for any local

diffeomorphism f : M → N define Gr(r, k,m) f : Gr(r, k,M) → Gr(r, k,N) by [ jr0φx]ρx,M 7→ [ jrx f ◦ jr0φx]ρ f (x),N .
Finally, we define the projection πGr,M : Gr(r, k,M) → M assigning x to D ∈ Gr(r, k,M) in case of D ∈ Vx,M.
Hence we obtain a bundle functor as follows

Proposition 2.8. The system of Gr(r, k,M) with maps Gr(r, k,m) f and projections πGr,M forms a bundle functor
on Mfm identified with PrM[Gr(r, k,m), ℓGr] where ℓGr is the trivial left action of Gr

m on Gr(r, k,m) defined by
ℓGr( jr0h,D jr0φ) = D jr0h◦ jr0φ = D jr0φ.

There is a natural transformation transM : reg Tr
kM→ Gr(r, k,M) defined by transM( jr0φx) = [ jr0φx]ρx,M = D jr0φx .

Finally, there is a bijective correspondence between natural equivalences over bundle functors Gr(r, k, ·) and
Pr[Gr(r, k,m), ℓGr] assigning {idPrM, [ t̃ ]Gr(r,k,m)} to [ t̃ ]Gr(r,k,M) where [ t̃ ]Gr(r,k,M) is obtained by the factorization of
t̃ jr01,M (see (1.3.3)) acting on Tr

kM to Gr(r, k,M).

Proof: The first assertion follows from the theory of bundle functors, namely from [9], 14.5 and 14.6. Indeed,
there is a bijective correspondence ξM identifying the spaces Gr(r, k,M) with objects PrM[Gr(r, k,m), ℓGr] and
the maps Gr(r, k,m) f with morphisms {Pr f , idGr(r,k,m)}. It is defined by the mutually inverse assignments
D jr0φx 7→ { jr0αx,D( jr0αx)−1◦ jr0φx } and { jr0αx,D jr0φ} 7→ D jr0αx◦ jr0φ. It is easy to check that ξM is invertible and commutes
with the maps Gr(r, k,m) f and morphisms {Pr f , idGr(r,k,m)}.
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The second assertion is verified by checking the equivariance of the resriction trans : reg(Tr
k)0Rm

→

Gr(r, k,m) of transRm acting between standard fibers with respect to the obvious left action of Gr
m on

reg(Tr
k)0Rm and ℓGr on Gr(r, k,m).

The last assertion follows from the first and second one. It is also a corollary of Proposition 4.8 below. □

Remark 2.9. (a) The basis Gr(r, k,m) of p̂# can be identified with the space of m-wide subalgebras ofDr
k isomorphic

toDr
m while fibers of p̂# can be considered as spaces of algebraic bases spanning the subalgebra represented by the basis

element. The standard fiber of p̂# can be viewed as the space of algebraic bases ofDr
m.

(b) V(r, k, k−m) = Gr
m\Gr

k considered as the space of (k−m)-frames can be viewed as the higher-order, generalized
Stiefel manifold. The group Gr

m ≃ Gr
m × { jr0 idRk−m } is again considered as a subgroup of Gr

k. The case of the classical
Stiefel manifold V(k, k −m) with the additional claim of orthonormality of frames corresponds to O(m)\O(k).

Let (πr
1)−1(reg J1

Ort)0(Rk,Rm)0 be the subspace of reg Jr
0(Rk,Rm)0 consisting of elements with mutually

orthonormal components in the first order (with respect to (2.2)). We simplify its notation to (Jr
Ort)0(Rk,Rm)0.

We analogously consider the subspace (Jr
Ort)0(Rk,M)x = (πr

1)−1(reg J1
Ort)0(Rk,M)x of reg Jr

0(Rk,M)x consisting
of elements with mutually orthonormal components in the first order in a local isometry withRm determined
by a selected coordinate system transforming x to 0. Let Isox(M) denote the group of x-preserving local
isometries on M. We define the principal bundles p̂#

Ort and (p̂#
Ort)x,M as follows

Definition 2.10. p̂#
Ort is defined as the principal bundle obtained from p̂# by the reduction of its total space to

(Jr
Ort)0(Rk,Rm)0 and of its structure group to (πr

1)−1(O(m)). The principal bundle p̂#
Ort or its total space is said to be

the geometrical structure or Grassmann bundle over Gr(r, k,m).
(p̂#
Ort)x,M is defined as the principle bundle obtained from p̂#

x,M by the reduction of its total space to (Jr
Ort)0(Rk,M)x

and its structure group to (πr
1)−1(Iso(x,M)). The principal bundle (p̂#

Ort)x,M or its total space is said to be the
geometrical structure over Gr(r, k,M)x. The system (p̂#

Ort)M =
⋃

x∈M(p̂#
Ort)x,M is said to be the geometrical structure

or Grassmann bundle over the Grassmann manifold Gr(r, k,M). Speaking about Grassmann bundle or geometrical
structure without specifying M means that M = {0}, 0 ∈ Rm and Grassmann bundle coincides with p̂#

Ort.

The claims of the first-order orthonormality can be extended from p̂# and p̂#
x,M to p̂ and p̂x,M and from the

group Isox(M) to Iso(x,0)(M×Rk−m)), obtaining the principal bundles p̂Ort and (p̂Ort)x,M. We conclude by the
identification of Gr(r, k,m) considered as the basis of p̂#

Ort with (πr
1)−1(O(m)) × (πr

1)−1(O(k − m))\(πr
1)−1(O(k))

(see Corollary 3.5).

3. The construction of an atlas on the higher-order Grassmannian

3.1. A finite system of local sections on p̂#
Ort of the first order

We construct a local section of p̂#
Ort defined on a dense and open subset ofV = Gr(r, k,m). We give a finite

set of local sections of this kind and an atlas onV = Gr(r, k,m) determined by them. Despite Definition 2.7
we suppress the notation Gr(r, k,m) and write mostly V until Section 4 where the bundle functor GrA of
Weil Grassmannian is introduced. In the first-order case corresponding to Gr(k,m) we write alsoV1.

We need some other notations as follows. By deti1...im we denote the value of the m-th order determinant
of the matrix of the orthogonal projection of k-dimensional vectors j10φ

1, . . . , j10φ
m
∈ reg J1

0(Rk,Rm)0 to the
linear subspace L( j10 pri1 , . . . , j10 prim ) of Rk spanned by the selected canonical basis vectors. Let Vi1...,im be
the domain of regularity of deti1...im . Since deti1...im takes the zero value on everyV-class either nowhere or
everywhere we put Ui1...,im to p̂#(Vi1...im ). Clearly, any Ui1...im is dense inV1. Extending our notations to higher
order cases we define

(3.1.1) Vi1...im = {D ∈ V;πr
1(D) ∈ Ui1...im }, in particular

◦

V=V1...m

We essentially use the convention based on Corollary 2.5, which identifies the basisV of p̂# or p̂#
Ort with the

basis of p̂ or p̂Ort. Analogously we do withVx,M, p̂#
x,M, (p̂#

Ort)x,M and p̂x,M.
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Proposition 3.1. For r = 1, there is a couple of local sections s and s# of the principal bundles p̂ and p̂#
Ort connected

by the correspondence (2.9) defined on U1...m, which is dense and open inV1. The range of s contains j10 idRk .
More generally, there are two finite systems of local sections si1...im of p̂Ort and s#

i1...im
of p̂#

Ort connected by (2.9)
containing s = s1...m and s#

1...m = s# with dense and open domains Ui1...im coveringV1. Both of the systems (Ui1...im , si1...im )
and (Ui1...im , s#

i1...im
) corresponding to m-elementary subsets of {1, . . . , k} determine a finite atlas onV1 = Gr(k,m).

Proof: Consider the inner product (2.2) on inv J1
0(Rk,Rk)0. Clearly, any element ofV1 can be considered

as the space of linearly independent sequences of vectors of lenght m spanning the same m-dimensional
vector subspace of Rk. Consider a system of local sections (σα)α∈I : Uα → G1

k of p̂ with (Uα)α∈I covering
G1

k,m\G
1
k . Without loss of generality suppose that Im(σα) is formed by k-tuples of orthonormal vectors. It is

possible due to the Gramm-Schmidt orthogonalization process (GSOP), which acts smoothly until the zero
vector appears as its output. Applying the compactness argument we can assume the finitness of the system
(σα)α∈I. Nevertheless, local sections σα are only auxiliary objects used for the proof of the smoothness of the
map s = s1...m to be constructed.

As for the value of s1...m, its first m components are defined by the assignment of the orthonormalized
sequence obtained by GSOP from the orthogonal projections of vectors j10 pr1, . . . , j10 prm to the current
V-class. The claim of regularity corresponding to non-zero outputs of GSOP yields the limits for the
domain of s#

1...m, which coincides to U1...m defined before (3.1.1). The k −m additional components of j10φ̃ in
Im s1...m can be obtained as in Corollary 2.5 in case of p̂ while in case of p̂Ort we continue the procedure with
j10 prm+1, . . . , j10 prk.

The smoothness of s1...m is verified on the intersection of its domain with arbitrary Uα above, if non-
empty. Let F = ( f⃗ αj ) ( j = 1, . . . ,m) be the orthonormalized system of the first m vectors from the value of σα.
Then the coordinate expression of s#

1...m obtained by the standard computations of the orthogonal projection

of a vector to the vector subspace of Rk determined by the vectors f⃗ α1 , . . . , f⃗ αm reads

(3.1.2) j10φ = (Σm
j=1

e⃗i · f⃗ αj

|| f⃗ αj ||
2
· f⃗ αj )i=1...m = (Σm

j=1

( f αj )i

|| f⃗ αj ||
2
· f⃗ αj )i=1...m.

For orthonormal F we have j10φ = (Σm
j=1(( f αj )i

· f⃗ αj )i=1...m. This proves the smoothness of a local section of p̂
defined by the assignment of the sequence of orthogonal projections of the first m-canonical vectors of Rk

to the current class D ∈ V, independently on the choice of σα. Taking into account the smoothness of GSOP
on its domain of regularity completes the verification of the smoothnes of s = s1...m. Clearly, U1...,m contains
p̂#( j10 pr1, . . . , j10 prm) and Im(s1...m) contains j10 idRk , which completes the proof of the first assertion.

Local sections si1...im with domains Ui1...im are constructed analogously. The supports of local maps
(Ui1...im , si1...im ) are dense in V1 and cover it. The system determines a smooth atlas on Gr(k,m) = V1

determined by at most
(

k
m

)
local maps with the transition maps si1...im ◦ s−1

j1... jm
restricted to Im s j1... jm (Ui1...im ∩

U j1... jm ). □

3.2. A finite system of local sections of p̂#
Ort of higher order and an atlas on Gr(r, k,m)

In what follows, we need the subgroup Br
k = Kerπr

1 = (πr
1)−1( j10 idRk ) of Gr

k. By [9], Section 13 it is
endowed with some significant properties like the globality of the exponential map and its identification
with the semi-direct product Br

k ⋉ G1
k , which can be defined by (3.2.5), (3.2.6) and (3.2.7) below.

Let p̄# : (πr
1)−1( j10 prk

1,m) → Br
m\(πr

1)−1( j10 prk
1,m) be the factorization map with values in the space of Br

m-
orbits with respect to the left action defined on (πr

1)−1( j10 prk
1,m) by the jet composition. LetV0 be the subspace

of
◦

V defined by D ∈ V0 if and only if j10 prk
1,m ∈ π

r
1(D).
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Lemma 3.2. (a) The spaceV0 is identified with Br
m\(πr

1)−1( j10 prk
1,m) equipped with the quotient topology of that on

(πr
1)−1( j10 prk

1,m) by p̄#. It is the basis of the principal bundle p̄# obtained by the reduction of the corestriction of p̂#

to V0 to (πr
1)−1( j10 prk

1,m) on the level of the total space and to Br
m on the level of the structure group. Analogously,

p̄ : Br
k → Br

k,m\B
r
k ≃ V0 is obtained by the reduction of the corestriction of p̂ toV0 to (πr

1)−1( j10 idRk ) = kerπr
1 on the

level of the total space and to Br
k,m on the level of the structure group. The maps p̄# and p̄ are related by (2.8).

(b) There is a couple of global sections s̄# and s̄ of the principal bundles p̄# and p̄, related by (2.9). Im s̄# is a
submanifold of (πr

1)−1( j10 prk
1,m) and Im s̄ a submanifold of Br

k.

Proof: (a) Clearly, jr0φ and jr0ψ ∈ (πr
1)−1( j10 prk

1,m) share the same element ofV0 if and only if they share the
same element of Br

m\(πr
1)−1( j10 prk

1,m). Since j10 prk
1,m ∈ π

r
1(D) for any D ∈ V0 by definition ofV0, we have the

bijection betweenV0 and Br
m\(πr

1)−1( j10 prk
1,m).

From the topological point of view U ⊆ V0 is open if and only if so is (p̂#)−1(U) in (p̂#)−1(V0). Any
P = (p̂#)−1(U) of this kind contains only those elements jr0φ ∈ reg Jr

0(Rk,Rm)0 which satisfy φi
j = 0 whenever

j > m. This follows from the definition ofV0 and the jet composition formula. On the other handU ⊆ V0 is
open with respect to the quotient topology on Br

m\(πr
1)−1( j10 prk

1,m) if and only if (p̄#)−1(U) is open in (p̄#)−1(V0).
This happens if and only if (p̄#)−1(U) is of the form P ∩ P0 for some P above and P0 = (πr

1)−1( j10 prk
1,m). The

required identification of topologies onV0 follows from the fact that any element of P can be transformed
to P ∩ P0 by the application of a suitable jr0h ∈ Gr

m from the left.
The identification of topologies on V0 introduced by means of p̂# and p̄# we have just proved implies

directly the assertion concerning the reduction of p̂# to p̄#. As for p̄ and p̂ we proceed quite analogously,
applying (2.8) and the convention onV-classes presented before Proposition 3.1.

(b) It follows from the jet composition formula that for any jr0φ ∈ (πr
1)−1( j10 prk

1,m) there is jr0φD sharing
the same V0-class such that pm

1...m( jr0φD) = pm
1...m( jr0 prk

1,m) ≃ jr0 idRm (for the notation see (1.4.1)). The jet
composition formula further implies that pm

1...m( jr0φD) ≃ jr0 idRm is stabilized by jr0h ∈ Br
m acting from the left

by composition if and only if jr0h = jr0 idRm . We obtain the assignment of jr0φD to jr0φ as follows

(3.2.1) jr0φ 7→ (pm
1...m( jr0φ))−1( jr0φ) = jr0φD.

On the other hand, let jr0ψD ∈ D jr0φ be obtained from jr0ψ ∈ D jr0φ by (3.2.1). Clearly, pm
1...m( jr0ψD) ≃ jr0 idRm .

Since jr0φD and jr0ψD share the same V0-class there is jr0k ∈ Br
m satisfying jr0k ◦ jr0φD = jr0ψD. Clearly, jr0k

coincides to jr0 idRm and consequently, jr0φD = jr0ψD. In other words, the elements jr0φD from (3.2.1) act as
invariants ofV0-classes. In coordinates, the sets (xi

α) indexed by all multiindices α containing at least one
q > m correspond bijectively to elements ofV0. We conclude by defining s̄# in the form of the assignment
D jr0φ 7→ jr0φD. The section s̄ is obtained from s̄# by (2.9). The last assertion regarding the submanifold
structure follows from the coordinate expression of (3.2.1) and the globality of s̄. □

For s < r and the jet projection πr
s a local section η# of p̂# is said to be πr

s-projectable if and only if

(3.2.2) πr
s ◦ η

#(D jr0φ) = πr
s ◦ η

#(D jr0ψ) whenever πr
s(D jr0φ) = πr

s(D jr0ψ).

In this case we have the projection (πr
s)∗η# assigning correctly πr

s ◦ η
#(D) to πr

s(D). Analogously we define
the πr

s-projectability of the section η of p̂ (see (2.8) and (2.9)).

Proposition 3.3. There is a couple of πr
1-projectable smooth local sections ŝ and ŝ# of the principal bundles p̂Ort

and p̂#
Ort connected by the correspondence (2.9) defined on

◦

V (see (3.1.1)), which is a dense and open subset of V.
Moreover, ŝ# and ŝ contain jr0 prk

1,m and jr0 idRk in their ranges.
Further, there is a finite system of couples of πr

1-projectable local sections ŝ#
i1...im

of p̂#
Ort and ŝi1...im of p̂Ort connected

by (2.9) containing ŝ# and ŝ with domains formed by open and dense subsets ofV. Finally, there is finite atlas onV

determined by the local maps (
◦

Vi1...im , ŝ#
i1...im

).
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Proof: By (3.1.1)
◦

V is dense and open inV. Let s = s1...m and U1...m be from Proposition 3.1. Set s1 = (πr
1)∗ŝ to

s and s#
1 = (πr

1)∗ŝ# to s#. Applying the convention onV-classes introduced between (3.1.1) and Proposition
3.1 consider s1 as a map defined on G1

k,m\G
1
k with values on G1

k . Let ζs1 : Gr
k → Gr

k ≃ Aut(Dr
k) be the map

defined by

(3.2.3) ζs1 ( jr01) = tik
Dr

k
◦s1◦πr

1◦p̂( jr01)

For any D ∈ V, ζs1 is constant on [πr
1(D)]ρ1 by definition. The symbols [ ] and [ ]ρ1 indicateV-classes and

V1-classes (see the very beginning of Subsection 3.1).
Let s̄ : Br

k,m\B
r
k → Br

k be the global section of p̄ from Lemma 3.2. We assemble the local section ŝ by means
of the following formula

(3.2.4) ŝ([ jr01]) = (s̄ ◦ p̄)(ζs1 ( jr01)( jr01)) ◦ ikDr
k
◦ s1([ j101]ρ1 )

The domain of ŝ obviously coincides to (πr
1)−1(U1...m) =

◦

V defined in (3.1.1).
Analogously to ŝ acting as ŝ1...m we construct the local sections ŝi1...im projectable to si1...im from Proposition

3.1, by which we replace s1 in (3.2.4). Their domains are (πr
1)−1(Ui1...im ), obviously dense and open inV and

coveringV. The transition maps of the atlas are the restrictions of s#
j1... jm
◦(s#

i1...im
)−1 to Im s#

i1...im
(Vi1...im∩V j1... jm ).

□.

Proposition 3.4. The local section ŝ can be considered in the form of s̄ ⋉ s1 : p̄(Br
k) × p̂(G1

k) → Br
k ⋉ G1

k where s̄ is
from Lemma 3.2 and s1 = (πr

1)∗ŝ : G1
k,m\G

1
k → G1

k is the map defined before (3.2.3).

Proof: By [9], Section 13, Gr
k is identified with Br

k ⋉ G1
k . In what follows, we apply this identification in the

form compatible to 5.16 of this book. We further observe that the map ik
Dr

k
defined in (1.4.2) is a Lie group

homomorphism G1
k → Gr

k. Then the semidirect product Br
k ⋉ G1

k can be considered with respect to the left
action of G1

k on Br
k defined by

(3.2.5) ( j10h, jr01) 7→ ikDr
k
( j10h) · jr01 · (i

k
Dr

k
( j10h))−1,

which corresponds to the exact sequence of Lie group homomorphisms

(3.2.6) { jr0 idRk } → Br
k →

i Gr
k ⇆

ik
Dr

k
πr

1
G1

k → { j
r
0 idRk }

with the splitting ik
Dr

k
and the insertion i. Then the identification Gr

k ≃ Br
k ⋉ G1

k is given by the mutually
converse assignments

(3.2.7) jr01 7→ ( jr01 · (i
k
Dr

k
( j101))

−1, j101) and ( jr0k, j10h) 7→ jr0k · ikDr
k
( j10h).

Select jr01 ∈ Gr
k, jr01 ≃ ( jr01 ◦ (ik

Dr
k
( j101))

−1, j101). Then (3.2.4) can be expressed by

(3.2.8) D jr01 7→ (s̄ ◦ p̄( jr01 ◦ (ikDr
k
◦ s1(D j101

))−1), s1(D j101
)).

We conclude by checking the correctness of (3.2.8), which is easy. □
Let V(r, k,m) = (Jr

Ort)0(Rk,Rm)0 be the space of all m-frames on Rk orthonormal in the first order. Then
we have

Corollary 3.5. Gr(r, k,m) is identified with (πr
1)−1(O(m))×(πr

1)−1(O(k−m))\(πr
1)−1(O(k)). Its geometrical structure

reg Jr
0(Rk,Rm)0 is identified with the Stiefel manifold V(r, k,m) = (πr

1)−1(O(k−m))\(πr
1)−1(O(k)). Moreover, there is

a principal bundleπV,G : V(r, k,m)→ Gr(r, k,m) with the structure group (πr
1)−1(O(m)) defined byπV,G( jr0φ) = D jr0φ.
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Proof: The first assertion is a direct corollary of Proposition 3.3 if we identify Gr(r, k,m) and its geometrical
structure with p̂ and put the first-order additional (k − m) components of its geometrical structure to the
orthonormalized form. This can be achieved by the Gramm-Schmidt orthogonalization process (see the
proof of Proposition 3.1) followed by the application of the map ik−m

Dr
k

to the first-order additional components

obtained by GSOP. The second assertion follows from the definition of V(r, k,m) in the form of (Jr
Ort)0(Rk,Rm)0

and (2.8). The third assertion follows from the free left action of (πr
1)−1(O(m)) considered as a subgroup of

O(k) defined by the jet composition , which is transitive on fibers of πV,G. □

Remark 3.6. In a wide class of problems on geometric objects like tensors, velocities, invariants, operators
etc. the techniques of annihilation of some components of the studied objects with a possible selection
of the coordinate system are often applied. Such methods can particularly lead to the decompositions
of such objects to the compoments with properties of principal meaning. As an interesting example we
give the paper [25] where the application of such methods was used for deducing a remarkable result
of decomposing the Riemann, Ricci, Weyl, Einstein and deformation tensor together with obtaining the
new criteria for Einstein spaces, spaces of constant curvature and conformal flat spaces. Coming back to
our problems we remark that one of such decomposition methods has been applied to the regular r-th
order velocities in order to construct the local sections in Lemma 3.2, Proposition 3.3 and Proposition
3.4. As a result we obtain that any r-th order Rm-valued regular velocity can be decomposed to the
element representing the Grassmannian Gr(r, k,m) and its location in the fiber of the geometrical structure
represented by fiber coordinates.

Remark 3.7. Having s̄# from Lemma 3.2 we can also define ŝ# from Proposition 3.3 as follows. For any jr0φ ∈

(p̂#)−1(
◦

V) define θ1( jr0φ) = im
Dr

k
◦ (πr

1)∗ŝ#
◦ πr

1 ◦ p̂#( jr0φ) where (πr
1)∗ŝ# is from the very beginning of the proof

of Proposition 3.3. Put θ2( jr0φ) = jr0φ − θ1( jr0φ) + im
Dr

k
( jr0 prk

1,m). Finally, we define the map ŝ# by ŝ#(D jr0φ) =

s̄#(Dθ2( jr0φ)) + θ1( jr0φ) − im
Dr

k
( jr0 prk

1,m).

4. Weil Grassmannian

4.1. Definition and construction
We define the support of the Weil Grassmannian as VA from Definition 2.2(b). Before discussing the

topology onVA we introduce the notations

(4.1) (VA)i1...im = [p̃A,Rm ](Vi1...im ), particularly
◦

VA= [p̃A,Rm ](
◦

V)

where [p̃A,Rm ] : V → VA is the map defined by D jr0φ 7→ D jAφ. Recalling the subordinate Weil algebra
projection homomorphism π1,A : A→ A(1) from Subsection 1.4 we observe easily that for normal A we have

A(1) = D1
k and

◦

VA= [π̃1,A]−1(
◦

V1).
The smooth manifold topology on VA cannot be introduced by a direct identification with a homoge-

neous space as for A = Dr
k. Thus we need a finite system of maps defined on V with values in reg TA

0R
m

satisfying the so-called TA-respecting property. As for a possible geometrical structure overVA, we deduce
the principal bundle p̂#

A : reg Jr
0(Rk,Rm)0 →VA with the structure group Gr

m.
For a generic Lie group G and 1, h ∈ G denote h1h−1 by conj(h)(1). We give the so-called transformation

lemma as follows

Lemma 4.1. Let jr0h ∈ Gr
k and t jr0h : A→ B and t̃ jr0h : TA

→ TB be the corresponding Weil algebra isomorphism and
natural equivalence (see (1.3.3)). Then

(4.2) GB = conj( jr0h)(GA) and GB = conj( jr0h)(GA)

Moreover, t̃ jr0h(D) is aVB-class if and only if D is aVA-class. Analogously, t̃ jr0h(D) is aVB-class if and only if D is a

V
A-class. In other words, t̃ jr0h(VA) =Vt jr0h(A) and t̃ jr0h(VA) =Vt jr0h(A).
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Proof: Every jAα ∈ A is stabilized by jr01 ∈ GA if and only if any element of B, which is of the form
jAη ◦ ( jr0h)−1 = t jr0h( jAη) for some jAη is stabilized by conj( jr0h)( jr01). Analogously jAα ∈ A is respected by
jr01 ∈ Gr

k in the sense of t jr01( jAα) = jAβ for some jAβ ∈ A if and only if any element of B, which is of the form
jAη ◦ ( jr0h)−1 = t jr0h( jAη) for some jAη is respected by conj( jr0h)( jr01).

To prove the second assertion, suppose that given jr0ψ, jr0φ ∈ reg Jr
0(Rk,Rm) there are jr0k ∈ Gr

m and
jr01 ∈ GA such that jr0ψ ◦ jr01 = jr0k ◦ jr0φ (see Definition 2.2(b) and Lemma 2.3). Clearly, jr0ψ ◦ ( jr0h)−1

◦

conj( jr0h)( jr01) = jr0k ◦ jr0φ ◦ ( jr0h)−1 and the first formula of (4.2) yields t̃ jr0h(VA) = VB = Vt jr0h(A). The proof of

t̃ jr0h(VA) = VB = V
t jr0h(A) is almost the same with the only difference in jr01 ∈ GA instead jr01 ∈ GA and the

application of the second formula of (4.2) instead the first one. □

Let D ∈ VA andWA ⊆ VA. We define the subsets D̄ and W̄A ofV as follows

(4.3) D̄ = {D0 ∈ V; D0 ⊆ D} and W̄A =
⋃

D∈WA

D̄.

We remark that D̄ is defined even in case height A < r. Let us define the so-called TA-respecting property
as follows.

Definition 4.2. LetWA ⊆ VA. A map σ# : V → reg Jr
0(Rk,Rm)0 is said to satisfy the TA-respecting property on

WA if the following claims are satisfied
(i) for any V-class D0 ∈ W̄A the set Im(σ#) ∩ D0 is one-elementary and so is the set p̃A,Rm ◦ σ#(D̄) for any

VA-class D ∈ WA

(ii) For anyVA-class D ∈ WA and D1 ∈ D̄ it holds [p̃A,Rm ◦ σ#(D1)]ρA = [D1]ρA = D.
For σ# of this kind, the map u# = p̃A,Rm ◦ σ# :V → reg TA

0R
m is said to be of the TA-respecting property onWA

as well.

We remark that if there is a prolongation map with respect to A defined on the whole W̄A we can extend
the concept of the TA-respecting property onWA from σ# and u# to σ and u by (2.8) and (2.9).

Proposition 4.3. (a) Let A be normal Weil algebra, width A = k and p̂#
Ort be from Definition 2.10. Then ŝ# and

the other local sections ŝ#
i1...im

of p̂#
Ort from Proposition 3.3 together with ŝi1...im satisfy the TA-respecting property on

(VA)i1...im = [p̃A,Rm ](Vi1...im ) (see (4.1)).
(b) For any general Weil algebra A satisfying width A = k there is a system of local sections σ#

i1...im
: V →

reg Jr
0(Rk,Rm)0 of p̂# (see (2.8) and Corollary 2.6) and maps u#

i1...im
= p̃A,Rm ◦ σ#

i1...im
: V → reg TA

0R
m satisfying the

TA-respecting property on (VA)i1...im . For normal A, the maps σ#
i1...im

coincide to ŝ#
i1...im

from (a).

Proof: (a) LetV0 ⊆ V be from Lemma 3.2(a). We construct a map θ#
1 : V0 → reg Jr

0(Rk,Rm)0 satisfying the
TA-respecting property on (VA)0 = [p̃A,Rm ](V0) and check its coincidence with the section s̄# from Lemma
3.2(b). For any D ∈ [p̃A,Rm ](V0) and jAφ ∈ D there is D0 ∈ D̄, jr0φ0 ∈ D0 ∩ jAφ and Tr

0h = jr0h ∈ Gr
m such that

Tr
0h( jr0φ0) = jr0φD0 (see (3.2.1)). Clearly, p̃A,Rm ◦Tr

0h( jr0φ0) = TA
0 h( jAφ) = jAφD, jr0φD0 ∈ jAφD. We are searching

for a subset SD of jAφD intersecting any D1 ∈ D̄ at exactly one element. Then the map (θ#
1)|D̄ defined by

D1 7→ D1 ∩ SD satisfies the TA-respecting property on D in case of its smoothness. Nevertheless, it suffices
to put SD = Im s̄#

|D̄ = Im ŝ#
|D̄ for s̄ and ŝ from Proposition 3.3 and its proof. Then (θ#

1)|D̄ coincides to s̄#
|D̄ and

consequently, s̄# = θ#
1.

It follows from (3.2.1) that besides the TA-respecting property satisfied on (VA)0 = [p̃A,Rm ](V0) the map
θ#

1 satisfies the TB-respecting property on (VB)0 = [p̃B,Rm ](V0) for any normal Weil algebra B. This holds
particularly for B = f−1(A) where f : A → C is an isomorphism of Weil algebras obtained by the linear
reparametrization of indeterminates τ1, . . . , τk of A by linear polynomials corresponding to the components
si

1...m of the local section s from Proposition 3.1. Applying (3.2.4) we obtain the TA-respecting property for
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ŝ1...m from Proposition 3.3 on the set of allVA-classes contained in the currentVA(1) -class and consequently

on the whole
◦

V

A
= (VA)1...m.

In the last step consider a permutation ω = (i1, . . . , ik) with the reparametrization given by the assign-
ments τω(i) 7→ τi. Let tω : B→ A and t̃ω : TB

→ TA be the Weil algebra isomorphism and the induced natural
equivalence (see (1.3.1), (1.3.2)). Applying Lemma 4.1 we observe that ŝi1...im coincides to t̃ω ◦ ŝ ◦ t̃−1

ω for ŝ

from (a), now considered as endowed with the TB-respecting property on
◦

VB.
(b) Everything follows from Propostion 6(a) and the existence of an isomorphism of any Weil algebra

with some normal one (see Subsection 1.4) and Lemma 4.1. □

Corollary 4.4. For any A from Proposition 4.3(b) there is a finite system of maps w#
i1...im

: VA → reg TA
0R

m with
domains (VA)i1...im = [p̃A,Rm ](Vi1...im ) determining the atlas ((VA)i1...im ,w#

i1...im
) onVA. Such atlas is compatible with

the topology onVA obtained as the quotient of the topology onV by [p̃A,Rm ]. Moreover, (VA)i1...im are dense inVA.

Proof: Let us define the maps w#
i1...im

: VA → TA
0R

m by setting them to the factorization of u#
i1...im

from
Proposition 4.3 to [p̃A,Rm ](Vi1...im ). Their injectivity follows from the TA-respecting property of u#

i1...im
satisfied on (VA)i1...im . The transition maps over them are of the form w#

i1...im
◦ (w#

j1... jm
)−1, restricted to

Im w#
j1... jm

((VA)i1...im ∩ (VA) j1... jm ). Then the couples ((VA)i1...im ,w#
i1...im

) are local maps of a smooth atlas onVA.
As for the second assertion, U ⊆ VA is open in the quotient topology under discussion if and only if

[p̃A,Rm ]−1(U) is open inV. In such topology, (VA)i1...im are obviously open. Values of the TA-respecting local
sections constructed in Proposition 4.3 can be identified with values of the restrictions of [p̃A,Rm ] toVi1...im ,
which proves our claim. □

Definition 4.5. Let width A = k ≥ m. ThenVA = Gr(A,m) with the manifold structure defined in Corollary 4.4
is said to be the Weil Grassmannian associated to A.

Consider the projection p̂#
A = [p̃A,Rm ]◦p̂# : reg Jr

0(Rk,Rm)0 →VA mapping jr0φ to D jAφ and the factorization
[p̂#

A] : reg TA
0R

m
→VA mapping jAφ to D jAφ. We resume our deductions to Proposition 4.6 as follows.

Proposition 4.6. VA = Gr(A,m) is the basis of the principal bundle p̂#
A : reg Jr

0(Rk,Rm)0 →VA with the structure
group Gr

m identified with {TA
0 h, h ∈ Diff0Rm

} and the free left action ℓ of Gr
m on Jr

0(Rk,Rm)0 defined by the jet
composition, which is transitive on fibers of p̂#

A.

Proof: Let jr0φ ∈ reg Jr
0(Rk,Rm)0 be arbitrary. For D jAφ = p̂#

A( jr0φ) there is a local map ((VA)i1...im ,w#
i1...im

) from
Corollary 4.4 the support of which contains D jAφ. Let σ#

i1...im
be the map from Proposition 4.3. It satisfies the

TA-respecting property on (VA)i1...im . Clearly, there is exactly one jr0h ∈ Gr
m such that jr0φ ∈ Im jr0h ◦ σ#

i1...im
.

Assigning (D jAφ, jr0h) to jr0φ implies that p̂#
A is a surjective submersion. It is easy to see that the left action of

Gr
m on reg Jr

0(Rk,Rm)0 is free and is transitive on fibers. By [9], 10.3 p̂#
A is a principal bundle. □

Remark 4.7. (a) The smooth manifold structure on Gr(A,m) and the smooth manifold structure on anyVA-classes
guaranteed by Definition 2.2 and Lemma 2.3 imply thatVA is a smooth partition of reg TA

0R
m. Moreover, any D ∈

(VA)i1...im determines its subset D+ = {TA
0 h◦w#

i1...im
(D); det( j10h) > 0}. Further, put (VA)+i1...im to {D+; D ∈ (VA)i1...im }.

Since the topologies of both spaces are identified we deduce that (VA)+i1...im is a foliation of
⋃

D∈(VA)i1 ...im
D+ ⊆ reg TA

0R
m.

(b) On the other hand, [p̂#
A] : reg TA

0R
m
→ Gr(A,m) defined after Definition 4.5 does not have to be a bundle with

standard fiber since m-wide subalgebras over individual elements ofVA = Gr(A,m) do not have to be isomorphic.
(c) In case of normal A we can add the claim of the first-order orthonormality on elements of the total space of the

principal bundle p̂#
A. We obtain the principal bundle (p̂#

A)Ort determined by the reduction of the total space of p̂#
A to

(Jr
Ort)0(Rk,Rm)0 and the structure group Gr

m to (πr
1)−1(O(m)).
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4.2. Weil Grassmannian bundle functor
For any m-dimensional manifold M and x ∈M, set Gr(A,M)x to (VA)x,M and define the atlas on (VA)x,M by

transmitting the topology from Gr(A,m) to Gr(A,M)x, applying TA
0 h for some local diffeomorphism mapping

0 ∈ Rk to x. In other words, Ux is open in (VA)x,M if and only if (TA
0 h)−1(Ux) is open in Gr(A,m) for any TA

0 h
above. Further, put Gr(A,M) to

⋃
x∈M Gr(A,M)x and define the mapπGr,M : Gr(A,M)→M by the assignment

of x ∈M to D ∈ Gr(A,M)x. For a local diffeomorphism f : M→ N we define Gr(A, f ) : Gr(A,M)→ Gr(A,N)
by D jAφx 7→ D jA( f◦φx). In what follows, write GrA M instead Gr(A,M) and GrA f instead Gr(A, f ). Let ℓGr,A be
the trivial left action of Gr

m on GrA
0 R

m = Gr(A,m) defined by ℓGr,A( jr0h,D jAφ) = DTA
0 h( jAφ) = D jAφ. Generalizing

Proposition 2.8 we obtain the natural bundle GrA, which enables to speak about Weil Grassmann manifolds.

Proposition 4.8. The system of spaces GrA M with GrA-maps GrA f forms a bundle functor onMfm identified with
PrM[Gr(A,m), ℓGr,A].

Proof: We modify the proof of Proposition 2.8 to our more general situation. Elements of GrA
x M, which

are of the form D jAφx are identified with elements { jr0αx,D(TA
0 αx)−1( jAφx)} for any jr0αx ∈ Pr

xM. Conversely,
any { jr0αx, jAφ} is assigned TA

0 αx( jAφ), applying the coincidence of TA-morphisms and Tr
k-morphisms (see

Subsection 1.5). Both of the assignments are well defined since { jr0αx ◦ jr0h, ℓGr,A( jr0h−1, jAφ}) determines the
same element of Gr(A,M) as { jr0αx, jAφ}, which holds for the converse assignments as well. The assignments
are compatible with the identification of GrA f with {Pr f , idGr(A,m)}, which is easy to check.

Proposition 4.9. Natural equivalences trM : GrA M→ GrB M are in a bijective correspondence with factorizations
[ t̃ ] :VA→VB of natural equivalences t̃ : TA

→ TB induced by Weil algebra isomomorphisms t : A→ B.

Proof: For a Weil algebra isomorphism t : A → B, put trRm to [ t̃ ]= [̃t jr01] for some jr01 ∈ Gr
k (see Subsection

1.3). Since t̃ transformsVA-classes toVB-classes by Lemma 4.1, trRm is well defined and transforms Gr(A,m)
to Gr(B,m). It is easy to see that trRm is a Gr

m-equivariant map between standard fibers Gr(A,m) and Gr(B,m)
of bundle functors GrA, GrB with respect to the left actions ℓGr,A and ℓGr,B. This implies that trM is a natural
equivalence (see [9], Section 14).

To prove the converse, assume a natural equivalence trM : GrA M → GrB M. Since GrA and GrB are
defined onMfm, tr is over the identity by 14.11, [9]. This yields a Gr

m-equivariant map trRm : Gr(A,m) →
Gr(B,m), which can be viewed as a factorization of a Gr

m-equivariant map between Am and Bm. By 42.7 in
[9] it is induced by a Weil algebra isomomorphism t : A→ B. □

5. Some kind of partitions and foliations and a modified geometrical structure over Gr(A,m)

Consider submanifolds (LTA
0 h)i1...im ⊆ reg TA

0R
m of the form TA

0 h(Im(w#
i1...im

)), TA
0 h ∈ Gr

m (see Subsection
1.5) where w#

i1...im
is from Corollary 4.4. Let [p̂#

A] be the map defined after Definition 4.5. In the present
subsection, let ℓ be the factorization of the left action of GA on (reg Tr

k)0Rm induced by (1.3.3) to reg TA
0R

m.
The system Li1...im of submanifolds (LTA

0 h)i1...im is in general not a partition of p̃A,Rm ◦ (p̂#)−1(Vi1...im ) =
[p̂#

A]−1(VA)i1...im . Indeed, TA
0 h1( jAφ) = TA

0 h2( jAφ) for some jAφ ∈ Im(u#
i1...im

) does not imply TA
0 h1( jAψ) =

TA
0 h2( jAψ) for another jAψ ∈ Im(u#

i1...im
) unless jAψ is an element of Orb( jAφ) = t̃GA ( jAφ), the orbit with

respect to ℓ. Hence it is easy to see that any of the systems Li1...im cannot be interpreted as a partition
extending the trivial foliation Li1...im |D jAφ

, D jAφ ∈ VA formed by 1-elementary sets TA
0 h( jAφ).

To extend the system of trivial foliations above to the system of non-trivial partions consider for any
V

A-class D the system FD of submanifolds

(5.1) FD = {(FTA
0 h)D, h ∈ inv Jr

0(Rm,Rm)0} = {TA
0 h(Orb), h ∈ inv Jr

0(Rm,Rm)0},

where Orb is an arbitrary Aut A-orbit of the left action ℓ of Aut A = GA/GA on reg TA
0R

m mentioned above.
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We remark that if D is considered as the disjoint union of its components of connectivity and the
space of all TA

0 h under discussion is considered as the disjoint union of its two components of connectivity
determined by the value of determinant j10h then FD can be viewed as a foliation. Hence we have deduced

Proposition 5.1. For every VA-class D there is a smooth partion FD of the form (5.1), which induces a foliation
determined by det j10h and connected components of D in (5.1). In other words, there is a distribution F assigning a
smooth partition (foliation) FD on D to anyVA-class D.

Nevertheless, any leaf of the partitionVA may intersect a given leaf of FD in more elements. Therefore
it is rather problematic to assign a couple of leaves from Li1...im and FD to an element of reg TA

0R
m. On the

other hand, for any w#
i1...im

and Aut A-orbit Orb specified above define

(5.2) Ei1...im,Orb = Im w#
i1...im ∩ Orb and (ETA

0 h,Orb)i1...im = TA
0 h(Ei1...im,Orb)

where h ∈ inv Jr
0(Rm,Rm)0 is arbitrary and [p̂#

A] has been defined after Definition 4.5. Further, let us define
subsets ofVA as follows

(5.3) Vi1...im,Orb = [p̂#
A](Ei1...im,Orb) = [p̂#

A](Im w#
i1...im ∩ Orb)

Hence we have the partition

(5.4) Ei1...im,Orb = {(ETA
0 h,Orb)i1...im , h ∈ inv Jr

0(Rm,Rm)0} = {TA
0 h(Ei1...im,Orb), h ∈ inv Jr

0(Rm,Rm)0}

of [p̂#
A]−1(Vi1...im,Orb) ⊆ reg TA

0R
m. Then we have

Proposition 5.2. LetW ⊆ Vi1...im,Orb be a submanifold of VA and D0 ∈ Vi1...im,Orb. Then the corestriction [p̂#
A]W

of [p̂#
A] : reg TA

0R
m
→ VA toW determines a bundle with standard fiber D0. Moreover, D0 consists of all algebraic

bases of the Weil subalgebra AD0 of A spanned by m components of an arbitrary element of D0.

Proof: Let [p̂#
A]( jAφ) ∈ W. Let jAα = [p̂#

A]( jAφ) ∩ Ei1...im,Orb and jAβ = D0 ∩ Ei1...im,Orb. There is a well-
defined element ( jAα)−1

◦ jAβ ∈ Aut A with respect to the choice of r-jets contained in jAα, jAβ and the
induced natural equivalence t̃( jAβ)−1◦ jAα over TA, see (1.3.3). Finally, we define a fiber bundle local map
γ : [p#

A]−1(W)→W×D0 by the assignment of ([p̂#
A]( jAφ), t̃ jAβ◦( jAα)−1 ( jAφ)) ∈ W ×D0 to jAφ. □

Let D(1) ∈ V1 be arbitrary(for the notation see the very beginning of Subsection 3.1 and also 1.4) andOrb
be any Aut A-orbit of reg TA

0R
m. Let Ei1...im,Orb,D(1) be defined as Ei1...im,Orb∩p̃#

A,Rm (D̄(1)) andVi1...im,Orb,D(1) ⊆ VA as
[p̂#

A,Rm ](Ei1...im,Orb,D(1) ) or [p̃#
A,Rm ](D̄(1))∩Vi1...im,Orb, recalling the notation from (4.1), (4.3) and that after Definition

4.5. In the very end we give a corollary of Proposition 5.2 as follows.

Corollary 5.3. The projection [p̂#
A] : reg TA

0R
m
→ VA defined after Definition 4.5 is identified with the disjoint

union od bundles [p̂#
A]W with standard fiber whereW are of the formVi1...im,Orb,D(1) . The standard fiber of any [p̂#

A]W
is identified with an arbitrary D0 ∈ W. The fibers of individual [p̂#

A]W consist of all algebraic bases of subalgebras AD

of A, D ∈ W where AD is spanned by m components of any jAφ ∈ D. For every D ∈ VA, it holds width AD = m.

Proof: It remains to prove that everyVi1...im,Orb,D(1) is a submanifold ofVA, the rest follows from Proposition
5.2. Let A be normal, Orb0 be the Aut A-orbit containing jA prk

1,m and D(1) be theV1-class containing j10 prk
1,m.

Recalling jr0φD from (3.2.1) we observe that E1...m,Orb0,D(1) = { j
AφD ∈ reg TA

0R
m;∃ jr0φ0,D ∈ jAφD∩(Tr

k)0 prk
1,m(GA)}

is a submanifold of reg TA
0R

m. This follows from the fact that GA is a Lie subgroup and a submanifold of
Gr

k as its closed subgroup, the fact of (Tr
k)0 prk

1,m(GA) = Orb0 and (3.2.1) itself. Since Im w#
1...m represents a

submanifold ofVA we obtain thatV1...m,Orb0,D(1) is a submanifold ofVA.
LetOrb1 be another GA-orbit, which admits a non-empty intersectionπr

1(Orb1)∩D(1) for D(1) from the first
step. Without loss of generality, suppose that E1...m,Orb1,D(1) is non-empty. In such case, E1...m,Orb1,D(1) = { j

AψD ∈
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reg TA
0R

m;∃ jr0ψ0,D ∈ jAψD ∩ p̃−1
A,Rm (Orb1)} is a submanifold of reg TA

0R
m since not only GA and (Tr

k)0 prk
1,m(GA)

are submanifolds in Gr
k and reg(Tr

k)0Rm but so are all GA-orbits. Applying the same argument as in the end
of the previous step we obtain thatV1...,Orb1,D(1) is a submanifold ofVA.

Let D′(1) be aV1 class intersecting πr
1(Im w#

1...m) in a non-empty set and Orb2 be an Aut A-orbit with non-
empty E1...m,Orb2,D′(1)

. To prove that E1...m,Orb2,D′(1)
is submanifold of reg TA

0R
m we apply the same arguments as

in the middle step of the proof of Proposition 4.3(a). More exactly, consider j1011 ∈ D′(1) ∩ Im s1 for s1 from
the very beginning of the proof of Proposition 3.3, applying the convention on V-classes made between
(3.1.1) and Proposition 3.1. Let jr01 = ik

Dr
k
( j1011), for ik

Dr
k

see (1.4.2). By means of the natural equivalence t̃ jr01

we transform E1...m,Orb2,D′(1)
under discussion to an object of this kind from the previous step, with the only

difference in a Weil algebra B isomorphic to A instead A and an Aut B-orbit instead the Aut A-orbit Orb2,
applying Lemma 4.1

It remains to investigate the case of general Ei1...im,Orb,D, D ∈ V1. Applying the permutationω = (i1, . . . , ik)
from the last step of the proof of Proposition 4.3(a) together with the natural equivalence t̃ω we analogously
as in the proof of Proposition 4.3(a) transform a general object Ei1...im,Orb,D above to an object of this kind from
the previous step with the only difference in a Weil algebra B isomorphic to A instead A and consequently,
in an Aut B-orbit instead the Aut A-orbit Orb. The fact that any Weil algebra is isomorphic to a normal Weil
algebra and Lemma 4.1 prove our claim for a general Weil algebra. □
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[18] J. Mikeš, V. Berezovski, E. Stepanova, A. Vanžurová A., Bácsó S. et al, Differential geometry of special mappings, Elsevier, 2011.
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