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Abstract. Let Gy, be the subgroup of the jet group G; formed by elements projectable to G;, =~ Gj, x

{ji idge-n}. We define a partition V on reg ]6(]Rk, R™)o of G,-orbits with respect to the left action defined by
the jet composition. Elements of reg ]g(le, R™), are considered as vectors from R¥ with the standard inner
product over them. The r-th order Grassmannian Gr(r, k, m) is defined as the basis of the principal bundle
p* : reg Ji(RF, R™)y — V identified with the reduction of the principal bundle p : G = G, \G; to the
structure group G, ~ G}, X {j{, idge-n}. Adding the claim of the first-order orthonormality and modifying
V to Von we obtain the geometrical structure over Gr(r, k,m) in the form of the so-called orthonormal
Grassmann bundle ﬁgrt. We construct an atlas on Gr(r, k, m) from a finite system of local sections of ﬁgﬂ and
define the r-th order Grassmannian bundle functor with standard fiber Gr(r, k, m) on the category Mf,, of
m-dimensional manifolds and local diffeomorphism.

For the jet algebra D}, a Weil algebra A = ID}/I and the projection homomorphism p, : ID; — A we
define the partition V4 on reg T{R™ formed by orbits of the left action of the group of all T#'; h € Diffy R™,
which is by [29] identified with G],. We prove that the local sections of p  above satisfy some kind of
TA—respecting property and determine an atlas on V4. We define the Weil Grassmannian Gr(A,m) = V,
and the bundle functor Gr* defined on Mf,, with Gr(A, m) as its standard fiber. We prove the coincidence
of Gr(A, m) with the quotient of V by the map [parn] : V — V4 induced by pa.

We define the principle bundle p¥ : reg J§ (R, R™); — Gr(A, m) with the structure group GJ,. We define
a partition V4 on reg T/R™ coarser then V, and some auxiliary partitions within reg T/ IR". It is proved
that the factorization [p%] : reg TAR™ — V4 of p¥ to reg T/R™ can be considered as the disjoint union of
bundles with standard fiber identified with some sublagebra of A of width A = m.

1. Introduction

We give the contribution to the theory of homogeneous spaces studied from the point of view of jet
spaces and the Weil theory. In the centre of our investigations there is a generalization of the classical
Grassmannian (Grassmann manifold) Gr(k,m) considered for k > m. It is the basis of the geometrical
structure called Grassmann bundle, which forms the principal bundle over Gr(k,m). The Grassmannian
itself is usually defined as the space of m-planes containing 0 in the k-dimensional real affine space, in
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other words the space of all m-dimensional linear subspaces of R¥. Gr(k, m) is a fundamental example of a
homogeneous space obtained from orthogonal groups as O(k)/O(m) X O(k — m). From this point of view,
Gr(k, m) is obtained from the right action of the orthogonal group O(k) on RF acting transitively on Gr(k, m).
Since the isotropy group of the plane R™ x {0}*"™ is identified with O(m) x O(k — m) (see [9], Section 10),
Gr(k, m) coincides with the homogeneous space above. We recall some other ways of defining Gr(k, m), e.g.
by the so-called Pliicker coordinates, see [7].

In [9], Section 12 and in [11], [12] Gr(k, m) is defined and studied by means of the contact elements
and is generalized to higher orders. By [9], 12.16 and 12.17, Gr(k, m) can be considered as the r-th order
contact element space (K},R")y = reg J;(R", R*)y/G},, by reg indicating immersions. It is a standard fiber
of the bundle functor K, of contact elements defined on the category Mf;. The space K],M consists of all
Jou € reg Ji(R™, M) corresponding to local parametrizations 1 of m-dimensional submanifolds factorized
by the parametrizations determining locally the same submanifold.

In the present paper we essentially follow the results of Grigore and Krupka from [5], besides those from
[11],[12] (see also [13]). In [5] there was properly investigated and described the geometrical structure over
the higher-order Grassmanniannian manifold in the form of a principal bundle (the so-called Grassmann
bundle) with the total space reg T;M and the structure group Gj,. In addition to that there were studied
problems of invariants on such spaces.

We apply another approach, defining Gr(k, m) as the standard fiber of a natural bundle defined on the
category Myf,,, in contrary to K}, defined on Myf;. In this situation, reg indicates submersions. Without loss
of generality, a tangent space to a submanifold M of R at any x can be replaced by a linear subspace of
ToRF ~ R¥ of dimension m, applying the obvious translation map and the coordinate system of M adopted
to a coordinate system of R¥. A linear operator transforming a basis dy!, ...dy" on T,M ~ ToM induced by
such coordinates to the system of linearly independent vectors expressed in the natural coordinates of R¥
can be identified with an element of the geometrical structure over Gr(k, ). Elements of Gr(k, m) themselves
are obtained by the factorization of the elements of the geometrical structure to the linear subspaces of the
target space R¥. From the mechanical point of view, basis tangent vectors at points of M corresponding
to the spatial coordinates are transformed to the linearly independent tangent vectors considered in the
reference configuration. Every M above can be considered as a submanifold of M x R*"". Since the concepts
of the tangent space and subspace are of local character, the system of Gr(k, M) can be considered as the
bundle functor on Mf,,, with possible insertions of objects to k-dimensional manifolds containing them as
their submanifolds.

In the next step of generalization, tangent spaces and linear subspaces are replaced by higher-order
jet algebras and their subalgebras while linear maps are replaced by higher-order jets. The investigations
are continued to Weil algebras, their subalgebras, Weil functors and Weil functor morphisms. Besides the
higher-order and Weil generalization of Grassmannian we also investigate and discuss the geometrical
structures or its modifiactions from the point of view of the Weil theory.

The studied objects are also put to context with generalized frames and frame bundles (see Section 2
below) and some elementary concepts of mechanics from [4]. We remark that in [30] we have sketched
some simple ideas of mechanical applications of the discussed concepts in connection with the uniformity
of elastic materials, following [4]. Nevertheless, exact proofs have not been performed.

If the orthogonality in the forefront of the definition of Grassmannian is not required we can define it by
means of the homogeneous space G}Lm\G; in the classical case and by G; | \G; in the higher-order case (see
Section 2). Roughly speaking, the r-th order Grassmannian Gr(r, k, m) will be identified with the space of
orbits of the jet group G/, acting on the jet space reg J; (IR, R™)o from the left. On the other hand, in Section
2 and 3 we present the constructions preserving orthonormality of elements of the geometrical structure in
the first order.

1.1. Elementary categories on manifolds and jet bundle functors

Let us recall the elementary concepts of r-jet bundle functor from [9]. For a smooth curve y : R — M,
the r-jet j;  expresses the equivalence class of all curves having the r-th order contact at x = y(f)) € M
while for a smooth map f : M — N between manifolds the r-jet . f conceptually expresses the set of dim N-
valued Taylor polynomials obtained in individual coordinate systems on M centered at x. The composition
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of jets is correctly defined by jyg o jif = ji(g o f) where y = f(x). The jet spaces determine the bundle
functor J" : Mf,, x Mf — F M. By Mf,, we denote the category of m-dimensional manifolds with local
diffeomorphisms, by Mf the category of smooth manifolds with smooth maps and by # M the category
of fibered manifolds with smooth fibered maps. A bundle functor is defined as a functor F : C — Mf
defined on a suitable admissible category (e.g. Mf, Mf,, or ¥ M) satisfying the base preserving and locality
conditions (for rigorous definitions see [9]). The jet functor | assigns the space of r-jets J"(M, N) of smooth
maps M — N to any couple (M, N) € Obj(Mf,, Xx Mf) and the map ["(g, k) : J'(M1,N1) = J'(Mz, N;) defined
by jif = j}(x)h o jif o (jhg)~" to any couple (g, h) € Morph(Mf,, X Mf). For 0 < s < r there is the subordinate
natural transformation 7t} : |* — J* mapping jif onto jif. A bundle functor defined on the category M,
is said to be a natural bundle.

1.2. Weil functors

Weil functors are bundle functors of the principal meaning. Their history goes back to 1953 when A.
Weil in [32] defined and investigated spaces of infinitely near points on manifolds. This entailed to the
contravariant definition of Weil functor. Nevertheless, we prefer the covariant approach presented below.
By the classical result of Kainz and Michor ([6]) and others ([2], [15]), they are exactly those bundle functors
on Mf which preserve products. On the other hand, Weil functors generalize many significant geometrical
spaces like tangent, iterated tangent, higher-order velocity bundles T}, non-holonomic and semi-holonomic
velocity bundles. They have been studied by many authors in e.g. [1], [8], [14], [17], [21], [28], [33].

Every Weil functor is associated to a Weil algebra. It is an algebra of the form A = R ® N4 where Ny
is its nilpotent ideal. Respecting our aims, we prefer defining A as &(k)/I where &(k) is the algebra of
germs of smooth functions Rf — R factorized by an ideal I of finite codimension. Germs from &(k) are
decomposition classes of the algebra of functions C*(IR¥, R) associated to the equivalence ~ defined by
f = gif and only if f and g coincide on some neighbourhood of 0 € R¥. A Weil algebra can be also defined
as A = ID}/] for the so called jet algebra ID; and its ideal J. In other words, A is considered as an algebra
of polynomials of k indeterminates of order at most r factorized by some of its ideals J. We put width A to
dim(Na/N?) and height A to the minimal r for which A = Di/]. By pa : D, = A we denote the projection
homomorphism. A = ID}/] is said to be monomial if and only if ] is generated by monomials.

The covariant approach to the definition of a Weil functor T4 is based on the [-factorization of germs in
the following sense. For A = ID/I two germs germ, g : R — M, and germh : ]R’(‘) — M, are said to be
I-equivalent if and only if germ, y o germ, g — germ_y o germ h € I for any function y : M — R defined
near x. Classes of such equivalence relation are denoted by j4g and the space of them by TAM. For a
smooth map ¢ : M — N we define the map T4¢ by T*¢(j*g) = j*(¢ o g). Clearly, T; = T"%. There is the
bijective correspondence between Weil algebras and Weil functors determined by the assignments A — T4
and F — FR, applying the product preserving property of Weil functors.

1.3. Automorphism of Weil algebras

By [8] and [9], natural transformations fx; : TBM — TAM are in bijection with homomorphismst: B — A,
which holds particularly for the projections p4 : T; — T*. By [8], natural transformations above correspond
bijectively the so-called B-admissible A-velocities defined as follows. For Weil algebras A = &(k)/I, B =
&(p)/] and smooth f : RS — ]Rg an A-velocity 4 f is said to be B-admissible if and only if

(1.3.1) germ, @ € | = germy(po f) € L.

Thus every B-admissible A-velocity j4f is bijectively assigned a natural transformation ty : TPM — TAM
defined as follows

(13.2) (o) =1 (Pp) = @ o ).

In particular, all automorphisms of A are determined by reparametrizations of indeterminates satisfying
the conditions of A-admissibility (1.3.1).
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The jet group G is defined as inv Ji(R¥, RF)y with the multiplication defined by the composition of r-jets.

The automorphism £, of IDj and the associated natural equivalence ?jgg on T; determined by jig € G| are
defined by the assignments

(1.3.3) jon e oo Gog) ™ or g = o © (jo9)”!

for every jin € IDj and jiny € (T})xM. If M is a numeric space and x = 0 we sometimes use the notation ¢,
for natural equivalences as well. Thus for a B-admissible A-velocity jjg we have the natural equivalence
tirg : TA — TB.

For A = IDj/I and the projection homomorphism p : ID; — A Alonso defined the subgroups G4 and
G* C G} ~ Aut(ID}) ([1]) as follows

(1.3.4) Ga={jyg € Gpotis=pt and G*={j,g € G; Ker(poty irg) = Kerp}.

The first subgroup is A-stabilizing while the second one is A-respecting. In[1]itis proved that G4 is anormal
subgroup of G* and G*/G, is identified with the group AutA. Clearly, g determines an automorphism
of A if and only if jig € G*.

1.4. Some subalgebras, factors and properties of Weil algebras

Let B = ID; /I be a Weil algebra of height r and width k with the projection homomorphism p : D; — B.
For s < r, denote by B, its subordinate Weil algebra obtained by truncating B to the s-th order. Fors < g <r
we have the projection homomorphism nZ,B : By = Bys). For q = r we write simply 7,5 : B — B, and for
B =ID; we have 7,5 = 7.

LetD; . be the subalgebra of ID; of polynomials in indeterminates 7;,, ... 7;, only. ID} . is obviously
isomorphic to ID},. There is the subalgebra B;, _;, of B defined by B;, ;, = pB(]D;...i,,,)' There are the insertion
homomorphisms ¢;, ;, : D}, — Dy and (;, ; p: Bi.i, — B where the first one is obvious and the second one
is defined by ps(7;) = pa(li,...,, (7)) = pa(t)) for j € {i1, ..., in}. Clearly, B; _;, = D, /I;_;, for I; _;, defined by
ael; ;, ifandonlyifa el

Let ]k denote the ideal (7;,,,,...,7;) in D}. Then lDr " is idetntified with ID}/J;ux. For monomial
B there is the obvious identification of B; w1th Dy/Tv ]mk In such case there is the homomorphism

A

[T

Pir..in,B : B = B, i, defined by
(14:1) T = pB(Ti) (= pB(Z‘?;éZTi)‘
Clearly, Imp, , 5 = Imu, ;5. For B = D] we write simply p;, ;,. The notation of the induced natural

transformations (p;, ., )m and (p;, i, 5)m are simplified to p;’f.__im and pZI...im,B in case of M = R™.

An ideal I C ID] is said to be normal if I = J V (tj,,...,7)_,) for an ideal | satisfying | C (t;,,...,7;)*
provided {ji, ..., ict} Ulis, ..., 0} =1{1,...,k}. A Weilalgebra A = ID; /1 is said to be normal if I isnormal. Let
u = {t1,...,7) be the maximal ideal of Dy. If width A = k then we can reduce the definition of normality

to the condition I C p?. Every Weil algebra is isomorphic to a normal one, which is easy to deduce from
(1.3.3) (see also the text after (1.1) in [29]).
Let widthA = k. There is the insertion (]

i} : D] — D]. Moreover, there is the map

Lr D, — D}, which is a linear map and a section of

(1.4.2) zA_pAOle ]D — A

and its extension % : JI(R*, R™) — T4R™ from A = TR to TAR™ = A™ defined by components. Clearly,
, = ip. In case of normal A the maps ix and ) are global sections. We remark that i4 is not a
homomorphism of Weil algebras.
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1.5. The coincidence of A-covelocities and jets to the classical ones

Recall the natural bundle T"*M of r-th order covelocities from [9] and [29] defined by T;'M = Ji.(M, R)o on
objectsand by T g(j. f) = j-fo(j.9)"! on morphisms. Itis proved that the system of spaces T"*"M = |, T5'M
with their T""-maps determines the natural bundle P"M[N],, {] where N}, denotes the nilpotent ideal of ID},
and £ : G), x N}, — N, denotes the left action on the standard fiber defined by £(j}g, ji) = ji(@ 0 g7").

In [29] the spaces T"*M of A-covelocities consisting of all T4 f : TAM — T4 R =~ N, are investigated for
a general Weil algebra A and its nilpotent ideal N4. The so-called T#*-maps are defined by T4*g(T4f) =
T4f o (T2g)™!. It is proved that if height A = r then T**M and T"M coincide. For any M € Obj(Mf,)
and N € Obj(Mf) there is defined the space J*(M,N) = {T4f; f : M — N} and for a local difffomorphism
g : M; —> M, and a smooth map h : N; — Nj there is the map J4(g, /) : [A(M1,N1) — J4(Ma, N,) defined
by J4(g, h)(T2Af) = T?(x)h o T4 f o (T4g)™ . Itis proved that the spaces J4(M, N) and J"(M, N) coincide as well.
Moreover, for m < k = width A, every T4 f : TAM — TS‘IR is determined by its max{m, k} values over linearly
independent 1-jets of elements from T4M.

1.6. Homogeneous spaces

For a Lie group G and its closed subgroup K, the homogeneous space G/K is defined as the space of
right cosets gK for g € G with the quotient topology induced by the factor projection 7 : G — G/K. Such
topology coincides with the unique smooth manifold topology on G/K with respect to which 7w : G — G/Kis
a surjective submersion (see [9], 5.11 and 10.5 and also [26], Chapter 1 and 4). We recall the free right action
r of K on G which preserves fibers of 7 and is transitive over them. It is obtained from the multiplication in
G and determines the principal bundle structure (G, 77, G/K, K) on 7.

The right cosets gK correspond bijectively to the left cosets Kg since 91K = ¢,K if and only if Kg;' = Kg5'.
There is the group antiisomorphism ~! : G — G giving the identification of G/K with K\G by the assignment
gK + Kg~1. This particularly yields the transformation of the principal bundle 7 : G — G/K to the principal
bundle 7, : G — K\G, exchanging the right action r of K on G for the left action £. If possible we omit the
index in 7, and write simply 7.

1.7. Some kinds of manifolds, submanifolds, partitions, foliations and group notations

Jets, jet functors and product preserving bundle functors are also studied in context with foliations, e.g.
in [16], [10], [27]. Both kinds of objects are also studied and applied in theoretical physics, e.g. in [24], [4]
and in Riemannian geometry, e.g. in [22]. Investigating foliations requires to distinguish between different
kinds of submanifolds. An n-dimensional submanifold N in the sense of [9], which is an equivalent of a
regular submanifold N in [26] is defined in terms of coordinates on M adapted to N, i.e. by pre-images of
R™ x {0} with respect to local maps on M. Nevertheless, the formulation of Frobenious theorem requires
the concept of the initial submanifold from [9], Def. 2.14, which is an equivalent of a submanifold in [26],
Chapter 1, Def. 2.2. In the present paper, we will prefer the terminology from [9].

A (regular) foliation on M of codimension m — n is usually defined in terms of a distribution D on M
(without singularities) determining the decomposition of M to maximal integrable submanifolds, the so-
called leaves. The leaves are n-dimensional initial submanifolds in M. By the classical Frobenius theorem,
the existence of a foliation determined by D is equivalent to the involutiveness of D, see [26], Theorem 4.1.
A foliation can be equivalently defined by an (m — n)-codimensional foliated atlas on M, see [26], Chapter
2, par. 6. Its leaves are again initial submanifolds. In any case they connected.

If a foliation consists of submanifolds, the situation is more simple, particularly for fiber bundles. In
such case we can speak about vertical foliations (see [26]), despite the non-connectivity of fibers. In our
investigations, fibres mostly consist of at most two connected components. Nevertheless, we use the
concept of smooth partition rather than that of foliation in order to avoid a possible misunderstanding.

Notation 1.1. By Diff we denote the group inv J%.(M, M), and by Diff;;’f\(f the group Difff%iwm, both with the jet
composition multiplication. By (DiffZAnf)(xlo) we denote the subgroup of Diff:%) of elements projectable to Diff?™. For
jhax € inv J5(IR™, M), denote by jia the element (jyay, jhidgen) € inv J5(RE, M X RE™) o). For M = R™ and

x = 0 the groups Diff™ and (Diff]rc’éﬁ)(xlo) coincide with the jet groups G}, and G,

km*
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2. Higher-order Grassmannians

We continue the motivation part started in Introduction. If we do not accent the orthogonality in our
definition of Gr(k, m), we can define its support as the space of orbits of the space reg J} (IR¥, R"), of bases of
m-dimensional linear subspaces of R¥ with respect to the linear group G}, acting from the left, recalling the
obvious identification of linear morphisms with 1-jets of zero preserving maps. From this point of view,
the i-th basis vector of R* formed by the i-th component of ji¢ € reg J5(R",R™), is of the form (a}, ..., a}).
Prolonging the definition to higher orders, we define the support of Gr(r, k,m) as the space of orbits on
reg Ji (R, R™)y with respect to G}, acting from the left. The topology is introduced by means of that of
the homogeneous space G, \G;, from which it is transmitted to Gr(r, k, m) by means of the reduction of

the principal bundle G; — G; \G} to the total space reg J5(RE, R™)g X {jf idgi-n} and the structure group
G}, = Gj, X {jjidge-n}. Nevertheless, we can insist on the orthonormality when defining the geometrical
structure over Gr(r, k, m), at least in the first order. Before introducing the corresponding inner product we
recall the basic facts concerning frames and frame bundles.

Ther is an concept of the r-th order frame bundle P’ introduced in [9], which forms a natural bundle on
the category Mf,. For N € Ob(Mf,) we have P'N = inv J{(IR", N) and for a local diffeomorphism f : Ny — N,
we have the map P"f : P'N; — P'N; defined by ji¢ = ji(f o ¢). The natural equivalences are of the form
E’gy (see (1.3.3)). Coming back to the first order, let (aj.) be the matrix coordinate form of elements from

P} R¥ identified with Ptl)]Rk by the translation map. Then any frame jjn can be considered as a linear map
assigning the vector jin; = (a, .. .a;‘) to the i-th canonical basis vector of R¥. There is the standard inner
product defined by jin - jiC = 1 - C', which yields (jin:) - (jin)) = a! ~11§,. Let dimM = m and x € M. We
transmit our deductions to P(lx/o) (M x R¥-™), identifying a coordinate system on M mapping x to 0 together

with its prolongation (in the sense of Definition 2.1 below) mapping (x,0) € M x R to 0 € RF with the
local isometry between M and R™ defined near x, in case of taking its prolonged form near (x, 0) € M xR,

Let V(k, M), be the space of the so-called pull-back m-frames ]})5 € P(lx 0 (M x R"™) (see Definition 2.1).

Their meaning is visible from their coordinates a; and the assignments
(2.1) dijl—)a}dxf, i=1,...,m j=1,...k

V(k, M), can be considered as the so-called Stiefel space at x. The Grassmannian space Gr(k, M), is from
V(k, M), obtained by the factorization to m-dimensional linear subspaces spanned by elements of V(k, M),.
For M = R™ and x = 0, the values of the assignments (2.1) over dy, are of the form (2, ...,a}) € R.

Then the formula for the inner product on vectors from (2.1) reads

(2.2) b jep=ar-p or  jig'-jtg) =al-a,

the second formula determining the values of the inner product on the images ji¢' = (a},...,a},) and
jsp) = (a,...,a},) over dyk, and dyy,,. We remark that 0 € R™ can be replaced by xy € R", applying the
translation map. Any coordinate system transforming x to 0 can be identified with a local isometry, which
enables to transmit locally the inner product (2.2) to M. Let f : M — N, g : N — P be local diffeomorphisms.
Then du}, — gdz\;, dz}, — fldy}, and (2.1) implies du? — g7 fl.laj.dx]' . This corresponds to the composition of
1-jets. We remark that that the Riemannian geometry concepts like isometries, geodesic maps and related
concepts are in details studied in e.g.. [18], [31], [19], [22] etc.

We close the motivation part by giving the intention of generalizing the concepts discussed above from
linear spaces, subspaces, linear bases and maps to Weil algebras, subalgebras, algebraic bases and Weil
functor morphisms.

We give the technical concept of the prolongation map mentioned above. Let prf, and prf,, be the
canonical product projections M x R¥"" — M and M x R*"™ — RF"™_ If M = R™ we simplify their notations

k k
topr;  andpr, .
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Definition 2.1. An invertible element jipy € reg Ji(RE, M x R, is said to be a prolongation of jhps €
reg J7(R¥, M) with respect to A if

2.3) T,y PP i) = o and [ P = /A G awhenever [ gy = [ gy

A local section™ : reg Ji(RF, M), — inv J§(RF, M x R¥")( ) of T}, pr’{,M is said to be a prolongation map at x
with respect to A if each jop. € Dom(") is assigned some of its prolongations and the map jopx = T( PrS v OfoPx
is constant on every Dj(r](,,x € Vym.

We define some equivalences and partitions on fibers of reg T;M and reg T M.
Definition 2.2. (a) We define the equivalence p,y on reg J§(R¥, M), by
(24) (JoPxs Jox) € pxm if and only if jypx = jih o jogx

for some jih € Diff?™. Further, we define the partition Vi on reg J5(R¥, M), formed by decomposition classes of
px,M-
(b) We define the equivalence (pa)xm on reg TAM by

(quox, jAlpx) € (pa)xm if and only if there are jipyo € jA(px and

(2.5) Jo¥xo € jA'ul’x such that (jo@x0, joPx0) € Pxm-

(c) We define the equivalence p?},, on reg T¢ M by (j@x, j*yr) € p2,, if and only if there are

(2.6) JoPxo € jA(px and joipyo € jAng such that jih o jipxo © jog = jotxo

for some fi.g € G* and jih € Diff;™.

(d) For normal A and M =R", we define the relations of equivalence (port)xm, (PA0rt)xm and (pA'O”)x,M by
adding the claim of the first-order orthonormality to the components of all elements acting in (2.4), (2.5) and (2.6) with
respect to the inner product (2.2). For general M and x, we claim the first-order orthonormality for the components
of all elements acting in (2.4), (2.5) and (2.6) with respect to the inner product introduced by local coordinates, in the
first order acting as local isometries transforming 0 to x. All jih € Diff?™ above are claimed to cover x-preserving
local isometries on M in the first order.

We must check that the relations (pa).m and pf v are equivalences, which is a non-trivial step. Then the
relations from (d) are obviously equivalences as well.

Lemma 2.3. The definition condition (2.5) can be equivalently replaced by the claim of the existence of invertible
T4h : TAM — T4M satisfying ¢, = TAh(jApy). The definition condition (2.6) can be equivalently replaced by
the claim of the existence of invertible T4h : TAM — TAM satisfying s = T4h o tj,(jA ) for some jhg € G2,
Finally, (pa)xm and pf/M are equivalences.

Proof: It is easy to check that (2.5) and (2.6) imply the conditions formulated in the assertion. To prove the
converse recall the rigidity result from Subsection 1.5. It enables to replace T4k by jih € DiffM, without
loss of generality. Setting (ji¢x,0, jhtbx0) in (2.5) to (jh@x0, f2h © jopxo) for arbitrary jig.o € jA@, verifies the
claim corresponding to (b). As for (c), T4k can be due to the rigidity result replaced by . € Diff/™ again.
We check that ( jg(px,o, jgl,bx,o) satisfies (2.6) if we set it to ( jg(px,o, jho tj(v]g( jg(px,o)) for any jg(pX,O € jA(px. Indeed,
for any jig0 € Ga we have page © il o jipxo © fogo 0 jog ™' = pare © fih o jopxo 0 fog™ o (og 0 fogo © fog ™) =
Eir gojtgitogt (7 1x), applying normality of G4 in G*. Now itis obvious that (pa)xm and p,, are equivalences
on reg TAM. m
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Since all relations in Definition 2.2 are equivalences we can define the partitions (V4)xm and (VA M on
reg TAM corresponding to (pa)xm and pf,M. For normal A we analogously define the partitions (Vort)xm,

(Vaort)xm and ((Vgrt)fo corresponding to the equivalences from Definition 2.2(d). For M = R" and x = 0
we simplify the notation by omitting indices. We write simply p, pa etc.

Proposition 2.4. There is the unique structure of a smooth manifold on the space of left cosets G | \G; for which
the projection p : G — G; | \G; is a surjective submersion. Moreover, p determines the principal bundle with the
structure group G and its free left action transitive on fibers.

For any xeM, the projection Py pr:inv J5(IRF, M x R¥") (. 0) — (D1ff )(x o\ \inv Ji(IRF, M x R o) defined
for every jiay € PLM by some of the formulas

27) fone = o © (o) ™ o fonedyor ol o fog o fodix © Ljggls

(see Notation 1.1) determines the unique smooth structure on (DiffZAnf)(x,o)\ inv]()(l[{k,M X I[{k—m)(x’o) for which Py
is a surjective submersion. Moreover, Py is principal bundle with the structure group (Diff;’Anf)(x,o).

Proof: Gj is a closed subgroup of G| and the elementary facts of the homogeneous space theory
yield the homogeneous space structure on G’ ., \G}, the principal bundle structure on p and the surjective
submersion of p.

For a manifold M, select jha, € PLM. Then jogx = jrayojigand jihy = fiaxo joh € inv J§ (IRE, MXIRF™) )
M) w0 if and only if jihy o (Jlo09:)~" € (Diffy

share the same left coset with respect to (Diff; M) o) and

km
joh© Jio0 9" € G, For another jiB. € PtM we have (jgBx)™" o jodx € G and jgpx o (jodx)™ € (Diff™M) 0,

k,m

which implies the independence of (2.7) and p,m on the choice of a frame. Clearly, (Diffzx)(xlo) = jo@x ©
Gy, © (@)™ = conj(jpa)(Gy).-

The smooth structure on py 5 is transmitted from Glr(/m \G; by means of frames. Indeed, for any jia, € PLM,
joh€Gy,, and (jopu, jop2)=(Tg pry , (jo®), Ty prs , (o)) € inv J5(RY, R¥)o an element joa. o joh o (jop1, jop2) is
obtained as (jdx o jih o (jidx)™") o jodx o (fip1, jog2)- O
Corollary 2.5. For any x € M, there is a smooth manifold structure on Vyy = Diff, ,; \ reg J| (R, M),. The factor
projection ﬁj/M i reg ]g(IRk, M), — Vi um is obtained by the identification of Vi p with (lef;t]n\f)(x,O)\ inv ]6(]Rk,M X
R¥"™) .0y and the identification of ﬁiM with Py as follows ’

A# k ~ ~ ~ ~ A k
(2.8) Pim = (rx,O) pri, opxmo and  piv="opyy 0 T(rx,o) PTim

where "~ is an arbitrary, locally defined prolongation map with respect to D;.

Proof: Clearly, Joa2 = jleo)g o joun implies ij,O) pr’{,M ojg2 = jleo)g o jfx/o) pr’{,M ojov1 where Jo, Joua €
reg Jo(R", M x R“") (.0 and j, g € (Diff]:’if)(x 0) bY fi )7 € Diffy ; denoting the subordinate element from

Gp,. Conversely, jipz = jih o jog1 for jipi, jyp2 € ]O(IRk M), and jih € leer implies ]'6(52 = ].Zx,())]:l o j(’)(“pﬁ.
This way, (Diff;{’l\nf)(x,g)—classes are transformed to lefle-classes and vice versa. Thus U € V, u will be open
if and only if uc (Diff;’,li\ﬁ)(xlo)\ inv Ji(R¥, M x RF"™), ¢ is open. Since T}, pr’{’m is an open map, the topology
we have just defined coincides with the quotient topology on reg Ji (IR, M), obtained by p*, .

It remains to give a prolongation map ~ on a neighbourhood of every jj¢ € ]6(]Rk, R™)o with respect to
ID;. If there is a universal element {0 € J5(RE, RE™), satisfying (5, jh0) € inv J5(RF, RF), for every jip € U
then the assignment jio — (ji¢, j;6) determines the required prolongation map. Applying an arbitrary
frame jja, with its prolonged form jja, (see Notation 1.1) we transmit the prolongation map from an open
subset of reg J1 (IR, R™), to an open subset of reg Ji (RF, M);. m



J. Tomds, F. Petrdk / Filomat 38:22 (2024), 77557773 7763

We remark that ﬁﬁ’ v 18 a surjective submersion, which follows from left formula of (2.8) and the definition
of prm. Applying the well-known universal property of surjective submersions to ﬁﬁ/M we observe that
determines a smooth map on f)iM(U) C V.M whenever U is contained in the domain of .

Having the identification of V, s with the basis (Diff}z]\rf)(x,o)\ inv ]S(IR",M X ]Rk‘m)(xlo) of the principal
bundle p, s we can consider the reduction of its structure group to the subgroup Diff™ x{ Jo idgen} = Diff7M.
By the formula (2.8) of Corollary 2.5 the total space of Py can be reduced to ™ o T(rx,O) pr’{,M(]S(]Rk,M X

R¥")0) = reg ]6(]Rk, M),, independently on the choice of the prolongation map. Hence we have deduced

Corollary 2.6. p* : reg J;(RF, R™)g — V from (2.8) is a principle bundle obtained by the identification of the
reduction of p to the subgroup Gy, = G, x {j§idgen} of G, and to the subspace ~ o (Tp)o pry , (inv J5(R¥, R ))
= reg J1 (IR, IR™), of its total space inv Jj(IRF, RF)q,0).

More generally, ﬁﬁ/M from (2.8) is a principal bundle obtained by the identification of the reduction of Py to
the subgroup Diffy™ =~ Diff; x{jt idgi-n} of (Diff;l\ys)(xlo) and to the subspace ~ o (T})(0) pr} y,(inv J5 (IR, M X
RF"™) 1 0)) = reg JL(RF, M), of its total space inv J5(IRF, M x RF"™) . g).

Definition 2.7. The basis V of the principal bundle p* is said to be the r-th order Grassmannian Gr(r,k, m). The
basis Vi um of the principal bundle ij is said to be the r-th order Grassmann space Gx(r, k, M), at x € M. The space
Gr(r, k, M) with the topology defined in Proposition 2.8 below is said to be the Grassmann manifold over M. Speaking
about Grassmann manifold without specifying M means that M = {0}, 0 € R™ and Grassmann manifold coincides
with Grassmannian Gr(r, k, m). The principal bundle ﬁiM or its total space is said to be the geometrical structure over

Gr(r,k, M)y at x. The system p, = U,em P* \, is said to be the geometrical structure or Grassmann bundle over the
Grassmann manifold Gr(r,k, M). Speaking about geometrical structure without specifying M means that M = {0},
0 € R™ and the geometrical structure or Grassmann bundle coincides with p*.

For r = 1 we write simply Gr(k, m) or Gr(k, M), instead Gr(1, k, m) and Gr(1, k, M),. On the other hand we
can write V7 or (V1) instead V or V, p. Further, any prolongation map™— and (2.8) imply the existence
of a well-defined correspondence between local sections s, and s* , | of the principal bundles p and pf, |
as follows ' '

_ 7 k # v k ~
(2.9) SxM = Sy © Tl ) PTm Sem = Lo PripmOS© -

This way, (Diff,’(’%)(x,o)-classes are transformed to Diff! ,-classes and vice versa.

For any m-dimensional manifold M put Gr(r, k, M) to U,eps Gr(r, k, M)y = Uremt Vam and for any local
diffeomorphism f : M — N define Gr(r,k, m)f : Gr(r,k, M) — Gr(r,k,N) by [ji@xlp. = [72f © jo@xloson-
Finally, we define the projection mg, : Gr(r, k, M) — M assigning x to D € Gr(r, k, M) in case of D € V.
Hence we obtain a bundle functor as follows

Proposition 2.8. The system of Gr(r,k, M) with maps Gr(r,k, m)f and projections mg,m forms a bundle functor
on Mf,, identified with P"M[Gr(r, k, m), {c] where £gy is the trivial left action of G, on Gr(r,k, m) defined by
tar(jo Djip) = Dipojrp = Djrp-
There is a natural transformation transy : reg TLM — Gr(r, k, M) defined by transm(jypx) = [jo®xlpon = Djre.-
Finally, there is a bijective correspondence between natural equivalences over bundle functors Gr(r,k,-) and
P[Gr(r, k, m), €c,] assigning {idpra, [?]Gr(,lk,m)} to [?]Gr(,lk,M) where [?]Gr(,lk,M) is obtained by the factorization of
ES%M (see (1.3.3)) acting on TM to Gr(r, k, M).

Proof: The first assertion follows from the theory of bundle functors, namely from [9], 14.5 and 14.6. Indeed,
there is a bijective correspondence &y identifying the spaces Gr(r, k, M) with objects P"M[Gr(r, k, m), {c,] and
the maps Gr(r, k, m) f with morphisms {P’f,idgr ). It is defined by the mutually inverse assignments
Djro, = {jja, D% @) lo /6%} and {jiax, Djro} > Dijrasejrp- Itis easy to check that &y is invertible and commutes
with the maps Gr(r, k, m) f and morphisms {P" f, idG(:km)}-
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The second assertion is verified by checking the equivariance of the resriction trans : reg(T})R" —
Gr(r, k,m) of transg. acting between standard fibers with respect to the obvious left action of G}, on
reg(T;)oR™ and ¢, on Gr(r, k, m).

The last assertion follows from the first and second one. It is also a corollary of Proposition 4.8 below. O

Remark 2.9. (a) The basis Gr(r,k,m) of p* can be identified with the space of m-wide subalgebras of D}, isomorphic
to DI, while fibers of p* can be considered as spaces of algebraic bases spanning the subalgebra represented by the basis
element. The standard fiber of p* can be viewed as the space of algebraic bases of D,,.

(b) V(r,k, k—m) = G}, \G; considered as the space of (k —m)-frames can be viewed as the higher-order, generalized
Stiefel manifold. The group G}, ~ G}, X {jj idge-n} is again considered as a subgroup of G;. The case of the classical
Stiefel manifold V(k,k — m) with the additional claim of orthonormality of frames corresponds to O(m)\O(k).

Let (n;)‘l(reg ](1)#)0(]Rk' R™)o be the subspace of reg ]6(]Rk, R™)o consisting of elements with mutually
orthonormal components in the first order (with respect to (2.2)). We simplify its notation to (J;,, t)o(]Rk, R™),.
We analogously consider the subspace ( fgrt)o(]Rk/M)x = (ng)‘l(reg ]ért)o(]Rk/M)x of reg ]6(]Rk, M), consisting
of elements with mutually orthonormal components in the first order in a local isometry with R determined
by a selected coordinate system transforming x to 0. Let Zs0,(M) denote the group of x-preserving local
isometries on M. We define the principal bundles pf, , and (57, )xum as follows

Definition 2.10. pf, is defined as the principal bundle obtained from p* by the reduction of its total space to
( ]EM)O(]R", R™)g and of its structure group to (n;)‘l(O(m)). The principal bundle ﬁfm or its total space is said to be
the geometrical structure or Grassmann bundle over Gr(r, k, m).

(P%,)xm is defined as the principle bundle obtained from ﬁﬁ,M by the reduction of its total space to ( ]rort)o(]Rk,M)x
and its structure group to (n;)‘l(I so(x, M)). The principal bundle (PA?)rt)X'M or its total space is said to be the
geometrical structure over Gr(r, k, M),. The system (ﬁgrt)M = UxeM(ﬁg,t)x,M is said to be the geometrical structure
or Grassmann bundle over the Grassmann manifold Gr(r,k, M). Speaking about Grassmann bundle or geometrical
structure without specifying M means that M = {0}, 0 € R™ and Grassmann bundle coincides with ﬁ’éﬂ.

The claims of the first-order orthonormality can be extended from p* and p* | to p and p, u and from the

group Z50,(M) to 1500 (M x Rk-™Y), obtaining the principal bundles po,+ and (Por)xm. We conclude by the
identification of Gr(r, k, m) considered as the basis of pf, , with (7})™1(O(m)) x (1}) " (O(k — m))\(1}) " (O(k))
(see Corollary 3.5).

3. The construction of an atlas on the higher-order Grassmannian

3.1. A finite system of local sections on pf,  of the first order

We construct a local section of pf, . defined on a dense and open subset of V = Gr(r, k, m). We give a finite
set of local sections of this kind and an atlas on V = Gr(r, k, m) determined by them. Despite Definition 2.7
we suppress the notation Gr(r, k, m) and write mostly V until Section 4 where the bundle functor Gr? of
Weil Grassmannian is introduced. In the first-order case corresponding to Gr(k, m) we write also V.

We need some other notations as follows. By det;, ;, we denote the value of the m-th order determinant
of the matrix of the orthogonal projection of k-dimensional vectors jip!, ..., jip™ € reg Ji(IRF,IR™), to the
linear subspace L(jj Pri, .-, is pr; ) of RF spanned by the selected canonical basis vectors. Let Vi, _; be
the domain of regularity of det;, ;,. Since det; ;, takes the zero value on every V-class either nowhere or
everywhere we put U;,_;, to ﬁ#(Vi ). Clearly, any U;,. ;, is dense in V;. Extending our notations to higher
order cases we define

1eelm I

(3.1.1) Vi.iy =D € V;m{(D) € Uj, i}, in particular (cl)/= Vim

We essentially use the convention based on Corollary 2.5, which identifies the basis V of p* or p¥  with the
basis of p or po,:. Analogously we do with V), u, ﬁﬁ,M’ (P%,)xm and Pr .
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Proposition 3.1. For r = 1, there is a couple of local sections s and s* of the principal bundles p and ﬁgrt connected
by the correspondence (2.9) defined on Uy .., which is dense and open in V1. The range of s contains jj idgs.

More generally, there are two finite systems of local sections s;, i, of Ponr and s‘:.’;__.im of pt,, connected by (2.9)
containing s = 51 m ands =5 # with dense and opendomains U, _;, covering V. Bothof the systems (U, i, Si,..i,)
and (Ui,...,, S}, ; ) correspondmg to m-elementary subsets of {1, ..., k} determine a finite atlas on V1 = Gr(k, m).

Proof: Consider the inner product (2.2) on inv ](1) (R¥, R¥),. Clearly, any element of V; can be considered
as the space of linearly independent sequences of vectors of lenght m spanning the same m-dimensional
vector subspace of R¥. Consider a system of local sections (04)ser : Uy — G, of p with (Uy)aer covering

L G, \G}. Without loss of generality suppose that Im(c,) is formed by k-tuples of orthonormal vectors. It is
possible due to the Gramm-Schmidt orthogonalization process (GSOP), which acts smoothly until the zero
vector appears as its output. Applying the compactness argument we can assume the finitness of the system
(04)acr- Nevertheless, local sections o, are only auxiliary objects used for the proof of the smoothness of the
map s = s1_, to be constructed.

As for the value of s1_y, its first m components are defined by the assignment of the orthonormalized
sequence obtained by GSOP from the orthogonal projections of vectors ji pry,..., js pr,, to the current
V-class. The claim of regularity corresponding to non-zero outputs of GSOP yields the limits for the
domain of s v Which coincides to Uy, defined before (3.1.1). The k — m additional components of ]O(p in
Ims;_, can be ‘obtained as in Corollary 2.5 in case of p while in case of fp,: we continue the procedure with

]0 prm+1’ s ]0 prk
The smoothness of s;_,, is verified on the intersection of its domain with arbitrary U, above, if non-

empty. Let F = ( f;&) (j=1,...,m)be the orthonormalized system of the first m vectors from the value of o,.
Then the coordinate expression of s*  obtained by the standard computations of the orthogonal projection
of a vector to the vector subspace of RF determined by the vectors f;”}‘, cee, f;"; reads

g fa . ayi
(3.1.2) e = it = (02— it
I|f“||2 : e

For orthonormal ¥ we have ji¢ = L ((f ) f );—1..m- This proves the smoothness of a local section of p

defined by the assignment of the sequence of orthogonal projections of the first m-canonical vectors of R¥
to the current class D € V, independently on the choice of ¢,. Taking into account the smoothness of GSOP
on its domain of regularity completes the verification of the smoothnes of s = s1_,,. Clearly, U;._,, contains
p*(jy pry, - - -, jo Pr,,) and Im(sy._,) contains j idge, which completes the proof of the first assertion.

Local sections s;, ;, with domains U;,_;, are constructed analogously. The supports of local maps

(Ui, Siy..i,,) are dense in V; and cover it. The system determines a smooth atlas on Gr(k,m) = V;

restricted to Ims;,_j, (Uj,...i, N

jl- j"
Uji..j)- mi

. k . "
determined by at most (m) local maps with the transition maps s;,_;, 057

3.2. A finite system of local sections of p¥,  of higher order and an atlas on Gr(r, k, m)

In what follows, we need the subgroup B} = Kermj = (7})” (i Joidgs) of G;. By [9], Section 13 it is
endowed with some significant properties like the globahty of the exponential map and its identification
with the semi-direct product B} G]l, which can be defined by (3.2.5), (3.2.6) and (3.2.7) below.

Let p* : (?)7'(ji prk ) — B, \(m})7'(j prt ) be the factorization map with values in the space of B, -
orbits with respect to the left action defined on (1}) ™! (ji prt | ) by the jet composition. Let V, be the subspace

of fi/ defined by D € V; if and only if j} pr¥ e /(D).
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Lemma 3.2. (a) The space ‘Vy, is identified with B}, \(}) ™ (j} pr’im) equipped with the quotient topology of that on
() Gy pry ) by p*. It is the basis of the principal bundle p* obtained by the reduction of the corestriction of p*
to Vo to ()71 (j} pr’{,m) on the level of the total space and to B}, on the level of the structure group. Analogously,
p: B, — B \B; =V, is obtained by the reduction of the corestriction of p to Vo to (m})*(j§ idgs) = ker 7t} on the
level of the total space and to B} on the level of the structure group. The maps p* and p are related by (2.8).

(b) There is a couple of global sections §* and § of the principal bundles p* and p, related by (2.9). Im3* is a
submanifold of (1)~ (jg pr} ) and Im & a submanifold of By,

Proof: (a) Clearly, jip and jyy € ()7 (jg pr} ,,) share the same element of Vy if and only if they share the
same element of B}, \(1})~'(jg pr} ,,). Since jy pr} , € 7} (D) for any D € V, by definition of ‘Vy, we have the
bijection between Vy and B}, \(m}) ™" (jg pry ,,)-

From the topological point of view U C V; is open if and only if so is (p*)"'(U) in (p*)7' (Vo). Any
P = (p*)"(U) of this kind contains only those elements ¢ € reg J;(R*, R™), which satisfy (p} = 0 whenever
j > m. This follows from the definition of V and the jet composition formula. On the other hand U € Vj is
open with respect to the quotient topology on B}, \(7}) ™ (jj pr’im) if and only if (5*)}(U) is open in (5*) "1 (V).
This happens if and only if (5*)7' (1) is of the form P N Py for some P above and Py = (7})7(j} pr’im). The
required identification of topologies on V), follows from the fact that any element of P can be transformed
to P N Py by the application of a suitable jih € G}, from the left.

The identification of topologies on Vy introduced by means of p* and p* we have just proved implies
directly the assertion concerning the reduction of p* to p*. As for  and p we proceed quite analogously,
applying (2.8) and the convention on “V-classes presented before Proposition 3.1.

(b) It follows from the jet composition formula that for any ji@ € (77)™'(ji prt ) there is ji@p sharing
the same V-class such that pi"  (jiep) = p1' (75 pr’im) ~ joidge (for the notation see (1.4.1)). The jet
composition formula further implies that p{’  (jigp) = jjidr~ is stabilized by jih € B}, acting from the left
by composition if and only if jjh = jj idr«. We obtain the assignment of jigp to jip as follows

(3.2.1) jow = @1 LGoe) T Gow) = jogn.

On the other hand, let jjip € Dj, be obtained from jyi € Dj-,, by (3.2.1). Clearly, pY' , (jowp) = jjidgre.
Since jyep and jyp share the same Vo-class there is jik € Bj, satisfying jik o jupp = jiyp. Clearly, jok
coincides to jj idr» and consequently, jipp = jyp. In other words, the elements jipp from (3.2.1) act as
invariants of Vy-classes. In coordinates, the sets (x!,) indexed by all multiindices a containing at least one
q > m correspond bijectively to elements of V. We conclude by defining 5* in the form of the assignment
Djy + joypp. The section § is obtained from 5" by (2.9). The last assertion regarding the submanifold
structure follows from the coordinate expression of (3.2.1) and the globality of 5. m]

For s < r and the jet projection 7] a local section 1 of p* is said to be 7/-projectable if and only if
(3.2.2) i, 0 r]#(Dja(p) =T o0 U#(Dj[’)l//) whenever  1¢(Djro) = 7((Djry).

In this case we have the projection (1t}).1" assigning correctly 7} o nj*(D) to m}(D). Analogously we define
the m}-projectability of the section 1 of p (see (2.8) and (2.9)).

Proposition 3.3. There is a couple of 1t}-projectable smooth local sections § and §* of the principal bundles Poy

and ﬁzyt connected by the correspondence (2.9) defined on (E/ (see (3.1.1)), which is a dense and open subset of V.
Moreover, §* and § contain jj, pr’im and jgidgx in their ranges.

Further, there is a finite system of couples of 1} -projectable local sections s?z i of Py, and i, i, of por connected
by (2.9) containing §* and § with domains formed by open and dense subsets of V. Finally, there is finite atlas on V

determined by the local maps (Vi i, s*#lfl ...im)‘
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Proof: By (3.1.1) ((l)/ is dense and open in V. Lets = s;_,, and Uy, be from Proposition 3.1. Set s; = (1}).5 to
sand s* = (11]).5" to s*. Applying the convention on V-classes introduced between (3.1.1) and Proposition
3.1 consider s; as a map defined on Gllm\Gllc with values on G. Let (;, : G, — G = Aut(ID}) be the map
defined by

(3.2.3) Csi (jog) = Fi esiomiep(ig)

For any D € V, (;, is constant on [7t}(D)],, by definition. The symbols [ ] and [ ],, indicate V-classes and
“Vi-classes (see the very beginning of Subsection 3.1).

Lets: B \B; — Bj be the global section of p from Lemma 3.2. We assemble the local section § by means
of the following formula

(3.24) $(LiogD = (5 © P)(Cs (oD Go9)) © i'ﬁ;; o s1([jog1p:)

The domain of § obviously coincides to (7})™(Uy..n) =V defined in (3.1.1).

Analogously to § acting as 31, we construct the local sections §;, _;, projectable tos; _;, from Proposition
3.1, by which we replace s; in (3.2.4). Their domains are (71{)‘1 (Uj,..,), obviously dense and open in V and
covering V. The transition maps of the atlas are the restrictions of s’; _o(st ) toIm sf: i Vi 0V ).

-jln 11 Am
O.

Proposition 3.4. The local section § can be considered in the form of 5= sy : p(B}) X p(G;) — B} < G| where 5 is

from Lemma 3.2 and sy = (r}).$ : G, \G; — Gy is the map defined before (3.2.3).

Proof: By [9], Section 13, G} is identified with B} < G}. In what follows, we apply this identification in the
form compatible to 5.16 of this book. We further observe that the map i, defined in (1.4.2) is a Lie group
k

homomorphism Gll — G;. Then the semidirect product Bj G}% can be considered with respect to the left
action of G, on B} defined by

(3.25) (G, o) > oy GO - o G ),

which corresponds to the exact sequence of Lie group homomorphisms

ik,
(3.2.6) {jhidge} = B, =' G} <:>n{ G} — {j} idgs)

k
: D
converse ass1gnments

with the splitting 7, and the insertion i. Then the identification G| ~ B} = G| is given by the mutually
(327) 1 Gog - Gy Gha) ™ by and GGk, o) > ok i (i)
Select jhg € G, jog = (jhg © (&, (jig) ™", jig). Then (3.2.4) can be expressed by

k

(3.2.8) Djg = (50 p(jog © (ilﬁg; 051(Dji,)) ), 51(Djyg)).

We conclude by checking the correctness of (3.2.8), which is easy. m|
Let V(r, k,m) = ( ]ZM)O(]R", R™)o be the space of all m-frames on R¥ orthonormal in the first order. Then
we have

Corollary 3.5. Gr(r,k, m) is identified with (1)~ (O(m)) x (7)™ (O(k—m))\(1}) " (O(k)). Its geometrical structure
reg ]S(IR", R™)o is identified with the Stiefel manifold V(r,k, m) = (n{)‘l(O(k - m))\(ng)‘l(()(k)). Moreover, there is
a principal bundle ty : V(r,k, m) — Gr(r, k, m) with the structure group (n;)‘l(()(m)) defined by 1y, (jo@) = Djre-
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Proof: The first assertion is a direct corollary of Proposition 3.3 if we identify Gr(r, k, m) and its geometrical
structure with p and put the first-order additional (k — m) components of its geometrical structure to the
orthonormalized form. This can be achieved by the Gramm-Schmidt orthogonalization process (see the
proof of Proposition 3.1) followed by the application of the map i’]g;’” to the first-order additional components

obtained by GSOP. The second assertion follows from the definition of V(r, k, m) in the form of (J7,, t)o(]Rk, R™)g

and (2.8). The third assertion follows from the free left action of (n;)‘l(O(m)) considered as a subgroup of
O(k) defined by the jet composition , which is transitive on fibers of mty. ]

Remark 3.6. In a wide class of problems on geometric objects like tensors, velocities, invariants, operators
etc. the techniques of annihilation of some components of the studied objects with a possible selection
of the coordinate system are often applied. Such methods can particularly lead to the decompositions
of such objects to the compoments with properties of principal meaning. As an interesting example we
give the paper [25] where the application of such methods was used for deducing a remarkable result
of decomposing the Riemann, Ricci, Weyl, Einstein and deformation tensor together with obtaining the
new criteria for Einstein spaces, spaces of constant curvature and conformal flat spaces. Coming back to
our problems we remark that one of such decomposition methods has been applied to the regular r-th
order velocities in order to construct the local sections in Lemma 3.2, Proposition 3.3 and Proposition
3.4. As a result we obtain that any r-th order R™-valued regular velocity can be decomposed to the
element representing the Grassmannian Gr(r, k, m) and its location in the fiber of the geometrical structure
represented by fiber coordinates.

Remark 3.7. Having §* from Lemma 3.2 we can also define §* from Proposition 3.3 as follows. For any ji¢ €

(ﬁ#)‘l((cf/) define 61(jyp) = i, o (1}).8* o ) o p*(jip) where (r}).5% is from the very beginning of the proof
k

of Proposition 3.3. Put 0x(jop) = jop — 61(jop) + iy pr; ). Finally, we define the map §* by §(Dy,) =

5#(D92(16<(7)) + 91(]6(P) - 1%]’((76 pr];,m)'

4. Weil Grassmannian

4.1. Definition and construction

We define the support of the Weil Grassmannian as V4 from Definition 2.2(b). Before discussing the
topology on V4 we introduce the notations

4.1) (Va)ir.in = [Pare)(Vi.i,), particularly  Va= [pare](V)

where [parn] : V — V4 is the map defined by Djr, + Djs,. Recalling the subordinate Weil algebra
projection homomorphism 711 4 : A — Ay from Subsection 1.4 we observe easily that for normal A we have
Ay =D} and Va= [m1,4]7 (V).

The smooth manifold topology on V4 cannot be introduced by a direct identification with a homoge-
neous space as for A = D;. Thus we need a finite system of maps defined on V with values in reg T/ R™
satisfying the so-called T-respecting property. As for a possible geometrical structure over V4, we deduce
the principal bundle p¥ : reg Ji(R*,R™)y — V4 with the structure group G,

For a generic Lie group G and g,k € G denote hgh™! by conj(k)(g). We give the so-called transformation
lemma as follows

Lemma 4.1. Let joh € G and tj;, : A — Band ?J'Bh : TA — T8 be the corresponding Weil algebra isomorphism and
natural equivalence (see (1.3.3)). Then

(4.2) Gg = conj(jbh)(Ga) and  GP = conj(jyh)(G?)

Moreover, ?]-Bh(D) is a ‘Vp-class if and only if D is a ‘V s-class. Analogously, ?jgh(D) isa VB-class if and only if D is a
VA-class. In other words, .t;'ah((VA) =V, ) and -t;ah((VA) = Y,
0
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Proof: Every jAa € A is stabilized by jig € G* if and only if any element of B, which is of the form
o ()™ = tpu(jn) for some j4n is stabilized by conj(joh)(j;g). Analogously j'a € A is respected by
jog € G}, in the sense of t;r4(j*a) = j*p for some j*B € A if and only if any element of B, which is of the form
Ao (joh)™ = ti(j4n) for some jA1 is respected by conj(jih)(jog)-

To prove the second assertion, suppose that given jiy, jip € regJi(IRF,IR") there are jik € G}, and
jhg € Ga such that jlip o jig = jik o ji¢ (see Definition 2.2(b) and Lemma 2.3). Clearly, jiy o (jih)™ o
conj(jih)(jig) = jok o jig o (jyh) ™" and the first formula of (4.2) yields E‘Bh((VA) =Vp = (th.(,]h(A). The proof of

T]-Gh(fVA) = VB = V5™ is almost the same with the only difference in jig € G* instead jjg € G4 and the

application of the second formula of (4.2) instead the first one. O
Let D € V4 and ‘W, C V4. We define the subsets D and ‘W4 of V as follows

4.3) D={DyeV;DyCD} and W,= U D.
DeWy

We remark that D is defined even in case height A < r. Let us define the so-called T"-respecting property
as follows.

Definition 4.2. Let Wy € Va. Amap o* : V — reg Js (IR, R™)q is said to satisfy the TA-respecting property on
W 4 if the following claims are satisfied

(i) for any V-class Dy € W the set Im(c*) N Dy is one-elementary and so is the set pagrn o o*(D) for any
Va-class D € Wy

(ii) For any V a-class D € ‘W4 and Dy € D it holds [pagrn o G#(Dl)]pA = [Di]» = D.

For o* of this kind, the map u* = py g 0 o* : V — reg T{R™ is said to be of the TA-respecting property on ‘W
as well.

We remark that if there is a prolongation map with respect to A defined on the whole W4 we can extend
the concept of the T#-respecting property on Wy from ¢* and u* to o and u by (2.8) and (2.9).

Proposition 4.3. (a) Let A be normal Weil algebra, width A = k and pf,  be from Definition 2.10. Then §* and
the other local sections s"#,fl i of p,, from Proposition 3.3 together with §;, ;,, satisfy the T*-respecting property on

(VAdioiy = AN (Vi.i,) (see (&1).
(b) For any general Weil algebra A satisfying width A = k there is a system of local sections oflml.m: V-

reg J§(IR", IR™)y of p* (see (2.8) and Corollary 2.6) and maps uf . =parn 00} , :V — reg T{R™ satisfying the

i1endi
. For normal A, the maps o* _ coincide to 8% . from (a).
...y 1.y

-

TA-respecting property on (Va)i, i,
Proof: (a) Let Vy € V be from Lemma 3.2(a). We construct a map 6? : Vo — reg ]6(]Rk, R™)y satisfying the
T4-respecting property on (V) = [par+](Vo) and check its coincidence with the section §* from Lemma
3.2(b). For any D € [par+](Vo) and j4¢ € D there is Dy € D, jipo € Do N jAp and Tjh = jih € G}, such that
Toh(jo®o) = jowp, (see (3.2.1)). Clearly, par» o Toh(jppo) = Toh(74) = j*¢p, ji¢D, € j*@p. We are searching
for a subset Sp of jA@p intersecting any D; € D at exactly one element. Then the map (6%),5 defined by
D1 — D; N Sp satisfies the T#-respecting property on D in case of its smoothness. Nevertheless, it suffices

to put Sp = Im S-\#D = Im STD for 5 and § from Proposition 3.3 and its proof. Then (6%) coincides to 5, and

D
consequently, 5% = 6. |

It follows from (3.2.1) that besides the T/-respecting property satisfied on (Va)o = [par"1(Vo) the map
0% satisfies the T?-respecting property on (Vg)o = [pgr+1(Vo) for any normal Weil algebra B. This holds
particularly for B = f~}(A) where f : A — C is an isomorphism of Weil algebras obtained by the linear
reparametrization of indeterminates 7, .. ., 7 of A by linear polynomials corresponding to the components

s of the local section s from Proposition 3.1. Applying (3.2.4) we obtain the T4-respecting property for
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$1..m from Proposition 3.3 on the set of all VA_classes contained in the current YV, -class and consequently

on the whole (;/A= (Va).m-

In the last step consider a permutation w = (iy, ..., i) with the reparametrization given by the assign-
ments T, — T;. Lett, : B — A andt,, : T® — T be the Weil algebra isomorphism and the induced natural
equivalence (see (1.3.1), (1.3.2)). Applying Lemma 4.1 we observe that §; _;, coincides to ?“, o§ o?;‘)l for 8§

from (a), now considered as endowed with the TB-respecting property on V.
(b) Everything follows from Propostion 6(a) and the existence of an isomorphism of any Weil algebra
with some normal one (see Subsection 1.4) and Lemma 4.1. O

Corollary 4.4. For any A from Proposition 4.3(b) there is a finite system of maps wzmim : Va — reg TIR™ with

domains (Va)i,..i, = [parnl(Vi.i,) determining the atlas (((VA)il...imrwi__,i ) on V4. Such atlas is compatible with
the topology on V4 obtained as the quotient of the topology on V by [parn]. Moreover, (V a)i, i, are dense in V4.

wlm

Proof: Let us define the maps wf , : V4 — T{R" by setting them to the factorization of uf , from

A
Proposition 4.3 to [par:](Vi.i,). Their injectivity follows from the TA—respecting property of ”ﬁ...i,,,
satisfied on (V4);.i,. The transition maps over them are of the form wi...im o (wjflmjm)‘l, restricted to
Im wjfl__v].m ((Va)i..i, "' (Va)ji...j,)- Then the couples (Va),..i,,, wﬁ_”im) are local maps of a smooth atlas on V4.

As for the second assertion, U C V4 is open in the quotient topology under discussion if and only if
[Par+]1(U) is open in V. In such topology, (V4);..;, are obviously open. Values of the T"-respecting local
sections constructed in Proposition 4.3 can be identified with values of the restrictions of [par] to Vi, i,
which proves our claim. O

Definition 4.5. Let width A = k > m. Then V4 = Gr(A, m) with the manifold structure defined in Corollary 4.4
is said to be the Weil Grassmannian associated to A.

Consider the projection p¥ = [pare]op® : reg J§(IR¥, R™)g — V4 mapping ji ¢ to Dja, and the factorization
[p%] : reg TYR™ — V4 mapping j4¢ to Dja,. We resume our deductions to Proposition 4.6 as follows.

Proposition 4.6. V., = Gr(A, m) is the basis of the principal bundle p¥ : reg Ji(R*, R™)g — V4 with the structure
group G, identified with {T4h,h € DiffoIR™} and the free left action € of Gy, on Jo(IR,R™), defined by the jet
composition, which is transitive on fibers of p¥,.

Proof: Let jhg € reg J7(R¥, R™), be arbitrary. For Djs,, = Pl (joe) there is a local map ((Va)i,..,, w! ) from

i1y
Corollary 4.4 the support of which contains Djs,,. Let Ui...i,,, be the map from Proposition 4.3. It satisfies the
TA-respecting property on (Va);, ;. Clearly, there is exactly one Jjoh € Gy, such that jip € Im jih o aﬁ"jm.
Assigning (Djs,, joh) to jog implies that p¥ is a surjective submersion. It is easy to see that the left action of

G}, on reg Ji(R¥,R™), is free and is transitive on fibers. By [9], 10.3 p* is a principal bundle. ]

eIyt

Remark 4.7. (a) The smooth manifold structure on Gr(A, m) and the smooth manifold structure on any V s-classes
guaranteed by Definition 2.2 and Lemma 2.3 imply that <V 4 is a smooth partition of reg T{R™. Moreover, any D €
(Va)i,..i, determines its subset D* = {Tg‘howzl__im (D); det(j(l)h) > 0}. Further, put ((VA)Z..-im to{D*; D € (Va)i,..i, }-
Since the topologies of both spaces are identified we deduce that (V )! _; is a foliation of Upe(y i DTS TEg THR™.

(b) On the other hand, [p*] : reg Ta“]Rm — Gr(A, m) defined after Definition 4.5 does not have to be a bundle with
standard fiber since m-wide subalgebras over individual elements of V4 = Gr(A, m) do not have to be isomorphic.

(c) In case of normal A we can add the claim of the first-order orthonormality on elements of the total space of the
principal bundle p%. We obtain the principal bundle (9% )on determined by the reduction of the total space of p* to
( ](r)rt)o(]Rk, IR™)o and the structure group G}, to (ng)‘l(O(m)).
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4.2. Weil Grassmannian bundle functor

For any m-dimensional manifold M and x € M, set Gr(A, M), to (Va)xm and define the atlas on (V4)xm by
transmitting the topology from Gr(A, m) to Gr(A, M),, applying T; 1 for some local diffeomorphism mapping
0 € R* to x. In other words, U, is open in (V4)yu if and only if (T'h) ™ (Uy) is open in Gr(A, m) for any T4'h
above. Further, put Gr(A, M) to | e Gr(A, M), and define the map mgrm : Gr(A, M) — Mby the assignment
of x e Mto D € Gr(A, M),. For alocal diffeomorphism f : M — N we define Gr(4, f) : Gr(A, M) — Gr(A,N)
by Diag, > Dia(fop,)- In what follows, write Gr' M instead Gr(A, M) and Gr”* f instead Gr(A4, f). Let €, be
the trivial left action of G}, on Grjy R" = Gr(A, m) defined by gy ( Jol:Djag) = Dray(jagy = Djag. Generalizing

Proposition 2.8 we obtain the natural bundle Gr, which enables to speak about Weil Grassmann manifolds.

Proposition 4.8. The system of spaces Gr* M with Gr'*-maps Gr” f forms a bundle functor on Mf,, identified with
P'™M[Gr(A, m), gral-

Proof: We modify the proof of Proposition 2.8 to our more general situation. Elements of Gr{ M, which
are of the form D, are identified with elements {jjay, D(Tgax)fl(j/\%)} for any jla, € PiM. Conversely,
any {jpa, ¢} is assigned Tj'ax(j*@), applying the coincidence of T4-morphisms and T}-morphisms (see
Subsection 1.5). Both of the assignments are well defined since {f}ax o jih, €ara(jih™, j*¢}) determines the
same element of Gr(A, M) as { jgax, jA(p}, which holds for the converse assignments as well. The assignments

are compatible with the identification of Grt f with {P"f,idGr(a,my}, which is easy to check.

Proposition 4.9. Natural equivalences try : Gr* M — Gr® M are in a bijective correspondence with factorizations
[t]:V4— Vg of natural equivalences t : T* — T? induced by Weil algebra isomomorphismst : A — B.

Proof: For a Weil algebra isomorphism ¢t : A — B, put trg« to [t]= [?jgy] for some jyg € G} (see Subsection

1.3). Since f transforms V4-classes to Vp-classes by Lemma 4.1, trre is well defined and transforms Gr(A, m)
to Gr(B, m). Itis easy to see that trg» is a G},-equivariant map between standard fibers Gr(A, m) and Gr(B, m)
of bundle functors Gr?, Gr? with respect to the left actions €, 4 and g, . This implies that try; is a natural
equivalence (see [9], Section 14).

To prove the converse, assume a natural equivalence try : Gr*M — Gr® M. Since Gr* and Gr® are
defined on MYf,,, tr is over the identity by 14.11, [9]. This yields a G},-equivariant map trg» : Gr(A, m) —
Gr(B, m), which can be viewed as a factorization of a G},,-equivariant map between A™ and B™. By 42.7 in
[9] it is induced by a Weil algebra isomomorphism t : A — B. ]

5. Some kind of partitions and foliations and a modified geometrical structure over Gr(A, m)

L

Consider submanifolds (Lys);,..., C reg T{R™ of the form Tgh(Im(w! . )), Ti'h € G}, (see Subsection

1.5) where wi...im is from Corollary 4.4. Let [p),] be the map defined aftef Definition 4.5. In the present
subsection, let £ be the factorization of the left action of G* on (reg T})oR™ induced by (1.3.3) to reg Tg‘]Rm.

The system L;, ;, of submanifolds (LTth),-l_.jm is in general not a partition of par» o (F*)" Vi) =
(P41 (Va)ir.i,- Indeed, TSmi(j4p) = Toha(j*9) for some jAp € Im(uf ) doesilot imply Tohi(j4) =
T{ha(j*) for another j4¢ € Im(uf ;) unless j*i is an element of Orb(j*@) = tea(j*¢), the orbit with
respect to £. Hence it is easy to see that any of the systems £; ;, cannot be interpreted as a partition
extending the trivial foliation Li]...in,|DjA o Djs, € Va formed by 1-elementary sets Tg‘h( jA(p).

wIm

To extend the system of trivial foliations above to the system of non-trivial partions consider for any
V4-class D the system Fp of submanifolds

(5.1) Fb = {(Frap)p, h € inv Jy(R™, R™)o} = {Tgh(Orb), h € inv Jo(R", R™)o},

where Orb is an arbitrary Aut A-orbit of the left action £ of Aut A = G*/G,4 on reg T R" mentioned above.
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We remark that if D is considered as the disjoint union of its components of connectivity and the
space of all TZ'h under discussion is considered as the disjoint union of its two components of connectivity

determined by the value of determinant jji then ¥ can be viewed as a foliation. Hence we have deduced

Proposition 5.1. For every VA-class D there is a smooth partion Fp of the form (5.1), which induces a foliation
determined by det joh and connected components of D in (5.1). In other words, there is a distribution F assigning a
smooth partition (foliation) Fp on D to any V*-class D.

Nevertheless, any leaf of the partition V4 may intersect a given leaf of p in more elements. Therefore
it is rather problematic to assign a couple of leaves from L; ;, and ¥p to an element of reg TS‘IR’”. On the
other hand, for any wf;ml. and Aut A-orbit Orb specified above define

(52) Eiiyon =1mw! ; NOrb and  (Ersyomi..in = Toh(Ei_i,0m)

R

where 1 € inv J[(R™, R™)o is arbitrary and [ﬁi] has been defined after Definition 4.5. Further, let us define
subsets of V4 as follows

(5.3) Virinors = [PA(Ei,..i.on) = [PR1(Imw! . N Orb)

Hence we have the partition
(54) Gir..inorv = ((Exanon)ir..i, i € MV Jo(R™, R™)o} = {Toh(Ei .y, o), I € inv J{(R", R™)o}
of [pA171 (Vi .i..om) € reg Ty R™. Then we have

Proposition 5.2. Let W C V; i on be a submanifold of V4 and Dy € V;, ;. om. Then the corestriction [f)f;]rw
of [p%] : reg TIR™ — V4 to ‘W determines a bundle with standard fiber Do. Moreover, Dy consists of all algebraic
bases of the Weil subalgebra Ap, of A spanned by m components of an arbitrary element of Dy.

Proof: Let [p%1(j4p) € W. Let jAa = [p"1(j*¢) N Ei, i, on and jAB = Do N E; i, on. There is a well-
defined element (ja)™ o /A8 € AutA with respect to the choice of r-jets contained in j4a, j4g and the
induced natural equivalence ?(jAﬁ)_lojAa over T4, see (1.3.3). Finally, we define a fiber bundle local map
7 : [PA17H(W) = W x Dy by the assignment of ([ﬁi](jA(P),ﬂF]'Algo(]‘Aa)f] (7A9)) € W X Dy to . ]

Let D(1) € V; be arbitrary(for the notation see the very beginning of Subsection 3.1 and also 1.4) and Orb
be any Aut A-orbit of reg TE;‘]R’”. LetE;, i, om,p, be defined as E;,_;, on ﬂ?"’i,w(f)a)) and V; _i,.omp, € Vaas
[p R I(Ei...i,,,om,Dy)) OF [ﬁi/Rm](D(l)) NV, ..i..or, recalling the notation from (4.1), (4.3) and that after Definition
4.5. In the very end we give a corollary of Proposition 5.2 as follows.

coy

Corollary 5.3. The projection [p%] : reg TYR™ — V4 defined after Definition 4.5 is identified with the disjoint
union od bundles [p* 1oy with standard fiber where ‘W are of the form V;, ;. om,p,,- The standard fiber of any [p* 1.y
is identified with an arbitrary Dy € ‘W. The fibers of individual [p* 11y consist of all algebraic bases of subalgebras Ap
of A, D € ‘W where Ap is spanned by m components of any j ¢ € D. For every D € V4, it holds width Ap = m.

Proof: It remains to prove that every V; ;. om,p, is a submanifold of V4, the rest follows from Proposition
5.2. Let A be normal, Orby be the Aut A-orbit containing j* prlim and D(y) be the “V;-class containing jj pr’im.
Recalling j,¢p from (3.2.1) we observe that Ey_,0m, b, = 1/ @D € reg Ty R™; Ajiop € j@pN(Tpo pry ,,(G*))
is a submanifold of reg T4 R"™. This follows from the fact that G is a Lie subgroup and a submanifold of
G}, as its closed subgroup, the fact of (T})o pr’{,m(GA) = Orby and (3.2.1) itself. Since Im wf__m represents a
submanifold of V4 we obtain that Vy_,0m,,p,, i @ submanifold of V4.

Let Orb; be another GA-orbit, which admits a non-empty intersection 7t (Orb1)NDg) for Dy from the first

step. Without loss of generality, suppose that E;_,0:4,,p,,, is non-empty. In such case, E1_n,0rt,,04 = 1 jAll)D €
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reg T¢R”; Ajgtop € ¥ NP, . (Orby)} is a submanifold of reg Ty R™ since not only G* and (T})o pr} , (G*)
are submanifolds in G} and reg(T7)oR™ but so are all G*-orbits. Applying the same argument as in the end
of the previous step we obtain that V1. oy, p,, is a submanifold of V.

Let Dfy) be a V1 class intersecting 77 (Im w!? ) inanon-empty set and Orb, be an Aut A-orbit with non-

empty El...m,Orbz,D;U- To prove that Elmmlorble(/]) is submanifold of reg Tg‘]Rm we apply the same arguments as
in the middle step of the proof of Proposition 4.3(a). More exactly, consider jig; € D{;y N Ims; for s, from
the very beginning of the proof of Proposition 3.3, applying the convention on V-classes made between
(3.1.1) and Proposition 3.1. Let jyg = i’]‘D; (jsgn), for i’]]‘:); see (1.4.2). By means of the natural equivalence t;,
we transform El,..m,Oth,Dgl) under discussion to an object of this kind from the previous step, with the only

difference in a Weil algebra B isomorphic to A instead A and an Aut B-orbit instead the Aut A-orbit Orb,,
applying Lemma 4.1

It remains to investigate the case of general E;, _; ow,p, D € Vi. Applying the permutation w = (i1, .. ., i)
from the last step of the proof of Proposition 4.3(a) together with the natural equivalence t, we analogously
as in the proof of Proposition 4.3(a) transform a general object E;, _;, o p above to an object of this kind from
the previous step with the only difference in a Weil algebra B isomorphic to A instead A and consequently,
in an Aut B-orbit instead the Aut A-orbit Orb. The fact that any Weil algebra is isomorphic to a normal Weil
algebra and Lemma 4.1 prove our claim for a general Weil algebra. ]
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