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Abstract. The aim of this study is to contribute to the theoretical studies on soft closed graphs and soft
continuous mappings. We give a characterization of soft continuity using soft points and obtain a sufficient
condition for the soft equalizer to be soft closed. We also present the notion of a soft filter generated by the
soft net and vice-versa and prove their convergence results correspond to each other. Further, we prove
that with a soft Hausdorff and soft compact co-domain of soft mapping, soft continuity is equivalent to soft
mapping having a soft closed graph.

1. Introduction

The soft set theory presented by Molodtsov in [30] is a completely new approach to the modeling of
vagueness, and it has a rich potential to be applied in several ways. The theory of soft set has become
extremely popular and is used in various areas such as engineering, computer science, and medicine [18, 19]
as well as economics and optimization theory. In [14], Aygün defined a soft matrix, which is a representation
of a soft set. This representation of soft sets has several advantages and is useful for storing a soft set in
computer memory. Thus, soft set theory is very useful for solving complex problems in computer sciences.
Many efforts have focused on generalizing and extending soft sets, for example, it was provided bipolar
soft sets [6], double-framed soft sets [10] and N-soft set [23].

Shabir and Naz [32], in particular, started to study the soft topological spaces. We draw the attention of
the readers to that Çaǧman et al. [16] adopted another approach to study soft topological spaces. Later on,
many authors have done work on the soft topology spaces in [1–3, 7, 11, 17, 25, 29]. Aygünoǧlu and Aygün
[15] presented a soft continuity based on soft mapping and a soft product. In [33], Sahin et al. presented the
concept of the soft filter by using soft sets and investigated their related properties using the convergence
theory of soft filter. Demir and Özbakir [20] introduced new concepts such as soft point, soft net, and
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convergence of soft nets, and defined soft Hausdorff spaces using soft points. In [27], the concept of soft
closed graphs of soft mappings was introduced and the characterizations of soft closed graph of identity
soft mapping were studied. Characterizations of soft closedness of softgraphs utilizing soft nets were also
obtained. Quite recently, four types of soft separation axioms with some practical applications have been
explored and discussed [21, 22].

Compact spaces are among the most significant classes of general topology spaces, and they have a wide
range of properties that can be applied in many fields. This kind of space was discovered and examined in
a soft setting by Zorlutuna et. al [37]. A study of soft compact spaces based on a soft filter and a maximal
soft filter was carried out by Wang [35]. Hida [26] exploited the nature of belonging relations in the soft set
theory to display novel sorts of compactness. Further contributions to soft compactness using extensions
of soft open sets have been achieved by several researchers [12, 13]. Soft versions of nearly Menger and
almost Menger spaces were studied by Al-shami and Kočinac [8, 9]. As noted from the existing literature,
there are numerous divergences of properties and characterizations of topological concepts in classical and
soft environments, for more details we refer the readers to [5, 34].

It is known that the closed graph theorem (For a map f : U→ V, where U is arbitrary topological space
and V is a compact, Hausdorff space, the graph of f is closed if and only if f is continuous) is a basic result
that characterizes continuous functions in terms of their graphs. The Closed Graph Theorem is a powerful
tool that bridges the concepts of topology and continuity, making it a cornerstone in various branches of
mathematics, including functional analysis, optimization, and mathematical physics. In functional analysis,
the theorem is frequently applied to the study of sequence and net convergence. It Specifically ensures
that if a sequence of points in the domain converges to a limit, then the corresponding images under the
function also converge to a limit. This has consequences for understanding the behavior of functions in
various contexts.

In this study, characterizations of soft continuity by using the concept of soft points are given. Also,
we introduce a soft filter generated by the soft net and vice-versa and show their convergence results
correspond to each other. We obtain a relationship between soft closed graphs and soft continuity in order
to understand the new mathematical discipline further.

2. Preliminaries

Throughout this study, U is referred to as the first universal set, D consists of all the parameters of
U, P(U) denotes the power set of U, and S(U,D) represents the family of all soft sets that depend on the
parameter D over U.

Definition 2.1. ([30]) A soft set over U is a pair (G,D), where G : D → P(U) is a function from the set of
parameters D into P(U), this soft set can be expressed by: (G,D) = {(d,G(d)) : d ∈ D and G(d) ∈ P(U)}. In
other words, with D being a parametrizing set, a soft set is defined as the parametrizable family of subsets
of the universe U.

Throughout the study, the GD notation symbol will be used instead of the (G,D) notation symbol
representing the soft set.

Definition 2.2. ([4, 28, 31]) A soft set GD over U is named

(i) a soft point if there exist d ∈ D and x ∈ U such that G(d) = x and G(t) = ∅, for each t ∈ D− d and we write
by (Px

d). The family of all soft points in U is denoted by SP(U,D). Remark that soft points form the
counterpart of classical points in soft settings.

(ii) a complement of another soft set HD if G(t) = U − H(t) for each t ∈ D. We write Gc
D = HD, where the

notation c is refereed to the complement operation.

(iii) an absolute soft set if G(t) = U for all t ∈ D.

(iv) a null soft set if its complement is an absolute soft set.
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Note that the soft points Px1
d1

, Px2
d2

are named distinct providing that x1 , x2 or d1 , d2. Also, it is said that
Px

d ∈ GD if x belongs to G(d).

Definition 2.3. ([4, 28]) It was defined as the union and intersection of soft sets GD and HD over U as
follows.

(i) GD
∼

∪HD = FD, where F(t) = G(t) ∪H(t) for all t ∈ D.

(ii) GD
∼

∩HD = FD, where F(t) = G(t) ∩H(t) for all t ∈ D.

Definition 2.4. ([24]) We call GD a soft subset of HD providing that every G(t) is a subset of H(t).

Definition 2.5. ([32]) Let U be a non-empty set and τ be any subset of P(U). If the subset τ satisfies the
following properties, the τ family is called a soft topology on U, the (U, τ,D) triplet is a soft topological
space (briefly, soft space), and each member of the τ family is called an open set.

(i) ϕ,
∼

U ∈ τ,

(ii) if GD,HD ∈ τ, then GD
∼

∩HD ∈ τ,

(iii) if (Gi,D) ∈ τ, each i ∈ I, then
∼

∪(Gi,D) ∈ τ.

Definition 2.6. ([36]) A set T is said to be a directed set if there exists a relation ≥ on T with:

(i) t ≥ t for all t ∈ T.

(ii) If t1 ≥ t2, t2 ≥ t3 then t1 ≥ t3 for all t1, t2, t3 ∈ T.

(iii) If t1, t2 ∈ T, there exists some t3 ∈ T such that t3 ≥ t1, t3 ≥ t2.

Definition 2.7. ([20]) If T is a directed set, U is a non-empty set. A soft function x : T → SP(U,D) is said to
be a soft net in U and is denoted by (Pxt

dt
)t∈T.

Definition 2.8. ([27]) Let (K,n) : S(U,D) → S(V,E) be a soft mapping. Then soft graph of (K,n) is a soft set
G(K,n)D×E, where G(K,n) : D × E→ P(U × V) is defined by

G(K,n)(d, e) =
{

G(K) if e = n(d)
ϕ if e , n(d)

Here G(K) is the graph of the function K.

Definition 2.9. ([27]) Let (U, τ1,D) and (V, τ2,E) be soft spaces, then (K,n) is a soft mapping with soft closed
graph, if G(K,n)D×E is soft closed in the soft product topological space (U × V, τ1 × τ2,D × E).

Definition 2.10. ([15]) Let (U, τ,D) be a soft space.

1. A family C = {(FD)i | i ∈ I} of soft open sets in (U, τ,D) which satisfies ∪
i∈I

(FD)i = Ũ is called soft open

cover of U. If a finite subfamily of a soft open cover C of U is also a soft open cover of U then it is
called a finite sub-cover of C.

2. U is referred to as a soft compact if all soft open covers of U have a finite sub-cover.

Definition 2.11. ([20]) A soft space (U, τ,D) is called soft Hausdorff space provided that for any two distinct
soft points Px1

d1
, Px2

d2
∈ SP(U,D) there exist members of τ FD and GE such that Px1

d1
∈̃ FD, Px2

d2
∈̃GE and FD∩̃GE = Φ.

Proposition 2.12. ([33]) Let FD be a soft closed set on U where (U, τ,D) is a soft Hausdorff space then FD is a soft
compact set on U.
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In the published manuscripts, it was exhibited different classes of soft Hausdorff spaces with respect to
distinct points (not soft points) which do not satisfy the above proposition; see, [21, 22, 32].

Theorem 2.13. ([27]) Let (U, τ,D) be a soft space. Let GD ∈ S(U,D) be a soft set and Px
d ∈ SP(U,D). Then Px

d ∈̃ GD

if and only if there exists a soft net {Pxα
dα
|α ∈ A} in GD i.e. Pxα

dα
∈̃ GD for all α ∈ A such that Pxα

dα
→ Px

d.

Theorem 2.14. ([27]) Let (U, τ1,D) and (V, τ2,E) be two soft spaces. A soft mapping (K,n) : S(U,D) → S(V,E)
has a soft closed graph if and only if whenever Pxα

dα
−→ Px

d in U and (K,n)(Pxα
dα

) = PK(xα)
n(dα) −→ Py

e in V then

Py
e = (K,n)(Px

d) = PK(x)
n(d) .

Definition 2.15. ([37]) Let (U, τ1,D) and (V, τ2,E) be two soft spaces. Let (K,n) : S(U,D)→ S(V,E) be a soft
mapping and Px

d ∈ SP(U,D)

1. (K,n) is a soft continuous at Px
d ∈ SP(U,D) if for each GE ∈ Nτ(P

K(x)
n(d) ) there exist FD ∈ Nτ(Px

d) such that

(K,n)(FD) ⊆̃ GE.
2. (K,n) is a soft continuous if (K,n) is a soft continuous at each soft point in SP(U,D).

Here,Nτ(Px
d) represents the family of all neighborhoods of a soft point Px

d.

Theorem 2.16. ([37]) Let (U, τ1,D) and (V, τ2,E) be two soft spaces. A soft mapping (K,n) : S(U,D) → S(V,E) is
a soft continuous mapping if and only if (K,n)−1(FE) is a soft closed set in U for all soft closed subsets FE of V.

3. Main results

We show the relationship between soft continuous mappings and soft graphs. Also, we introduce
the definition of a soft filter generated by the soft net and vice-versa. We prove the equivalency of the
convergence theory of soft filter and soft net. Therefore, results proved in [33, 35] for soft filter will also
hold for soft nets.

First, we elucidate, by example below, that a soft continuous mapping may not have a soft closed graph.

Example 3.1. Let U = {a, b, c}, D = {0, 1} and τ = {Φ, Ũ, (F1,D), (F2,D),
(F3,D), (F4,D), (F5,D), (F6,D)} where,

F1(0) = {a},F1(1) = {c};

F2(0) = {b},F2(1) = {a};

F3(0) = {c},F3(1) = {b};

F4(0) = {a, b},F4(1) = {a, c};

F5(0) = {a, c},F5(1) = {b, c};

F6(0) = {b, c},F6(1) = {a, b}.

Let (K,n) : S(U,D)→ S(V,E) be soft mapping where K = 1U and n = 1D. Then (K,n) is a soft continuous mapping
but soft graph of (K,n), G(K,n) : D ×D→ P(U ×U) defined by,

G(K,n)(d, e) =
{
∆(K), if d = e
∅, if d , e

is not soft closed in U ×U.

As in the characterization of soft closure in Theorem 2.13, the use of soft points below enables us to give
a characterization of soft continuity which is not possible by using points of the soft set as shown in [25].
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Theorem 3.2. Let (U, τ1,D) and (V, τ2,E) be two soft spaces. A soft mapping (K,n) : S(U,D) → S(V,E) is a soft
continuous mapping at Px

d ∈ SP(U,D) if and only if Pxα
dα
−→ Px

d implies PK(xα)
n(dα) −→ PK(x)

n(d) .

Proof. Let (K,n) be a soft continuous mapping at Px
d and GE ∈ Nτ(P

K(x)
n(d) ). Then, we find a soft neighbourhood

FD of Px
d such that (K,n)(FD) ⊆̃ GE. If Pxα

dα
−→ Px

d, then soft net {Pxα
dα
| α ∈ A} is eventually in FD so {PK(xα)

n(dα) |

α ∈ A} is eventually in GE. Therefore, PK(xα)
n(dα) −→ PK(x)

n(d) .
Conversely, suppose (K,n) is not a soft continuous at Px

d, then there is a soft neighbourhood GE of
PK(x)

n(d) such that (K,n)(HD) ⊈̃ GE for every HD ∈Nτ(Px
d). Therefore, for every HD there is some dHD such that

(K,n)(HD)(dHD ) ⊈GE(dHD ). Define a soft net, T : Nτ(Px
d)→ SP(U,D) as THD = P

xHD
dHD

where P
xHD
dHD
∈̃HD for which

P
K(xHD )
n(dHD ) <̃GE. Now, P

xHD
dHD
−→ Px

d but P
K(xHD )
n(dHD ) does not converge to PK(x)

n(d) , which contradicts our assumption.

For our next findings, we make use of the following.

Lemma 3.3. ([20]) A soft space (U, τ,D) is a soft Hausdorff space iff any soft net in (U, τ,D) converges to one soft
point at most.

The following theorem demonstrates that if the co-domain of a soft continuous mapping is a soft
Hausdorff, then that soft mapping has a soft closed graph.

Theorem 3.4. Let (K,n) : S(U,D)→ S(V,E) be a soft continuous mapping where (V, τ2,E) is a soft Hausdorff space
then G(K,n)D×E is a soft closed set.

Proof. Suppose P(x,y)
(d,e) ∈̃ G(K,n)D×E, then by Theorem 2.13, there exist a soft net P(xα,K(xα))

(dα,n(dα)) in G(K,n)D×E such

that P(xα,K(xα))
(dα,n(dα)) −→ P(x,y)

(d,e) , which implies Pxα
dα
−→ Px

d and PK(xα)
n(dα) −→ Py

e . Since (K,n) be a soft continuous, then by

Theorem 3.2, PK(xα)
n(dα) −→ PK(x)

n(d) . Now, as PK(xα)
n(dα) −→ Py

e and (V, τ2,E) be a soft Hausdorff space then by Lemma

3.3, Py
e = PK(x)

n(d) which implies e = n(d) and y = K(x) and therefore, P(x,y)
(d,e) ∈̃ G(K,n)D×E. Hence, G(K,n)D×E is a

soft closed set.

We shall see below (Corollary 3.7) that the converse of the above-mentioned theorem is also true. The
following example shows that a soft mapping with soft closed graph need not be soft continuous if the
domain is not soft compact.

Example 3.5. Let U be the set of real numbersR. Let D = {d} and τ = {Φ, Ũ} ∪ {(FO)D}where, (FO)D = {d,O},
where O is the usual open set in R. Then (U, τ,D) is a soft space. Define

K : R→ R by, K(x) =
{

1/x, if x , 0
0, if x = 0 and e : D→ D by n(d) = d. Then (K,n) : S(U,D)→ S(U,D) be soft

mapping and soft graph of (K,n), G(K,n) : D×D→ P(U×U) defined by, G(K,n)(d, d) = {(x, 1/x)|x ∈ R}∪{0, 0},
is a soft closed in U ×U. But (K,n) is not a soft continuous at P0

d.

Wereason by the following theorem that the soft equalizer ED of soft continuous mapping and a soft
mapping with soft closed graph is a soft closed set.

Theorem 3.6. Let (K,n), ( f ,n′ ) : S(U,D)→ S(V,E) be two soft mappings such that one of them has soft closed graph
and the other is a soft continuous mapping and S = {Px

d ∈ SP(U,D) | (K,n)(Px
d) = ( f ,n′ )(Px

d)} be a subset of SP(U,D)
then the soft set ED = ∪̃

Px
d∈S

Px
d is a soft closed set in U.

Proof. Assume (K,n) is a soft continuous mapping and ( f ,n′ ) has soft closed graph. Let Px
d ∈̃ ED then

by Theorem 2.13, there exist a soft net Pxα
dα

in ED such that Pxα
dα
−→ Px

d. Since (K,n) is a soft continuous,
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(K,n)(Pxα
dα

) −→ (K,n)(Px
d) by Theorem 3.2. Also, Pxα

dα
∈̃ FD which implies (K,n)(Pxα

dα
) = ( f ,n′ )(Pxα

dα
). Now,

( f ,n′ ) has a soft closed graph then Pxα
dα
−→ Px

n and ( f ,n′ )(Pxα
dα

) −→ (K,n)(Px
d) implies (K,n)(Px

d) = ( f ,n′ )(Px
d).

Therefore, Px
d ∈̃ ED and hence, ED is a soft closed set in U.

From Theorems 3.6 and 3.4 above we get the next.

Corollary 3.7. Let (K,n), ( f ,n′ ) : S(U,D) → S(V,E) be two soft continuous mappings and (V, τ2,E) be a soft
Hausdorff space. Then FD defined in above theorem is a soft closed set in U.

Definition 3.8. ([33]) A soft filter on U is a non-empty subset L ⊆ S(U,D) such that

1. Φ < L,
2. If FD, GV ∈ L, then FD∩̃GE ∈ L,
3. If FD ∈ L and FD⊆̃GE, then GE ∈L.

Definition 3.9. ([33]) LetL1 andL2 be two soft filters on U. Then,L2 is finer thanL1 (orL1 is coarser than
L2) if L1 ⊆ L2.

Definition 3.10. ([33]) Let L be a soft filter on U. Then a subfamily C of L is called a soft filter base for L if
for any FD ∈ L there exist GE ∈ C such that GE ⊆̃ FD.

Definition 3.11. ([20]) A soft filter L on a soft space (U, τ,D) is said to converge to Px
d ∈ SP(U,D), and we

write L −→ Px
d, ifNτ(Px

d)} ⊆ L.

For the application of results on soft filters, we define the following.

Definition 3.12. Let {Pxα
dα
| α ∈ A} be a soft net in U and B = {(Gα0 )D = ∪̃

α≳α0
{Pxα

dα
| α0 ∈ A}. Now, as for some α

′

,

α
′′

∈ A there is some α0 ≳ α
′

and α0 ≳ α
′′

such that (Gα0 )D ⊆̃ (Gα′ )D ∩̃ (Gα′′ )D, B is a soft filter base and soft
filter it generates is the associated soft filter of {Pxα

dα
| α ∈ D}.

Definition 3.13. Let L be a soft filter on U and let DL = {(Px
d,FD) | Px

d ∈̃ FD ∈ L} then (DL,≳) be a directed
set where the relation ≳ is defined by (Px

d,FD) ≳ (Px
d,GD) if and only if FD ⊆̃ GD. Then, the mapping

T : DL → SP(U,D) defined by T(Px
d,FD) = Px

d is soft net generated by soft filter L.

We have established how to generate a soft net from the soft filter and a soft filter from the soft net. In
order to get some results, we must also show their convergence results correspond to each other.

Proposition 3.14. Let (U, τ,D) be a soft space.

1. A soft net Pxα
dα
−→ Px

d if and only if its associated soft filter L −→ Px
d.

2. A soft filter L −→ Px
d if and only if its associated soft net Pxα

dα
−→ Px

d.

Proof. 1. Let {Pxα
dα
| α ∈ A} be a soft net such that Pxα

dα
−→ Px

d and FD ∈ Nτ(Px
d) then there exist α0 ∈ A such that

Pxα
dα
∈ FD for all α ≳ α0 which implies ∪̃

α≳α0
Pxα

dα
⊆̃ FD. Now (Gα0 )D = ∪̃

α≳α0
Pxα

dα
∈ B, where B is a soft filterbase for

L. Hence FD ∈ L and therefore, L −→ Px
d.

Conversely, assume FD be soft neighbourhood of Px
d then FD ∈ L then there exist GD ∈ B such that

GD⊆̃FD where GD = (Gα0 )D = ∪̃
α≳α0

Pxα
dα
⊆̃ FD which implies Pxα

dα
∈̃FD for every α ≳ α0. Hence Pxα

dα
−→ Px

d.

2. Let L −→ Px
d and FD be soft neighbourhood of Px

d. Then FD ∈ L implies (Px
d,FD) ∈ DL where

T : DL → SP(U,D) be a soft net then for (Py
e ,GD) ≳ (Px

d,FD), T(Py
e ,GE) = Py

e ∈̃GD⊆̃FD implies T(Py
e ,GD)∈̃FD.

Conversely, let T→ Px
d and FD be soft neighbourhood of Px

d then there exist (Py0
e0
,GD) ∈ DL where GD ∈ L

such that for every (Py
e ,HD) ≳ (Py0

e0
,GD), T(Py

e ,HD)∈̃FD. In particular, for every Py′
e′ ∈̃GD and (Py′

e′ ,GD) ≳
(Py0

e0
,GD). We get T(Py′

e′ ,GD)∈̃FD implies Py′
e′ ∈̃FD and which further implies GD⊆̃FD. Hence, FD ∈ L.
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Definition 3.15. A soft point Px
d is termed a soft set point of soft net {Pxα

dα
| α ∈ A} if for every FD ∈ Nτ(Px

d)
and α0 ∈ A there exists α ≳ α0 such that Pxα

dα
∈̃ FD.

Definition 3.16. ([35]) Let L be a soft filter on a soft space (U, τ,D). A soft point Px
d is named a soft cluster

point of L if Px
d ∈̃ GD for every GD ∈ L.

Proposition 3.17. Let (U, τ,D) is a soft space.

1. Px
d is a soft set point of soft net {Pxα

dα
| α ∈ A} if and only if Px

d is a soft set point of the associated soft filter L.
2. Px

d is a soft set point of soft filterL if and only if Px
d is a soft cluster point of the associated soft net {Pxα

dα
| α ∈ A}.

Definition 3.18. Let U be a set and (X,≳) and (Y,≳) be two directed sets. Let T : X→ SP(U,D) be a soft net
and η : Y→ D be a map. Suppose for every α0 ∈ A there exist µ0 ∈ Y such that η(µ) ≳ α0 whenever µ ≳ µ0,
then Toη : Y→ SP(U,D) be a soft subnet of the soft net T. We write η(µ) = αµ and (Toη)(µ) = T(η(µ)) = P

xαµ
dαµ

.

Lemma 3.19. ([35]) For a soft space (U, τ,D), the following are equivalent:

1. A soft space (U, τ,D) is a soft compact.
2. Every soft filter on U has a soft set point.
3. Every maximal soft filter on U converges to a soft point.

Theorem 3.20. Let (K,n) : S(U,D)→ S(V,E) be a soft mapping and (K,n) has a soft closed graph then (K,n)−1(FD)
is soft closed set in U for all soft compact subsets FE of V.

Proof. Let FE be a soft compact subset of U and (K,n)−1(FE) is not a soft closed in U. Therefore, there exist Px
d

∈̃ (K,n)−1(FE) such that Px
d <̃ (K,n)−1(FE) then by Theorem 3.2, there exist a soft net Pxα

dα
in (K,n)−1(FE) such that

Pxα
dα
−→ Px

d. This implies (K,n)(Pxα
dα

) = PK(xα)
n(dα) is a soft net in (FE). Now, (FE) is a soft compact then by Lemma

3.19, (K,n)(Pxα
dα

) has a soft subnet (K,n)(P
xαµ
dαµ

) which converges to Py
e ∈̃ FE. This implies P

xαµ
dαµ

is a soft subnet of

Pxα
dα

and therefore, P
xαµ
dαµ
−→ Px

d. Since, (K,n)(P
xαµ
dαµ

) −→ Py
e and (K,n) has a soft closed graph, Py

e = (K,n)(Px
d) by

Theorem 2.14. This implies Px
d ∈̃ (K,n)−1(Py

e ) ⊆̃ (K,n)−1(FE) which contradicts our supposition.

Finally from Theorem 2.16 and Theorem 3.20 above, we have the following converse of Theorem 3.4.

Corollary 3.21. Let (K,n) : S(U,D) → S(V,E) be a soft mapping with soft closed graph and (V, τ2,E) is a soft
compact space then (K,n) is a soft continuous.

4. Conclusion

In this study, we have presented the properties and characterizations of continuous mappings in terms
of soft closed graphs. The central focus of this paper revolves around the investigation of soft mappings
with soft closed graphs, particularly in the context of soft compact spaces. We have proved a significant
result that emphasizes the connection between the continuity of soft mappings and soft closed graphs. This
result establishes a connection between the topological properties of soft compact spaces and the continuity
of soft mappings with closed graphs. Our findings not only advance the understanding of soft continuous
mappings but also have broader implications for the development of soft set theory. The work creates
chances to conduct further study on the relationships between different mathematical structures and soft
topology. On the other hand, the vital notions of topology such as soft closed graphs and soft set points
are used in various applications including image processing and pattern recognition. It can also provide
applications in computer algorithms including modeling and simulation.

To make a complete frame for the ideas presented herein, one can examine the behaviors of soft closed
graphs when soft Hausdorff space is defined in terms of ordinary points and partial belonging relation as
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follows (U, τ,D) is called a soft Hausdorff space if for any two distinct ordinary points x1, x2 ∈ SP(U,D) there
exist disjoint soft open sets FD and GE such that

x1 ⋐ FD, x2 ⋐ GE, and

x1 < FD, x2 < GE.

Of course, it will be obtained new characterizations since some classical properties of Hausdorff spaces are
evaporated in such kinds of soft Hausdorff spaces.
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