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On y,~interpolative Hardy—Rogers type contractions over rectangular
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Abstract. In the present study, the concept of a new type of contraction namely i,—interpolative Hardy—
Rogers contraction is introduced which is a unification of g-interpolation and Hardy-Rogers contraction. By
utilizing this concept, unique results of the existence of fixed points in the extent of rectangular quasi—partial
b—metric space are proved. The validity of the obtained results is verified with the help of comparative

examples with vivid representations. The existence of a solution to the Fredholm integral equation is also
provided here via a fixed point for such mappings.

1. Introduction

The theory of fixed point first emerged in the solution of differential equations in 1837 when Liouville[28]
solved such equations by applying successive approximation. Later on, in the year 1890, Picard[27] in-
troduced the applicability of the acclaimed method and developed solutions of corresponding differential
equations. In 1906, Frechet[11] defined the metric space by observing the notion of distance between the
points and their images. After that, Banach[6] in 1922, derived the most prominent technique to prove a
fixed point theorem in complete metric space. This theorem is characterized by the Banach Contraction
Principle which evidenced an imperative role in nonlinear functional analysis. Numerous generaliza-
tions were given by means of different types of contractive mappings such as Chatterjea[9], Bhaktin[7],
and Czerwik[8]. Among these generalizations, one of the propitious theorems was given by Kannan[15]
in 1968, in which the continuity condition was removed from the contraction map to obtain a fixed point. i.e.,

Theorem 1.1 ([15]). Let (X,d) be a complete metric space and a self map T : X — X be a Kannan contraction
mapping. i.e.,

d(To, Tn) < old(o, To) + d(n, Tn)]

forall 6,n € X, where g € [0, ). Then T admits a unique fixed point in X.
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Karapmar gave the definition of interpolative contraction to investigate the metric fixed point theory in
2018.i.e.

Theorem 1.2 ([17]). Let (X, d) be a metric space, a self-mapping T: X — Xis said to be an interpolative Kannan-type
contraction map if there exists a constant o € (0,1) and o € (0,1) such that

d(To,Tn) < old(o, To)I* - [d(n, TmI'™*
forall o,n € X\ Fix(T), where Fix(T) ={z € X: Tz = z}.
Along the line, one more result was established by Karapinar[19] on Hardy—-Rogers contraction map.i.e.,

Theorem 1.3 ([19]). Let (X, d) be a metric space. If the self~mapping T : X — X is an interpolative Hardy—Rogers
type contraction i.e., there exist p € [0,1) and o, 8,y € (0, 1) with a +  +y < 1, such that

d(To, Tn) < pld(o, )1Pd(o, To)1* - d(n, Tn)]”
1-a-p—
: %(d(o, ) +d(, Ta))] " forallo, e X\ Fix(T),

then T has a fixed point in X.

A new refinement was done in 2019 by Gaba et.al.[14] as the inequality in Theorem I.2)increases the degree
of freedom of the powers appearing on the right-hand side in the framework of standard metric spaces. It
is observed that the aforementioned result satisfies the contractive condition for all ,17 € X with ¢ # To. In
this case, if T has a fixed point in X then it will be a constant map, and therefore T has a unique fixed point
trivially. To remove such triviality, the contraction condition with g, 1 € X \Fix(T), where Fix(T) is the set of
all fixed points of T is preassumed which leads to obtain non-unique fixed points and possesses more than
one fixed point. Motivated by interpolation theory Debnath et.al.[10] and Aydi et.al.[5] presented results
on set valued interpolative maps and w-interpolative maps. One of the interesting results appears when
Karapinar[18] indicated the gap in the proof of the uniqueness in Theorem[1.2} In the last decade, the notion
of multivalued interpolative contractions via an auxiliary function called as simulation function came into
existence. See [20, 22, [24] which given numerous applications in data dependence and homotopy.

In 2000, the concept of rectangular metric space was introduced by Branciari [1]] in which quadrilateral
inequality is used. Suzuki [3] in his research discovered that the comparison of topological properties of the
standard metric space and the rectangular metric space is not feasible. The generalized results in b-metric
space as graphical b-metric space provided by Younis[32] and b-Branciari by Samani[29]30] are the promi-
nent results in fixed point theory. Recently, Karapinar[21} 23] established some new fixed point theorems
for Meir-keeler modified versions in the context of interpolative theory. Subsequently, other interesting
versions of the Banach are presented by [2}[13} 25} [26] [31].

Throughout this paper, we have denoted IN the set of all positive integers, and rqp, denotes the rectan-
gular quasi—partial b—metric space.

2. Preliminaries
In this section, we present the basic definitions and results that are required to obtain the main results.

Definition 2.1 ([1). A rectangular metric on a non-empty set X is a function r: X XX — R* such that for all
oveEXandu,veX:

1. r(o,1) = 0iff 0 = 1 (identification),

2. r(o,n) = r(n, o) (symmetry),

3. r(o,n) < r(o,u) + r(u,v) + r(v, n) (quadrilateral inequality).
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(X, r) is called a rectangular metric space.

Definition 2.2 ([T). Let (X, r) be a rectangular metric. Then
1. A sequence {0,,} C X converges to o € M if (o, 0) =limr(o, 0y,).
n—oo

2. A sequence {o,} C X is called a Cauchy sequence if for every € > 0, there exists a positive integer N = N(¢)
such that ¥(o,,0,) < € forall n,m > N.

3. (X, r) is said to be a complete rectangular metric if each Cauchy sequence in X is convergent.

Example 2.3. Let X = R*. For the metric, r: XXX — R* defined by r(o,n) = (0 — n)?. Then, (X,r) is a complete
rectangular metric space.

Definition 2.4 ([12]). A rectangular quasi-partial b-metric on a non-empty set X is a function rqpy: XxX — R*
such that for some real number s > 1 and all o,n,u,v € X:

1. rqpy(0,0) = rqpe(o, 1) = rqpe(v,n) = 0 = 1),
2. rqpy(0, o) < rapy(o, 1),

3. rqpy(o,0) < rqpy(n, 0),

4. rqpy(0,1) < slraps(o, u) + rqpy(u, 0) + rapy(o, M = rgpp(u, u) = rgps(v, v).

(X, rqpy) is called a rectangular quasi-partial b-metric space. The number s is called the coefficient of (X, rqpy).

Example 2.5. Let X = [0, 4%] equipped with the metric rqpy(o, 1) = sinklo —n|+o for any (o, 1) € Xx Xand k > 2.

It is easy to verify that (X, rqpyp) is a rectangular quasi-partial b-metric space. It has been observed that if rqpy(o, o) =
rqpe(o, 1) = rqpu(n, 1), that is,

o =sinklo — n| + ¢ = 1, then (1) holds trivially for any (o, 1) € X X X.

Furthermore, using the property of the sine function:

s

B 4k]/ then

sinklo — 1| > 0 and sinklo — 1| > |0 — n| when |o — 1| € [0
rqpy(o, 0) = 0 < sinklo — | + o = rqpp(o, ).

We have,
rgpp(o,0) =0
=lo-n+n
<lo—nl+1l

<sinklnp—ol+n
< rqpy(1, 0)

Tt
Moreover, for any o,1,u,v € X, |0 —u| < <—andllo—ul+u—ol+v-nl] < % when

&)
SIE

k(lo—ul+u—-vl+lv-n1l) e [O, lk]' or
k(lo =6l +10—al) < g and since sin o is increasing on [O, g] we get the (4) ofDeﬁnition:
rqpy(o, 1) + rqpp(u, u) + rqpp(v,v) = sinklo —n| + o+ u +v

<sink(lo—ul+lu—-v|+lo—n)+o+u+vo
<k(o—ul+lu-vl+p-n)+oc+u+v
< ksinklo — u| + ksinklu —v| + ksinklv —n|+ o+ u+v
= k(sink|o — u| + sinklu — v| + sinklv — 1| + 0 + u + v)
< s(rgpp(o, u) + rqpy(u, v) + rqpy(v, n)) for all o,n,u,v € X

and s > k, hence (X, rqpy) is a rectangular quasi-partial b-metric space with s > k as shown in figure[l]
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Figure 1: The shaded region demonstrates the visualisation of the function rqpy(o,n) = sinklo — |+ cin X = [O, %]

Definition 2.6 ([12]). Let (X, rqpy) be a rectangular quasi-partial b-metric space. Then, the following hold:

1. Ifrgpy (0, ) =0, then o = 1.
2. If o =1, then rqpy, (6, n) > 0 and rqpy, (1, ) > 0.

Definition 2.7. Let (X, rqpp) be a rectangular quasi-partial b-metric space. Then for xo € X, € > 0, the rqpy — ball
with centre xo and radius € is defined as:

By, (o, €) = {y € X rqpy(xo, y) < €, 1qpy(y, xo) < €}
Definition 2.8 ([12]). Let (X, rqpy) be a rectangular quasi-partial b-metric. Then:

1. A sequence {0,,} C X converges to o € X if and only if rqpy(o, 0) =limrgpy(o, 0,).
n—oo
2. Asequence {o,} C X is called a Cauchy sequence if and only if lim rqpp(0,, o) exists.
n,m—00

3. A rectangular quasi-partial b-metric space (X, rqpy) is said to be complete if every Cauchy sequence {o,} C X
converges with respect to T,g, to a point o € X such that

rqpe(0,0) = Hm 1qpp(0u, om).
4. A mapping f: X— X is said to be continuous at oy € X if, for every € > 0, there exists 6 > 0 such that

f(B(ao,0)) < B(f(00), €)-

Definition 2.9. Let W be denoted as the set of all non-decreasing function i: [0, 0] — [0, 0] such that Y i, W (t) <
oo for each t > 0. Then :

1. (0) =0,
2. Y(t) < tforeacht > 0.

Definition 2.10. Let 0, be a sequence in a (X, rqpy). Consider g,h: X — X are self mappings and o € X. o is said
to be the coincidence point of pair g, h if go = ho.

3. Main Results

In this section, the concept of Hardy-Rogers type interpolative contraction in rectangular quasi-partial b-metric
space is discussed. Here @ denotes the set of functions ¢: [0, 00) — [0, 00) such that ¢(t) < t for every t > 0.
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Theorem 3.1. Let (X, rqpy) be a complete rectangular quasi-partial b- metric space and T be a self-mapping on X
such that

rapy(To, Tn) < d([rapp(o, M1 . [rape(o, T o))’ . [rqps(n, T )] .
% [rqpo(o, T 1) + raps(n, T 0)]° (1)

is satisfied for all o, € X\ Fix(T): where Fix(T) = {a € X|Ta =a},a,B,y,0 € (0,1) such that a + f+y + 6 > 1 and
¢ € D.

If there exists 0 € X such that rqpy(o, To) < 1, then T has a fixed point in X.

Proof. Let 0y € X be arbitrary. Define a sequence o, by 0,41 = To, for all integers n, and we assume that
oy # Toy, for all n. From equation [T} we have

v

1qpp(Tan-1, Tan) < O([rqpe(cn-1,02)]" - [rqpe(0n-1, Ton-1)]’ - [rqps(on, Ton)]
1
£ [T’LIPb(Unfl, Tan) + qub(ﬁn, Tan—l)]é (2)

1q06(0n, 0n1) < O([rqpe(On-1, 01" - [rqpe(@n-1, 02) I - [r4pe 00, 3us1)] -

1
35 9ps(On-1,0041) + 1Py (o, o). 3)

Since ¢(t) < t for each t, equation 3] yields,

Y

rqpy(0n, 1) < ([rpo(0n-1,00)]" - [rgpy(0n-1,0)) . [rgpy(0n, 0s1)]
% [rap(0n, Ous1) + 1Py, )]

rapp(0n, oni1) < ([rqpe(ou-1,00)]" - [rqps(0n-1, 001 - [rqps(on, )] -
é [rqps(2, 0ns1) + 1Py, 00-1)]”,

1qp6(0n, 0ue1) < ([rqps(0u-1, o))" - [rapPp(0n1, o)’ - [rqPp(0, 00s1)] -
[rqps(0n, 0us1)]’ - (4)

Suppose that rgpy(on, 01-1) < rqps(0n, Opns1)

1
g(l”qpb(amzrﬁnﬂ) + 1qpy(On+1, 0n) + (rqps(on, 0n-1)) < 1GPp(0n, Ops1).
or
[rgpp(0n+1,0n)] < PIrape(on, 0n-1)]

Therefore, we obtain [rqpy(0y+1,0n)] < [rqpp(04, 0n-1)], which is a contradiction. Thus, we have

1
g(rqph(am—b Gn+l) + qub(ffnﬂl Gn) + (T"Wh(ffn, Gn—l)) < qub(an—ll Un)-
[rape(0n, )] 7™ < [rqpu(on-1, ou)]**" .

Now using the fact that rgpy(09,01) < 1, so there exists a real A € (0,1) such that rqpy(c9,01) < A and

_ rqpp(o,01)+1
/\ - 2

a+f a+p

rqpp(o1, 02)([rqpe(00, 01)] 77 < ATH3.
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a+f
1-y-0

By taking € = for all n,

1qPp(Ons1, On) < 1GPp(0n, 0no1)' e

rqpp(On, o) < AT,
where 0 < A <1 for n = 1, this is the inequality at the bottom. By induction
1qpy(Ons2, Ons1) < 1qPp(One1, 0,) 7€ < (ALFYHHE = A0
Since (1 +€)" > 1 + ne and since A < 1.
1qpp(0ns1, 0n) < A€ = AT
for all n, where p = A¢ < 1. This implies :

’

rqpe(On+k, On) < /\(e’“k‘l L2 L4, )
1-¢

:/\e(l—e

) =cp",

where ¢ = /\en(%) for some integer k, from which it follows that o, forms a Cauchy sequence in (X, rqpy)
and then it converge to some z € X. Assume thatz # Tz.

By letting 0 = 0, and 1 = z, we obtain for all n, which leads to rqp,(z,Tz) = 0. Then Tz = z. Thus T
has a fixed pointin X. [

In our next result, we will prove the existence of the fixed point using y,~interpolative Hardy-Rogers type
contraction in the framework of rqp; space.

Definition 3.2. Let (X, rqpy,s) be a rectangular quasi partial b—metric space and T, g: X — X be a self~mappings
on X. We say that T is y,~interpolative Hardy Rogers type contraction if there exists a continuous ¢ € V and
a,B,y €(0,1) such that

rapu(To, Tn) < Y([rqpy(g0, gn)]* - [raps(go, T o)’ . [rapu(gn, Tn)] .

3 [rapv(go, Tn) + rapy(gn, To)] ™77 (5)

is satisfied for all 6,1 € X such that To # go, Tn # gy and go # gn.
Theorem 3.3. Let (X, rqpy,s) be a complete rectangular quasi—partial b—metric space and T is a g-interpolative

Hardy-Rogers type contraction. Suppose that To C go such that go is closed. Then, T and g have a coincidence point
in X.

Proof. Let oy € X, since To C go, we can define inductively a sequence o, such that oy = 0, and go,1 = To,
for all integer n. If there exist n € 0,1, 2,3, .. such that go, = Tx, then o, is a coincidence point of g and T.
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Assume that go,, # To, for all n. By equation[5, we obtain

rqpo(Tonsr, Ton) < Y([rape(gonss, gon)]® - [raps(gonst, Tows) P - [rape(gon, Tow)] -
% [rqpe(gons1, Tan) + 1qpp(gon, Tonm)] P
<Y([rapu(Ton, To,-D)]" - [raps(Tan, Tows))l [rapy(To,1, To,)] -
% [rqpe(Ton, Toy) + rqpy(To,_1, Ton)] 27
< P(([rgpe(Tan, Tou-0)]" - [rgps(Tou-1, To)]” . [rgpe(Tan, Toun))’ -

— [57qP0(Ons1, Ons2) + 51qPp(Tus2, 0n) + 51qPL(Tn, 5u1)] P77

3s
< Y(([rqps(Ton, Tou-1)]" - [rqpe(Ton-1, Tan)]” - [rqpe(Tow, Ton)]’ -
[rqpe(To,, To,-1)] ™). (6)

Using the fact () <t for each t >0,
rqps(Tone1, Tow) < P([rqpp(Tow, Ton1)]" . [rgps(Tou-1, Tow)]".

[rapy(To, Town)) - [rapy(To, Ton1)] 7).
By equation[] we have

< ([rqpu(Tow, Tou1)]* . [rgpe(Tou-r, Tow)]” . [rape(Tow, Town)]’ -
[rgpo(Ton, Tows)]’ - [rgps(To,, To,1)] "

[rqpb(TanH/ Toy, ] -

< [rqpp(Toy, Ton_l)]l_ﬁ
rqpp(Tops, Toy) <7

qpb(TUn; Tan—l) for all n >1

That is, the positive sequence {rgpy(Ton+1, To,)} is monotone decreasing and consequently, there exists ¢ > 0
such that lim,_,c 7qpp(Ton+1, Ton) = ¢

[rqpo(Ton, Ton-)]" " [rqpe(Ton, Tow)I < [rqpe(Toy, Ton-)' " [rqpe(To,, Ton1)]
=rgpp(To,, Top-1).

Therefore, with the equation together with the non-decreasing character of i, we get

rqpb(TUn+1/ Tan) < lzb[ rqpy (Tan/ T‘jn 1)] [WPb(TUn/ T‘7n+1)]lS
<Y [rapp(Ton, Tou-1)]

By repeating this arrangement, we get

ﬂ]Pb(TanH, To,) < 1 [qub(TUn, Tan—l] < 1P2 [WPb(Tﬁm Tan—l]
< - <Y [rgpe(Tor, Too] .

Taking n — oo in equations and using the fact lim, ., ¥"() = 0 for each t > 0, we deduce that ¢ = 0.
That is,

lim rgpp(Toy41, Toy) =0, 8)

We want to show that, To, is a cauchy sequence. Suppose on the contrary that there exists an € > 0 and
subsequence {T0,,} and {To,,} of {To,} such that n; is the smallest integers for which :

ng > my > k,rqpy(Top, Toy,) > and rqpy(Toy,_,, Tom,) < €
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Consequently, we arrive

rqpp(g0n,, gm,) =rqpe(Ton-1, Tom-1)
< srqpp(Ton-1, Tow,) + rqpe(Tom,., TOm-1)
< s€ + srqpy(Tow,, Tom-1)

by the inequality above, we obtain
Lim sup rqpy(Tow—1, Tom,-1) = lim sup rqpy(90u,, gom,)
< s€

Substituting ¢ = 0,,, and 1 = 7,,, in equation 5}
€ < rqpy(Tan,, Tow,) < Y([rapy(gon,, gom)]" - [raps(gon,, Tou ) - [rape(gom,, Tow)] .
% [rqpe(g0,, Tom,) + 1Gps(gom,, Tan)] P o)
< Y([rgpe(Ton-1, Tom-1)]" . [rqpp(Ton-1, Tffnk)]ﬁ [rapo(Tom-1, Towm)] -
% [rqpe(Ton, -1, Towm,) + rqpe(Tom, 1, To, )] P
(10)
Letting the limit as k — co in equation [I0]and Definition[2.9

€< ]}im sup rqpy(Ton, Tow) < P(0) = 0.

Therefore € = 0 which is a contradiction. Since To, and go, are Cauchy sequence. Let u € X such that,

lim rqpy(Ton, Tz) = lim rqps(gons1,2) = 0.
As z € gX, there exist u € X such that z = gu. We shall prove that u is a coincidence point of g and T. By
equation [f]
rapo(Tan, Tu) < Y((raps(gon, 911" - [rape(gon, To)l" - [raps(gu, Tw)]”
% [rqps(gon, Tu) + rqpy(gu, To,)] P
< ([rape(gon, g)]* - Trgp(gon, Ton) 1’ - [rapy(gu, Tw)]" .
= [rqp(go,, Tu) + rapy(gu, To,)] P
(11)
Letting n — o in equation[IT} we conclude that Tu =z = gu. O

Corollary 3.4. Let (X, rqpy,s) be a complete rectangular quasi partial b—metric space and T, g: X — X be a self—
mappings on X. Consider T is 1 ,~interpolative Reich-Rus-Ciri¢ type contraction if there exists a continuous ip € W
and a, B € (0,1) such that

rapy(To, T) < Y([raps(go, gn)]* - [raps(go, T o)) . [rqpu(gn, Tm))'~*~F

is satisfied for all 0,1 € X such that To # go, Tn # gy and go # gn. Suppose that To C go such that go is closed.
Then, T and g have a coincidence point in X.
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The existence of a fixed point is simple to prove for continuous maps. The following example can justify
this result with a discontinuous map by visual illustration.

Example 3.5. Let us consider X = [0, 0o) equipped with a complete rectangular quasi-partial b-metric as rqpy(o, ) =
(c-1)?+o0.
We define two self mappings T and g as shown in Figure[JJon X as g(0) = o forall o € X and

1 €[0,3
Ta:{l 0 €00,3]

o2 ,0 € (3/00)

1 2 3 4 5

Figure 2: The intersection of T and g map at the point o = 1 demonstrates the coincidence point on X = [0, 3].
T is a Wg-interpolative Hardy—Rogers type contraction for a = 3, p = 35 and y = 14—0. Taking (t) = % for all
t € [0, o0). Consider the following cases:

Case 1: If (o,n) = [0,3] or 0 = 1 for all o € [0, 00).It is obvious.
Case 2:If 0,1 € (3, 00) and o # 1. We have,

1
52

<1 (12)
O

1 1
raps(To, Tn) = (= - ?)2 +
From equation B}
=y([rqps(g0, gn)]* - [raps(go, TO)) . [rapu(gn, Tn)] .
1 g
3 [rape(go, Tn) + raps(gn, To)]' P

o 1 1P 17T
=17[)([1’qpb(o', n)] : [nﬂ”b(ar ;)] . [”qpb(fll F)j| .
1 1 1-a—p-y
3 [mpb(ﬁ, F) + rqpu(n, ;)]

o p Y
=y([(0-n7+0] . [(o - %)2 + G] : [(n - %)2 +1

1
3s
>1

1 1 ety
[(o—¥)2+o+(n—§)z+n]

Thus, the inequality holds.

rapu(To, Tn) < Y([rqpy(g0, gn)]* - [raps(go, T o)1’ . [rapu(gn, Tn)] .

3 [rapv(go, Tn) + rapy(gn, To)] ™77
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Figure 3: Dominance of right-hand side of equation[B]is visually checked in Figure[B} Thus the inequality holds for g, 7 € (3, ).

Case 3:If 0 € [0,3] \ {1} and n € (3, 00). We have,

rqpp(To, Tn) = (1 - %)2 +1<1.79. (13)
From equation B}

=([raps(go, gm]* - [rqpe(go, To))’ . [rqpe(gn, T)] .
% [rapu(go, Tn) + rqps(gn, To)]' P

o 1 18 17
=¢([raps(o,m] -[”‘IPb(U/;)] -[WPZ:(’%@)] )
1 1 1-a-p-y
3s [nﬁ?b(o, ¥) + rqpy(1, ;)]

5 p Y
o=+ o] Jio- Zpr vl - 2]

1-a-p-y

1 1 1
g[(ﬁ—?)z"‘a"'(’?—;)z“"?

>1.79.

Hence, one is the coincidence point of g and T.

Figure 4: Dominance of right-hand side of equation is visually checked in Figure E Thus inequality holds for ¢ € [0,3]\{1} and
1 € (3, 00). Here FigureEldemonstrates at the point 1 = 1, mappings g and T satisfy go = To.
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4. Application in solving non-linear Fredholm integral equation

In this section, the existence of a unique solution for the non-linear Fredholm integral equation has
been proved. To apply our result, consider X = C[0, 1] to be a set of all real continuous functions on [, b]
equipped with metric rqpy(f, 9)=|f — gl=maxe[s,51 | f(t) — g(t)| for all £, g € C[a, b]. Then (X, rqpp) is a complete
rectangular quasi-partial b- metric space.

Let us consider the non-linear Fredholm integral equation:

o(t) =o(t) + blTﬂ ftK(t, s,a(s)) ds (14)

0
for all t,s € [a, b] and assume that K: [a,b] X [4,b] X X = X and v: [4,b] — Ris a continuous function where
v(t) is a given function in X.

Theorem 4.1. Suppose (X, rqpy) be a rectangular quasi-partial b-metric space rqpy(f, 9) = |f — gl = maxeepapy | f(t) —
gt) forall f,g € Xand T, g: X — X be an operator on X defined by

t
To(t) = v(t) + 7= [K(t,s,0(s)) ds (15)
0
Ifthereexist k€ [0,1), a, B,y € (0,1) with a + f+y < 1such that for all 0,1 € X, s,t € [a, b] satisfying the following
inequality
0 < K(t,s,0(s)) — K(t,s,n(s)) < kM(a(s) — 1(s))

where M = |go(s) — gn(s)I* |go(s) — To(s)F 1gn(s) — Tn@) £ (g0(s) = Ta@)| + lgn(s) — Ta(s))=*F
Then the integral equation has a unique solution in X.

Proof. Since,

1 t
ITa(t) = Tn(®)l < b Of K(t, s, 0(s)) = K(t, 5, n(s))Ids (16)

t
< e [ Mo - s
0

t
k
< Of (90(5) ~ 1" lga(s) ~ o) Jgn(s) ~ T

%(L‘]G(S) — Tn(s)| + lgn(s) — To(s))) =P )ds
rqpb(Ta, TT]) = g}aal)ﬁ |TU(t) _ Tn(t)|

k t

= To—al ieton Of (190(5) = gn©)I* 1go(s) = To@)F.lgn(s) - TP
%(Igo(s) — Tn(s)| + lgn(s) — Ta(s)) ™ *F7)ds

< kB(o,n)

Thus X = C[a, D] is a complete metric space. Therefore all the conditions are satisfied by setting 1 (t)=kt
for all t > 0, where k € [0, 1) and the integral equation has a solutionin X. O



P. Gautam, S. Verma / Filomat 38:22 (2024), 7847-7858 7858

Funding This research has received no funding.

Conflict of interest Both authors declare that they do not have a conflict of interest.

References

(1]
[2]
13
[4]

[5]
[6]
[7]
(8]
191
[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]
[27]

[28]

[29]
[30]

[31]
[32]

H. Aydi, C. M. Chen, E. Karapnar, Interpolative Reich-Rus-Ciri¢ Type Contractions via the Branciari Distance, Mathematics, 7(2019),
84. doi:10.3390/math7010084.

R. P. Agarwal, E. Karapmar, D. O'Regan, and A. F. Roldén-Lépez-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer,
Cham, Switzerland, 2015.

M. Asim, R. George, M. Imdad, Suzuki type multivalued contraction in C*- algebra valued metric spaces with an application, AIMS
Math. 6(2)(2020), 1126-1139.

M. Asadi, M. Afshar, Fixed point theorems in the generalized rational type of C-class functions in b-metric spaces with Application to
Integral Equation, 3C Empresa. Investigacién y pensamiento critico. 11 (2), 64-74.

H. Aydi, E. Karapmar, A.F. Roldén Lépez de Hierro, w-interpolative Cirié-Reich-Rus-type contractions, Mathematics, 7(1)(2019), 57.
S. Banach, Sur les opérationsdans les ensembles abstraits et leur application aux équationsintégrales, Fund Math. 3, (1922),133-181.

L. A. Bakhtin, The contraction principle in quasi-metric spaces, In. Funct. Anal. 30(1989), 26--37.

S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra. 1(1993), 5—11.

S. K. Chatterjea, fixed-point theorems, C. R. Acad. Bulgare Sci. 25(1972), 727-730.

P. Debnath, M. de La Sen, Set-valued interpolative Hardy-Rogers and set-valued Reich-Rus-Cirié-type contractions in b-metric spaces,
Mathematics 7(2019),849. doi:10.3390/math7090849.

M. Fréchet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo. 22(1)(1906),1-72.

P. Gautam, L. M. Sénchez Ruiz, S. Verma, Fixed Point of Interpolative Rus—Reich-Ciri¢ Contraction Mapping on Rectangular Quasi-
Partial b-Metric Space, Symmetry 13(2021), 32, 2-16.

S. Ghasemzadehdibagi, M. Asadi, S. Haghayeghi, Nonexpansive mappings and continuous s-point spaces, Fixed Point Theory. 21
(2)(2020), 481-494.

Y. U. Gaba, E. Karapinar, A New Approach to the Interpolative Contractions. Axioms 8, 110(2019).

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60(1968), 71-76.

E. Karapmar, M. Erhan, A. Ozturk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Model. 57(2013), 2442-244.
E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2(2018), 85-87.

E. Karapmar, R. P. Agarwal, H. Aydi, Interpolative Reich—Rus—Cirié type contractions on partial-metric spaces, Mathematics, 6,
256(2018), doi:10.3390/math6110256.

E.Karapmar, O.Alqahtani, H. Aydi,On interpolative Hardy—-Rogers type contractions, Symmetry 11(2018),8.

E. Karapinar, R. P. Agarwal, Interpolative Reich-Rus-Ciri¢ type contractions via simulation functions, Mathematics 6(2018),256.

E. Karapinar, Interpolative Kannan-Meir-Keeler type contraction, Adv. Theory Nonlinear Anal. Its Appl. 5(4)(2021), 611-614.

M.S. Khan, Y.M. Singh, E. Karapinar, On the interpolative (¢, )-type Z-contraction, UPB Sci. Bull. Ser. A, 83(2021), 25-38.

E. Karapmnar, A. Fulga, S. S. Yesilkaya, Interpolative Meir-Keeler Mappings in Modular Metric Spaces, Mathematics 10(16)(2022),
2986.

E. Karapmar, A. Ali, A. Hussain, H. Aydi, On Interpolative Hardy-Rogers Type Multivalued Contractions via a Simulation Function,
Filomat 36(8)(2022), 2847-2856.

E. Karapmar, A survey on interpolative and hybrid contractions, In Mathematical Analysis in Interdisciplinary Research (pp. 431-
475)(2022), Cham: Springer.

M. Noorwali, Common fixed point for Kannan type contractions via interpolation, ]. Math. Anal. 9(6)(2018), 92-94.

E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successive, ]. Math. Pures Appl.
6(1890), 145-210.

C. Sturm and J. Liouville, Extrait d'un Mémoire sur le développement des fonctions en séries dont les différents termes sont assujettis i
satisfaire a une méme équation différentielle linéaire, contenant un parametre variable, J. Math. Pures Appl. 2(1837), 220-223.

M. E. Samani, M. Vaezpour, M. Asadi, New fixed point results on Branciari metric spaces, J. Math. Anal. 8(6), 132-141.

M. E. Samani, S. M. Vaezpour, M. Asadi,New fixed point results with a g -admissible contractions on b-Branciari metric spaces,]. Inequal.
Spec. Funct. 9(4), 101-112.

K. Safeer, R.Ali. Interpolative Contractive Results for m-Metric Spaces, Adv. Theory Nonlinear Anal. Its Appl. 7(2)(2023), 336-347.
M. Younis, D. Singh, M. Asadi, V. Josh, Results on Contractions of Reich Type in Graphical b-Metric Spaces with Applications, Filomat
33 (17), 5723-5735.



	Introduction
	Preliminaries
	Main Results
	Application in solving non-linear Fredholm integral equation

