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Abstract. This paper discusses the existence of mild solutions for Riemann-Liouville fractional semilinear
evolution equations in an ordered Banach space. Under some monotonicity conditions and noncompactness
measure method in the weighted space of continuous functions, we prove that the functional sequences are
convergent and that their limits are maximal and minimal mild solutions of the considered problem. An
example to illustrate the applications of the main results is given.

1. Introduction

Recently, fractional differential equations have attracted considerable interest in both mathematics and
applications, since they have been proved to be valuable tools in modeling many physical phenomena.
There has been significant development in fractional differential equations in recent years, see the mono-
graphs of Benchohra et al.[9, 10], Samko et al.[34], Kilbas et al.[25], Miller and Ross [30], Podlubny [33],
and the references therein. The definitions of Riemann-Liouville fractional derivatives or integrals initial
conditions play an important role in some practical problems.
Heymans and Podlubny [24] have demonstrated that it is possible to attribute physical meaning to initial
conditions expressed in terms of Riemann-Liouville fractional derivatives or integrals on the field of the
viscoelasticity, and such initial conditions are more appropriate than physically interpretable initial condi-
tions.
The theory of fractional semilinear evolution equations is new and important branch of fractional differ-
ential equation theory, which has an extensive physical background and realistic mathematical model and
hence has been emerging as an important area of investigation in recent years, see [40].

The monotone iterative method based on lower and upper solutions is an effective and flexible mecha-
nism. It yields monotone sequences of lower and upper approximate solutions that converge to the minimal
and maximal solutions between the lower and upper solutions. For fractional differential equations, the
paper used the monotone iterative method of lower and upper solutions, see [5, 12, 29, 36].
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In this paper, we use a monotone iterative method to prove the existence of lower and upper solutions
of semilinear equations with Riemann-Liouville derivative

RLDq
0+u(t) + Au(t) = f (t,u(t),Gu(t)), t ∈ I′ := (0, b],(

I1−q
0+ u

)
(t) = u0,

(1.1)

where RLDq is the Riemann-Liouville fractional derivative of order q, 0 < q < 1, with the lower limit zero,
I1−q
0+ is Riemann-Liouville integral of order 1− q and b > 0, the state u(·) takes value in a Banach space E with

norm ∥ · ∥E and −A is the infinitesimal generator of semigroup in a Banach space, then −(A +MI) generates
a uniformly bounded semigroup for M > 0 large enough, f : I × E × E → E is a given function satisfying
some assumptions. The operator G given by

Gu(t) =
∫ t

0
K(t, s)u(s)ds, (1.2)

is a Volterra integral operator with integral kernel K ∈ C(∆,R+), ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b}. Throughout
this paper, we always assume that

K0 = sup
t∈I

∫ t

0
K(t, s)ds.

2. Preliminaries

Let I := [0, b] and E be an ordered Banach space with the norm ∥ · ∥E and partial order ≤, whose positive
cone P = {u ∈ E,u ≥ θ} is normal with normal constantN . Let C(I,E) and C(I′,E) be the spaces of E-valued
continuous functions on I and I′, respectively. C(I,E) is endowed with the uniform norm topology

∥u∥C = sup{|u(t)|, u(t) ∈ E, t ∈ I}.

Set L1(I,E) the space of E-valued Bochner integrable functions on I with norm

∥ f ∥L1 =

∫
I
| f (t)|dt.

We consider the Banach space of continuous functions

C1−q(I,E) = {u ∈ C(I′,E) : lim
t→0+

t1−qu(t) exists }.

A norm in this space is given by

∥u∥q = sup
t∈I

{
t1−q
∥u(t)∥C

}
.

The following lemma is a variant of the classical Arzelà-Ascoli theorem. For Ω a subset of the space
Cq(I,E), define Ωq by

Ωq = {uq : u ∈ Ω},

uq(t) =
 t1−qu(t), if t ∈ I′,

lim
t→0+

t1−qu(t), if t = 0.

It is clear that uq ∈ C(I,E).

Lemma 2.1. [7] A set Ω ⊂ C1−q(I,E) is relatively compact if and only if Ωq is relatively compact in C(I,E).
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Proof. See for instance [7], Lemma 1.

Further, we give some concepts of the fractional calculus.

Definition 2.1. [13] If u ∈ L1([0, b],E), then

(Iqu)(t) :=
∫ t

0

(t − s)q−1

Γ(q)
u(s)ds, (2.1)

exists a.e. on [0, b] and it called Riemann-Liouville fractional integral of order q > 0. Here Γ denotes the Gamma
function. Let 0 < q < 1. If u ∈ L1([0, b],E) is such that t→ I1−qu(t) is differentiable a.e. on [0, b], then

RLDqu(t) =
1

Γ(1 − q)
d
dt

∫ t

0
(t − s)−qu(s)ds =

d
dt

I1−qu(t), (2.2)

and exists a.e. on [0, b] and it is called the Reimann-Liouville fractional derivative of order q. The previous integral
is taken in Bochner sense. Let ϕq(t) : R→ R defined by

ϕq(t) =


t1−q

Γ(q)
, if t > 0,

0, if t ≤ 0.

Then
Iqu(t) = (ϕq ∗ u)(t),

and
RLDqu(t) =

d
dt

(ϕ1−q ∗ u)(t).

(Iqu)(t) :=
1
Γ(q)

∫ t

0
(t − s)1−qu(s)ds. (2.3)

Here a(·) ∗ b(·) is convolution, i.e. ∫ t

0
a(t − s)b(s)ds.

Lemma 2.2. [18] Let p, q ∈ R+. Then∫ 1

0
sq−1(1 − s)p−1ds =

Γ(q)Γ(p)
Γ(q + p)

,

and hence∫ x

0
sq−1(x − s)p−1ds = xq+p−1 Γ(q)Γ(p)

Γ(q + p)
.

The integral in the first equation of Lemma 2.2 is known as Beta function B(q, p).

We recall generalized Gronwall’s inequality for fractional differential equation whose proof can be found
in [37].

Lemma 2.3. Let v : [0, b] → [0,+∞) be a real function and w(·) be a nonnegative, locally integrable function on
[0, b]. Assume that there are constants k > 0 and 0 < p < 1 such that

v(t) ≤ w(t) + k
∫ t

0

v(s)
(t − s)p ds. (2.4)
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Then there exists a constant K(p) such that

v(t) ≤ w(t) + K(p)k
∫ t

0

w(s)
(t − s)p ds, (2.5)

for every t ∈ [0, b].

Let us recall the following definitions and properties of measure of noncompactness, for more details,
we refer the reader to [3, 4, 6, 8, 26, 35].
Set B(E) be the space of all bounded subsets in E.

Definition 2.2. A function β : B(E)→ R+ is called a measure of noncompactness in E if

β(coΩ) = β(Ω),

for every Ω ∈ B(E), where coΩ denotes the closed of convex hull of Ω.

Definition 2.3. A measure of noncompactness β is called

(1) monotone if Ω0,Ω1 ∈ B(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1),

(2) nonsingular, if a ∈ E and each Ω ∈ B(E) we have β({a} ∪Ω) = β(Ω),

(3) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω ∈ B(E),

(4) if {Wn}
+∞
n=1 is a decreasing sequence of bounded closed nonempty subset and lim

n→+∞
β(Wn) = 0, then ∩+∞n=1Wn is

nonempty and compact,

(5) algebraically semiadditive, if β(Ω0 +Ω1) ≤ β(Ω0) + β(Ω1) for each Ω0,Ω1 ∈ B(E).

As of the most important examples of a measure of noncompactness possessing all these properties is the Hausdorff
measure of noncompactness defined by: χ(Ω):

χ(Ω) = inf{ϵ > 0, for which Ω has a finite number of balls with radius ≤ ϵ}.

Notice that the HausdorffMNC satisfies the semi-homogencity condition, i.e.:

χ(λΩ) = |λ|χ(Ω),

for each λ ∈ R and each Ω ∈ P(E).

For any W ⊂ C(I,E), we define∫ t

0
W(s)ds =

{∫ t

0
u(s)ds : u ∈W, for t ∈ I = [0, b]

}
,

where W(s) = {u(s) ∈ E : u ∈ w}.

Lemma 2.4. [40] If W ⊂ C(I,E) is bounded and equicontinuous then co(W) is also bounded equicontinuous contin-
uous on I

Lemma 2.5. [6] Let E be a Banach space, Ω ⊂ C(I,E) be bounded and equicontinuous. Then β(Ω(t)) is continuous
on I, and

β(Ω) = max
t∈I
β(Ω(t)) = β(Ω(I)).

Definition 2.4. [7, 13] A continuous map F : X ⊂ E → E is said to be condensing with respect to a MNCβ
(β-condensing) if for every bounded set Ω ⊂ X that is not relatively compact, we have

β(F(Ω) ≧̸ β(Ω).
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Lemma 2.6. [26] If {un}
+∞
n=1 ⊂ L1(I,E) satisfies ∥un(t)∥ ≤ κ(t) a.e. on I for all n ≥ 1 with some κ ∈ L1(I,R+). Then

the function χ({un(t)}+∞n=1) belongs to L1(I,R+) and

χ

({∫
I
un(t)| n ≥ 1

})
≤ 2

∫
I
χ(un(s), n ≥ 1)ds.

Lemma 2.7. [40] Let E be a Banach space , D ⊂ E be bounded. Then there exist a countable set D0 ⊂ D, such that
β(D) ≤ 2β(D0).

Based on [[7], Definition 8], we give the following the lemma.

Lemma 2.8. Assume that −A is the infinitesimal generator of C0-semigroup {P(t)}t≥0 of uniformly bounded linear
operators in E. If f ∈ C(I × E × E,E) for any u ∈ C1−q(I,E), u is a mild solution of the equation

LDq
0+u(t) + Au(t) = f (t,u(t),Gu(t)), t ∈ I′(

I1−q
0+ u

)
(t) = u0,

(2.6)

if and only if u satisfies the following integral equation

u(t) = tq−1Sq(t)u0 +

∫ t

0
(t − s)q−1Sq(t − s) f (s,u(s),Gu(s))ds, (2.7)

where

Sq(t) = q
∫
∞

0
θMq(θ)P(tqθ)dθ, (2.8)

and the function Mq is the function of Wright type

Mq(θ) =
1
πq

∞∑
n=1

(−θ)n−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞). (2.9)

Lemma 2.9. [7, 40] The operator Sq(t) has the following properties:

(i) For any fixed t ≥ 0, Sq(t) is linear and bounded operators, i.e., for any u ∈ E,

∥Sq(t)u∥ ≤
M
Γ(q)
∥u∥. (2.10)

(ii) Sq(t)(t ≥ 0) is strongly continuous for every t ≥ 0, which means that, for all 0 < t′ < t” ≤ T, we have

∥Sq(t”)u − Sq(t′)u∥ → 0 as t”→ t′.

(iii) For every t > 0, Sq(t) is also compact operator if P(t) is compact.

Definition 2.5. The continuous function u(·) is said to be a mild solution of (1.1) with I1−q
0+ u(0) = u0, if the integral

equation

u(t) = tq−1Sq(t)u0 +

∫ t

0
(t − s)q−1Sq(t − s) f (s,u(s),Gu(s))ds (2.11)

is satisfied for t ∈ I′.

Lemma 2.10. [5] Let P be a normal cone of the ordered Banach space E and v0,w0 ∈ E with v0 ≤ w0. Suppose
that Q : [v0,w0]→ E is a increasing has a minimal fixed point u and a maximal fixed point u in [v0,w0], moreover,
vn → u and wn → u. If we let vn = Qvn−1 and wn = Qwn−1(n = 1, 2, · · ·) which satisfy v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤

u ≤ u ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0.
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3. Main Results

Definition 3.1. If a function v0(·) ∈ C1−q(I,E) satisfies
RLDq

0+v0(t) + Av0(t) ≤ f (t, v0(t),Gv0(t)), t ∈ I′,(
I1−q
0+ v0

)
(t) ≤ u0,

(3.1)

then we call it a lower solution of the problem (1.1). If all inequalities of (3.1) are inverse, we call it an upper solution
of the problem (1.1).

Theorem 3.1. Suppose that E is an ordered Banach space, its positive cone P is normal, and −A generates a positive
C0-semigroup {P(t)}(t ≥ 0) on E, f ∈ C(I × E × E,E) and u0 ∈ E.
If problem (1.1) has a lower solution v0(·) ∈ C1−q(I,E) and upper solution w0(·) ∈ C1−q(I,E) with v0 ≤ w0, and the
following conditions are satisfied

(H1) there exists a constant λ > 0 such that

f (t,u2, v2) − f (t,u1, v1) ≥ −λ(u2 − u1),

for any t ∈ I, and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Gv0(t) ≤ v1 ≤ v2 ≤ Gw0(t).

(H2) there exists a constant L ≥ 0 such that

β({ f (t,un, vn)}) ≤ L(β({un}) + β({vn})),

for any t ∈ I, and increasing or decreasing monotonic sequences {un} ⊂ [v0(t),w0(t)], and {vn} ⊂ [Gv0(t),Gw0(t)].

(H3) let vn = Nvn−1, wn = Nwn−1,n = 1, 2, · · ·, such that the sequences vn(0) and wn(0) are convergent.

Then problem (1.1) has minimal and maximal mild solutions u and u between v0 and w0.

Proof. We consider the following system
RLDq

0+u(t) + (A + λI)u(t) = f (t,u(t),Gu(t)) + λu(t); t ∈ I′,(
I1−q
0+ u

)
(t) = u0,

(3.2)

for any λ > 0, −(A + λI) also generates a C0-semigroup T(t) = e−λtP(t)(t ≥ 0) on E and T(t) is positive and
continuous in the uniform operator topology for t > 0. That is there exists M∗

≥ 1 such that sup
t∈[0,+∞)

∥T(t)∥ ≤

M∗. By (2.10), we have that

∥S∗q(t)u∥ ≤
M∗

Γ(q)
∥u∥, t ≥ 0. (3.3)

Let D = [v0,w0], we define a mapping N : D −→ C1−q(I,E) by

Nu(t) = tq−1S∗q(t)u0 +

∫ t

0
(t − s)q−1S∗q(t − s)[ f (s,u(s),Gu(s)) + λu(s)]ds, (3.4)

by Lemma 2.8, u ∈ D is mild solution of the problem (1.1) if and only if

u = Nu.
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We will divid the proof in the several steps.
Step1. We show that N : [v0,w0] → C1−q(I,E) is increasing monotone operator. In fact, for ∀t ∈ I, v0 ≤ u,
v ≤ w0, by assumptions (H1), and (H2), we have

f (t, v0(t),Gv0(t)) + λv0(t) ≤ f (t,w0,Gw0(t)) + λw0(t),

so ∫ t

0
(t − s)q−1S∗q(t − s)[ f (s,u(s),Gu(s)) + λu(s)]ds

≤

∫ t

0
(t − s)q−1S∗q(t − s)[ f (s, v(s),Gv(s)) + λv(s)]ds.

Hence, from (3.4) we have
Nu ≤ Nv.

We show that v0 ≤ Nv0 and Nw0 ≤ w0. Let h(t) = RLDq
0+v0(t) + Av0(t) + λv0(t), h ∈ C1−q(I,E) and h(t) ≤

f (t, v0(t),Gv0(t)) + λv0(t), t ∈ I′. By Lemma and the positivity of operators S∗q, we have that

v0(t) = tq−1S∗q(t)v0(0) +
∫ t

0
(t − s)q−1S∗q(t − s)h(s)ds

≤ tq−1S∗q(t)u0 +

∫ t

0
(t − s)q−1S∗q(t − s)[ f (s, v0(s),Gv0(s)) + λv0(s)]ds

= Nv0(t), t ∈ I′,

namely, v0 ≤ Nv0. Similarly it can prove that Nw0 ≤ w0. Thus, N : [v0,w0] → [v0,w0] is a continuous
increasing monotone operator.
Now, we define two sequences {vn} and {wn} in [v0,w0] by the iterative scheme

vn = Nvn−1, wn = Nwn−1, n = 1, 2, · · · (3.5)

Then, from the monotonicity of N, we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.6)

Step2. We prove that {vn} and {wn} are converge in I′. Let Ω = {vn,n ∈ N} and Ω0 = {vn−1,n ∈ N}. Then
Ω = N(Ω0). FromΩ0 = Ω∪ {v0} it follows that β(Ω0(t)) = β(Ω(t)) for t ∈ I′, let φ(t) := β(Ω(t)), t ∈ I′ we will
show that φ(t) ≡ 0 in I′. For t ∈ I′, by (1.2) and Lemma 2.6, we get

β(G(Ω0)(t)) = β
({∫ t

0
K(t, s)vn−1(s)ds : n ∈N

})

≤ 2K0

∫ t

0
β(Ω0(s))ds

= 2K0

∫ t

0
φ(s)ds,

therefore ∫ t

0
β(G(Ω0))ds ≤ 2bK0

∫ t

0
φ(s)ds.



M. Benyoub et al. / Filomat 38:22 (2024), 7859–7870 7866

For t ∈ I, from using Lemma 2.1, assumptions (H2) and (H3), we have

φ̃(t) = t1−qβ(Ω(t)) = β(t1−qN(Ω0)(t))

= β(S∗q(t)u0 + t1−q
∫ t

0
(t − s)q−1S∗q(t − s)[ f (s, vn−1(s),Gvn−1(s)) + λvn−1(s)]ds)

≤
2M∗b1−q(L + 2bLK0 + λ)

Γ(q)

∫ t

0
(t − s)q−1β(Ω0(s))ds

≤
2M∗b1−q(L + 2bLK0 + λ)

Γ(q)

∫ t

0
(t − s)q−1sq−1s1−qβ(Ω(s))ds

≤
2M∗b1−q(L + 2bLK0 + λ)

Γ(q)

∫ t

0
(t − s)q−1sq−1β(Ωq(s))ds

φ̃(t) ≤
2M∗b1−q(L + 2bLK0 + λ)

Γ(α)

∫ t

0
(t − s)q−1sq−1φ̃(s)ds.

(3.7)

Hence, by Lemma 2.3 φ̃(t) ≡ 0 in I. So, for any t ∈ I, {vn(t)} is precompact and {vn(t)} has a convergent
subsequence. By the monotonicity of (H1), we prove that {vn(t)} itself is convergent, i.e., lim

n→∞
vn(t) = u(t),

t ∈ I. Similarly, lim
n→∞

wn(t) = u(t), t ∈ I. Evidently, {vn(t)} ∈ C1−q(I,E), so u(t) is bounded integrable on I. For
any t ∈ I,

vn(t) = Nvn−1(t)

= tq−1S∗q(t)u0 +

∫ t

0
(t − s)q−1S∗q(t − s)[ f (s, vn−1(s),Gvn−1(s)) + λvn−1(s)]ds.

(3.8)

If n→∞ in (3.8), by the Lebesgue dominated convergence theorem, we obtain

u(t) = N(u(t))

= tq−1S∗q(t)u0 +

∫ t

0
(t − s)q−1S∗q(t − s)[ f (s,u(s),Gu(s)) + λu(s)]ds.

(3.9)

Thus, we have u(t) ∈ C1−q(I,E) and u = Nu. In a similar way, we can prove that there exists u(t) ∈ C1−q(I,E)
such that u = Nu. Combining this with the monotonicity of (1.1), we see that v0 ≤ u ≤ u ≤ w0, which implies
that u and u are the minimal and maximal mild solutions of problem (1.1) in [v0,w0].

Corollary 3.2. Let E be an ordered and weakly sequentially complete Banach space, its positive cone P is normal,
and −A generates a positive C0-semigroup {T(t)}t≥0 on E, f ∈ C(I × E × E,E), and u0 ∈ E. If problem (1.1) has a
lower solution v0(·) ∈ C1−q(I,E) and an upper solution w0(·) ∈ C1−q(I,E), with v0 ≤ w0. Suppose also that condition
(H1)-(H3) are satisfied. Then problem (1.1) has minimal and maximal mild solutions u and u between v0 and w0,
which can be obtained by a monotone iterative procedure starting from v0 and w0, respectively.

Proof. Since E is an ordered and weakly sequentially complete Banach space, then conditions (H2) and (H3)
hold. In fact by Theorem 2.2 in [21] , any monotonic and order bounded sequence is precompact. By
the monotonicity of (3.6), it is easy to see that vn(t) and wn(t) are convergent on I. Thus vn(0) and wn(0)
are convergent, i.e., condition (H3) holds. For t ∈ I, let {un} ⊂ [v0(t),w0(t)] and {vn} ⊂ [Gv0(t),w0(t)] be
two increasing or decreasing sequences. By (H1), { f (t,un, vn) + λun} is an ordered monotonic and ordered
bounded sequences in E. Then β({ f (t,un, vn) + λun} = 0, (H2) holds, and by Theorem 3.1 our conclusion is
valid.
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Theorem 3.3. Assume that E is an ordered Banach space, its positive cone P is normal, and −A generates a positive
and equicontinuous C0-semigroup {T(t)}t≥0 on E, f ∈ C(I×E×E,E), and u0 ∈ E. If problem (1.1) has a lower solution
v0(·) ∈ C1−q(I,E) and an upper solution w0(·) ∈ C1−q(I,E) with v0 ≤ w0. Suppose also that conditions (H1)-(H2) are
satisfied and

(H4) there exists a nonnegative constant L1 with

2M∗b1−q(L1 + 2bL1K0 + λ)
Γ(q)

< 1

such that
β({ f (t,un, vn)} ≤ L1(β({un}) + β({vn})),

for ∀t ∈ I, and equicontinuous countable set {un} ⊂ [v0(t),w0(t)], {vn} ⊂ [Gv0(t),Gw0(t)].

Then problem (1.1) has minimal mild solution u and maximal mild solution u in [v0,w0], and

vn(t)→ u(t), wn(t)→ u(t), (n→ +∞), t ∈ I,

where vn(t) = Nvn−1(t), wn(t) = Nwn−1(t), which, satisfy

v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ u(t) ≤ u ≤ · · · ≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t), ∀t ∈ I.

Proof. From the proof of theorem 3.1, we know that N : [v0,w0] → [v0,w0] is an equicontinuous operator.
Since T(t)(t ≥ 0) is an equicontinuous C0-semigroup, and S(t)(t ≥ 0) is also an equicontinuous C0-semigroup,
by the normality of the cone P, there exists M such that ∥ f (t,u(t),Gu(t)) + λu(t)∥ ≤M, u ∈ [v0,w0].
For any u ∈ C1−q(I,E), for 0 < t1 < t2 ≤ b, we get

∥t1−q
2 Nu(t2) − t1−q

1 Nu(t1)∥

≤ ∥S∗q(t2) − S∗q(t1)∥∥u0∥ +

∥∥∥∥∥∥t1−q
2

∫ t2

0
(t2 − s)q−1S∗q(t2 − s)[ f (s,u(s),Gu(s)) + λu(s)]ds

− t1−q
1

∫ t1

0
(t1 − s)q−1S∗q(t1 − s)[ f (s,u(s),Gu(s)) + λu(s)]ds

∥∥∥∥∥∥
≤ ∥S∗q(t2) − S∗q(t1)∥∥u0∥ +

∥∥∥∥∥∥t1−q
2

∫ t2

t1

(t2 − s)q−1S∗q(t2 − s)[ f (s,u(s),Gu(s)) + λu(s)]ds

∥∥∥∥∥∥

(3.10)

+

∥∥∥∥∥∥
∫ t1

0

[
t1−q
1 (t1 − s)q−1

− t1−q
2 (t2 − s)q−1

]
S∗q(t2 − s) f (s,u(s),Gu(s)) + λu(s)]ds

∥∥∥∥∥∥
+

∥∥∥∥∥∥t1−q
1

∫ t1

0
(t1 − s)q−1

[
S∗q(t2 − s) − S∗q(t1 − s)

]
f (s,u(s),Gu(s)) + λu(s)]ds

∥∥∥∥∥∥
≤ ∥S∗q(t2) − S∗q(t1)∥∥u0∥ +

M∗b1−qM
Γ(α)

∫ t2

t1

(t2 − s)q−1ds

+
M∗M
Γ(q)

∫ t1

0

[
t1−q
1 (t1 − s)q−1

− t1−q
2 (t2 − s)q−1

]
+

∥∥∥∥∥∥
∫ t1−ϵ

0
t1−q
1 (t1 − s)q−1

[
S∗q(t2 − s) − S∗q(t1 − s)

]
( f (s,u(s),Gu(s)) + λu(s))ds

∥∥∥∥∥∥
+∥

∫ t1

t1−ϵ
t1−q
1 (t1 − s)q−1

[
S∗q(t2 − s) − S∗q(t1 − s)

]
( f (s,u(s),Gu(s)) + λu(s))ds∥

≤ I1 + I2 + I3 + I4 + I5

(3.11)
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where
I1 = ∥S∗q(t2) − S∗q(t1)∥∥u0∥,

I2 =
M∗b1−qM
Γ(α)

∫ t2

t1

(t2 − s)q−1ds,

I3 =
M∗M
Γ(q + 1)

[(t2 − t1) + (t2 − t1)q] ,

I4 = sup
s∈[0,t1−ϵ]

∥S∗q(t2 − s) − S∗q(t1 − s)∥
[

bM
α

]
,

I5 =
2M∗b1−qM
Γ(q)

∫ t1

t1−ϵ
(t1 − s)q−1ds.

The continuity of (S∗q(t), t ≥ 0) in t in the uniform operator topology, it is easy to see that I1 and I4 tends
to zero independently of u0 ∈ E as t2 → t1. Applying the absolute continuity of the Lebesgue integral we
have I2, I3, I5 tend to zero independently of u ∈ Ω as t2 → t1. . Since the set D ⊂ [v0,w0], N(D) ⊂ [v0,w0] is
bounded and equicontinuous. Therefore, by Lemma 2.7, there exists a countable set D0 = {un}, such that

β(N(D)) ≤ 2β(N(D0)). (3.12)

For t ∈ I, by the definition of the operator N we have

t1−qβ(N(D0(t))) = β(t1−qN(D0(t)))

= β

({
S∗q(t)u0 + t1−q

∫ t

0
(t − s)q−1S∗q(t − s)[ f (s, vn−1(s),Gvn−1(s)) + λvn−1(s)]ds

})

≤
2M∗b1−q(L1 + 2bL1K0 + λ)

Γ(q)

∫ t

0
(t − s)q−1sq−1s1−qβ(D0(s))ds

≤
2M∗b1−q(L1 + 2bL1K0 + λ)

Γ(q)

∫ t

0
(t − s)q−1sq−1β(Dq(s))ds

≤
2M∗bqΓ(q)(L1 + 2bL1K0 + λ)

Γ(2q)
β(D)

(3.13)

and by 3.12, we have
β(N(D)) ≤ ηβ(D),

where

η =
2M∗bqΓ(q)(L1 + 2bL1K0 + λ)

Γ(2q)
< 1.

Therefore, N : [v0,w0] → [v0,w0] is a strict set contraction operator. Hence, our conclusion follows from
Lemma 2.10.

4. An example

Example 4.1. We considere the following fractional partial differential equation:
RLDα0+u(t, x) =

∑
|α|≤2m aαDαx u(t, x) + f (t, x,u(t, x),Gu(t, x)), (t, x) ∈ I ×Ω,

I1−α
0+ u(0, x) = u0,

(4.1)
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where RLDα0+ is the Riemann-Liouville fractional derivative, 0 < α < 1, t ∈ I = [0, b], b > 0, integerN ≥ 1, Ω ⊂ RN

is a bounded domain with a sufficiently smooth boundery ∂Ω, f : I × E × E→ E is continuous and

Dαx =
(
∂
∂x1

)α1
(
∂
∂x2

)α2

· · · ·

(
∂
∂xn

)αn

,

whereα = (α1, α2, ···, αn) is an n-dimensional multi-index, |α| = α1+α1+···+αn, coefficient function aα(x) ∈ C2m(Ω).
Let E = Lp(Ω) with 1 < p < ∞, P{u ∈ Lp(Ω) : u(x) ≥ 0, q.e. x ∈ Ω} and define the operator A : D(A) ⊂ E→ E
is follows:

D(A) =W2m,p
∩Wm,p

0 (Ω), Au =
∑
|α|≤2m

aαDαx u.

Then E is a Banach space, P is a normal cone of E and −A generates a positive C0-semigroup T(t)(t ≥ 0) in E, let
f (t,u(t),Gu(t)) = f (t, x,u(t, x),Gu(t, x)), u0 = u0(·), then problem (4.1) can be written as abstract (1.1).

Theorem 4.2. If the following conditions are satisfied

(F1) Let u0(x) ≥ 0, x ∈ Ω, and there exists a function w = w(t, x) ∈ C1−α(I,Ω) such that
RLDα0+u(t, x) ≥

∑
|α|≤2m aαDαx u(t, x) + f (t, x,u(t, x),Gu(t, x)),

I1−α
0+ u(0, x) = u0.

(4.2)

(F2) There exists a constant λ > 0 such that

f (t, x,u2, v2) − f (t, x,u1, v1) ≥ −λ(u2 − u1)

for any t ∈ I, and 0 ≤ u1 ≤ u2 ≤ w(t, x), 0 ≤ v1 ≤ v2 ≤ Gw(t, x).

(F3) There exists a constant L > 0 such that

β({ f (t,un, vn)} ≤ L(β({un}) + β({vn})),

for ∀t ∈ I, and increasing or decreasing monotonic sequences {un} ⊂ [v0(t),w0(t)] and {vn} ⊂ [Gv0(t),Gw0(t)].
Then problem (4.1) has minimal and maximal mild solutions between 0 and w(x, t), which can be obtained by a
monotone iterative procedure starting from 0 and w(t) respectively.

Proof. Assumption (F1) implies that v0 ≡ 0 and w0 = w(x, t) are lower and upper solutions of the problem (4.1),
respectively, and from assumption (F2), it is easy to verify that conditions (H1)-(H2) are satisfied under the constant
M = 1.
So our conclusion follows from theorem 3.1.
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Université de Paris-Dauphine.
[31] Lakshmikantham V., Theory of fractional functional differential equations, Nonlinear Analysis, 2008, Vol. 69, no. 10, pp. 3337–3343.
[32] Liu L., Guo, F., Wu C., Wu Y., Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach

spaces, J. Math. Anal. Appl., 2005, 309, 638–649.
[33] Podlubny I., Fractional differential equations. Academic Press, SanDiego (1999)
[34] Samko S.G., Kilbas A.A., Marichev O.L., Fractional Integral and Derivatives, Theory and applications. Gordon and Breach,

Yverdon (1993)
[35] Toledano J.M.A.,Benavides T.D.,Azedo D.L., Measures of noncompactness in metric fixed point theory. Birkhauser, Basel (1997)
[36] Yang H., Mixed monotone iterative for abstract impulsive evolution equations in Banach spaces, Journal of Inequalities and

Applications, no. 2010, Article ID 293410,15 pages, 2010.
[37] Ye H., Gao J., and Ding Y., A generalized Gronwall inequality and its application to a fractional differential equation, Journal of

Mathematical Analysis and Applications, 2007, vol. 328, no.2,pp. 1075–1081.
[38] Zhang S., Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear

Analysis, 2009, Vol. 71, no. 5-6, pp. 2087–2093.
[39] Zhou Y., Basic Theory of fractional Differential Equations, World Scientific, Singapore, 2014.
[40] Zhou Y., Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, 2016.


