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Abstract. In this paper, we are interested in considering Cauchy problem for parabolic equation with
memory term. The memory component contains a fractional Laplacian operator term. First, we represent
the mild solution as a Fourier series. Next, we consider the well-posedness of the Cauchy problem when
the initial data and source function are in Gevrey spaces. Under appropriate given data, we also investigate
the continuity of the solution according to the parameter k. The another results of this paper is to show the
ill-posedness in the sense of Hadamard and give some regularized methods. In the homogeneous case,
we use the quasi-boundary value method to regularize the problem and obtain the error estimate when

the observation data in L2. In the case of in-homogeneous source term, we use the truncation method to
approximate the problem with observed data in L*.

1. Introduction

Let Q be a bounded domain in RN (N > 1) with sufficiently smooth boundary dQ. Let T be a positive

number. In this paper, we are interested in the parabolic equation with fractional Laplacian term in the
memory kernel as follows

yi = Ay +k [ (=0 y(x,s)ds = G(x, ), in Qx(0,T], "
Yloo =0, in Q,

with the initial condition

y(x,0) = f(x), xeQ. 2)
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The function G is called source function, the function f is the initial condition. They will be defined later
in spaces in later theorems. Equation (1) as one important class of diffusion equations, which can describe
physical properties problems in many areas such as population dynamics and heat conduction in memory
materials (see [1H10} [15H17]]) and some research directions related to this topic [19-21} 23] 25-28].

In [13], S. Guerrero and O.Y. Imanuvilov investigated the control system for the heat equation with
memory

t
yr— Ay = kf Au(x,r)dr, (x,t) € Q% (0,T),
0

y=0, (x,t) € JQAX%(0,T),
y(x,0) = f(x), x € Q.

Problem (3) appears as a natural model in a number of tools developed to approximate Navier-Stokes
system see [22]. The authors in [13]] showed that the null controllability of system (3) is not true for all initial
conditions f. A. Halanay and L. Pandolfi [14] considered the heat equation with memory in a bounded
region as follows

©)

¢
ye=ay+ Ay + f k(t — r)Ay(rydr + G(x,t), y(x,0) = &(x), 4)
0

where a a is a real constant and k is of class C!. They obtained approximate controllability of the system. In
[29], H. Zhao, ]. Zhang studied the following parabolic integro-differential equation:

t
wi= By = [+ o, () € QX 0,1)
0

y=0, (x,t) € JQA%(0,T),
y(x,0) = f(x), x € Q

)

where x,, is called characteristic function on the nonempty set w C Q. The function y is the state, the
function u is the control and k(x,t) is a memory kernel. The approximate controllability of a parabolic
integro-differential equation system has already been shown for the case where the memory kernel is
a constant. In the interesting paper of Zhou [30], the author studied the following integro-differential
equation of parabolic type

t
yi = Ay +ay = f M(t = $)Ay(x, Ddr + o, (x,8) € QX (0, ),
0

y=0, (x,t) € Q% (0,T),
y(x/ O) = f(x)’ X e Q

where a € R is a real constant, y = y(x, t) is the state variable, u = u(x, t) is the control variable, and M is
the integral kernel. The main goal of this paper is to show the existence of a control function which control
state variable and the integral term of the neighborhood of two given final configurations.

In [18], the authors studied observability/controllability properties for a viscoelastic string, described by
the equation

(6)

¢
Y — Ay = f k(t — r)Au(x, r)dr, (x,t) € Qx(0,T), (7)
0

with Q = (0, ) and the following initial condition

y(x,0) = &o(x),  yi(x,0) = E1(x) (8)
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and

y(0,8) = g(t), y(m, 1) =0. ©)

In [11], Grimmer considered the following integrodifferential equation

y(t) = Ay(t) + f B(t —s)y(s)ds +h(t), y0)=yoeX t>0 (10)
0

where A generates a Cp-semigroup on a Banach space X, the function / : R* — X is a continuous function.
Using the resolvent operators theory, the author obtained a variation of parameters formula which enabled
him to obtain some results concerning the existence, the regularity and the asymptotic behavior of solutions
to (10).

The main contributions of the paper are as follows

e The first result concerns the well-posedness of the problem when the input data belongs to Gevrey
space. Furthermore, we prove the continuity of the solution with respect to the parameter k. When
k is an irrational number, we cannot know its exact value but can only know its approximate value.
More specifically, an irrational number can only be approximated by a sequence of rational numbers.
Therefore, the question here is: When k is close to k’, is 1 close to u or not?

e The second results show the ill-posedness of the problem in the sense of Hadamard. We regularize
problem by two method: quasi-boundary method and truncation method. The new point of the
truncation method is the approxiamation of the solution when the observed data belongs to the L?
space. To demonstrate the main results, we had to go through a number of rather complex and

sophisticated assessments. The appearance of the memory component k fot(—A)Qy(x, s)ds has also
made the problem much more complicated.

This paper is organized as follows. In section 2, we introduce some basic knowledge about the function
spaces needed to use in the paper. In section 3, we give the mild solution formula of Problem (I)-(@) in the
form of a Fourier series. Section 4 introduce the well-posed of the problem when the Cauchy data in the
Gevrey space. Finally, in section 5, we provide two regularize method to approximate our problem.

2. Preliminary results

This section provide some notation and the functional spaces which will be used throughout this article.
Recall that the spectral problem

Aen(x) = _Anen(x)r x € Q/
en(x) =0, x €0Q,

admits the eigenvalues 0 < Ay < Ay < --- < A, < ... with A, — o0 as n — oo and corresponding
eigenfunctions e, € Hy(Q).
Let us define fractional powers of (—A)? for 0 < 6 < 2 as follows (see [24])

a0°f = Y [ e, (1)
n=1 Q
and its domain is as follows

D((-0)7) ={f e LX), Z A2 fQ f(x)en(x)dx)z < oo}. (12)
n=1
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Definition 2.1. (Hilbert scale space). We recall the Hilbert scale space IH*(C) given as follows

H(Q) = {f e L2(Q) ' Z )\315(Lf(x)en(x)c'lx)2 < oo},
n=1

for any s > 0. It is well-known that IH*(Q) is a Hilbert space corresponding to the norm

1/2

s @) = (Z/\%S(fof(x)en(x)dxf) , feH(Q).
n=1

Definition 2.2. The Gevrey space is defined by

n=1

GZ,M(Q) = {f € LX(Q): 2 A exp (ZM)Lﬁ)fn2 < oo},

where the norm of it is given as follows

flles, 0 = J Y A exp (2MA}) f2.

n=1

7898

(13)

(14)

Definition 2.3. Let C ([0, T1; B) be the set of all continuous functions which map [0, T] into B where B is a Banach
space. 1t is a Banach space endowed with the usual supremum norm. For any 6 > 0, we introduce the following

Holder continuous space of exponent 6

0 . _ . . ”U(., t) - U(., S)”B 00
([0, T}; B) = {v € C(10, T; B) : S T < )

which is equipped with the norm

_ llo(., 1) —v(., s)lls
lollcoqory = sup ——————
0<s<t<T |t — sl

3. The mild solution

3.1. The mild solution for parabolic problem with memory

Our aim in this section is to give the form of the solution u(x, t) to problem (I)-(). Let us assume that

y(x, 1) = Yorq yn(ten(x), where

yn(t) = fg y(x, e, (x)dx.

Since the main equation of (1)) and noting that

- f Ay, Hea@dx = Ayyalt), f (), Ben(x)dx = ~A0y,(H)
Q Q

we get that

d t
Eyn(t) + AnYu(t) —kAD fo yu(T)dT = G, (1),

(15)
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where G (t) is Fourier series of G. Let v,(t) = fot Yn(s)ds. Hence, we find that

0.6 = ) (16)
and
04(0) = ¥a(0) = fu,  ©a(0) = 0.
This implies that
0/ (1) + A0, (8) — kAo () = Ga(D). (17)
Set
oot VIR - VR

2 ’ 2
The solution v, is given by a general form as follows
Ou(t) = 2,5 + 0Pt + () + B(t)ePr. (18)

Here a,, b,, are two constants. The function «,, and 6,, are as follows

al(t) =— Gu(t)e" = ! et G (h) (19)
T (Da-C)eC o YAkl
and
, F,(t)eC! -1 D
BL(H) = - DG (D). (20)
B O R AT A
Then we get
t 1 t
ay(t) = f a,(t)dt + a,(0) = ——— f e S 7G,(T)dT + a,(0), (21)
0 VA2 +4kA9 Jo
and
t 1 t
Bu(t) = f B (t)dT + B,(0) = —f e™P* G, (t)dt + B4(0). (22)
0 g VA2 + 4kA9 Jo
Combining (T8), and (22), we derive that
vu(t) = a,e®t + b,ePrt
t
ot f (¢S = PD)Gy (1)dT + @ (0)e + Bu(0)eP. (23)
VAZ 1 kA% Jo
Since (18), we find that
v,(0) = a, + by, + ,(0) + B,(0) = 0. (24)

Taking the first derivative of (I8), one has

v (t) = Cpa,eS" + D, b, eP" + a,,(t)C e

+ &, (e + B, (DD, P + Bl (£)ePr. (25)
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By taking t = 0 into the above equality, we derive that
(a0 + @(0))Cy + (b + Bu(0)) Dy = fi-
Solving systems (24) and (26), we find that
fn f

a, + a,(0) = =

Ci—Du A2 4 4kA?

and
Tk
VA2 + 4kAY

Combining 23), 27) and (28), we derive that

by + 60,(0) =

Ou(t) = (a5 + €4(0))e " + (b + Bu(0) )™

- - n(t=7) _ oDu(t-1)
+ A% k/\g f(; (6 e )Gn(’[)dl.

Hence, we have immediately that
Jn Cut _ Dyt 1 f t
v,(t) = et —e ) +
VAZ + 4kA§( ) VAZ +4kAY Jo (
By taking the derivative of v,, we get
N
VA2 +4kAY

1

VAZ + 4kAY

where we have used the fact that
d t

dt Jo

yu(t) = 0,(f) = (Cuet — DyePt)

¢
f (Cnec"(t_r) - ]D,,E]D”(t_T))Gn(T)dT
0

t
G(t,s)ds = G(t, t)+f Gy(t, s)ds.
0

Thus, using the definition of Fourier series, we find that

. fa Cut D,
(x,t) = —(Cpe" = DD,e"" e, (x)
v =2, Newsrrd )

- 1 t Co(t=7) _ Du(t-1) ]
+ —_— T NG ()T e (%).
Y| g ) (- o

n

Lemma 3.1. We have the following inequality
2k

1+ 1+ 4k/\f*2
A, <-D, < (1 + 41+ 4k/\9-2)ﬂ.
< < N )5

At <, <2kA0!

and

eCnlt=1) _ ED”(t_T))Gn(T)dT.

7900

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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Proof. 1t is obvious to see that

Ay + A2 +4KAS 2kAY

C, = = < 2kA97L, (35)
2 Ap+ A2 + 4kAQ
In addition, we give another observation
2kA9! 2kAG
C, = = 2 = (36)

T+ VI+4AT? 14 [14+4k20-2

where we note that 1972 < 1972 since 6 < 2. In addition, we know that

/\n + /\% + 4kA§l A -2 9-2 Ay
D, = - = {1+ L+ 4kAS2) < (14 1+ 4020722 (37)

and using the inequality /1 + 4kAJ~2 > 1, we get that

Ap+ VA2 + 4kA9
-D, = 2” "o %(1 + 41+ 4k/\§‘2) > A, (38)

O

4. Well-posedness of the problem
The main goal of this section is to investigate the well-posedness of the problem (T)-(2).
Theorem 4.1. Let f € G5'92.(Q) and G € L*(0, T; G5 2 (QQ)). Then for any 0 < t < T, we get

~1,4kT 6-1,4kT
(1 + kA0
”y(" t)“Hs(Q) < V8k ”f cgqu(Q) ” ”H(Q)
vale (1 + 4kA0-
* SkH L2(0,TGy2,4(9) 2 ” L2(0,TH(Q) (39)
Proof. From (32), we get that
y, B =y b+ yP b (40)
where
Y Cut _ Dyt
(x,8) = Z \/m C e D,e )en(x). 41)
and
(=) 1 t
ID(x, t) = [—f eCrt=1) _ D= (¢ dT]en x). 42
y”;;mo( )Ga()d [en (x) (42)

Using Parseval’s equality Z [(x, e,)> = |Ix|[, we infer that
n

Jrcoof,

. |ful® 2
AZS _unt Cnecnt _ Dne]D,,t ) 43
H(Q) ; "AZ 4 4kAg( ) (43)
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In view of the inequality (2 + b)? < 24% + 2b* and using Lemma one has
2
(Cue™! = DyeP!) < 2C220 + 2D2*P

(1+ 4k)\19‘2)2

< BK2A20-24N fﬁ, (44)
where we note that ID,, < 0. This implies that
2
AY D, 1\ 25426—4 AkTAS ! (1 +4k)\?_2) 2
at S+20— n S
W(Cne —D,e ) < 8k2An e + 1 A” . (45)
Combining ([@3) and ({@5), we obtain
2
o (1 + 4kA02)
”y ( )| ]HS(Q) Gyl 4sz(Q) 4 ” “Hs(o)' (46)
Thus, one gets
" (1 +4k19-2)
e M0 7 Whiior v
||y () ]HS(Q) f G2 Q) 2 f H(Q) (47)
Using the inequality ¢* > Ca¥, u > 0, a > 0, we have immediately
\25+20-4 AKTAT 2 C(0)(4kT) Tt )\4 29/\25+29 -4
‘ Gs+91 42kT(Q) ; f ; ( )( )
= C(O)AkT) T Y A% f2. (48)
n=1
This implies that
0-2
< -1
”f H]H Q) COMD T GI2©@ 49

Hence, we find that f € IH*(Q) if f € G}{7,(Q). Let us now to treat the function y. Indeed, using

and Holder inequality, we derive that

2
oCn(t=1) _ ED"(t_T))Gn(T)dT]

t
lvocoff,, - Zv[—m [
k) )\25

Z +4k/\6 ft (eC”(t_T) —e]D"(t_T))sz)( ft G%(T)dl')
n=

(1 +4kA0- 2)

< 8k2(f Z/\ZHZG -4 4kTA” GZ(T)dT) T(f Z/\ZSGZ(T)dT) (50)

In view of Parseval’s equality, we deduce that

) (1 +4kA0-

2 +02 (Q * 4 ”
12(0,T/Gy 9 2,(Q)

.o,

K2
s (Q) ” [2(0,T;Hs(Q))
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Hence, one gets

(1 +4kA9-

m+__7f__” (51)

< x/§kH

oo

H:(Q) L2(0,T,GyY [2(0,T;Hs(Q)

4kT(

By collecting (@0), @7) and (51), we completes the proof of Theorem. [J

Theorem 4.2. Let f € 035“1 yr(Q)and G € L%(0,T; ([35“1 () fore > 0. Thenwededuce that y € Cmin(e, ([O TT;, H(QQ))
and

+|
[2(0, TG, (Q))

+ HG
Gs“ (Q) 0-1,4kT

6-1,4kT

|+ oS

: 52
crmebo ) (Hf T(o») 62

Here M, is a postive constant which depends on 'k, e, 14,0, T.
Proof. From (32), we rewrite the solution y as follows

v h) =y + ¥ (53)
where y® and y) are defined in (1)) and (42) respectively. Let 0 < t <t + h < T. It is obvious to see that

y D, t+h) - yD(x, t)

(Cneﬁ"t — C & D, Pt 4+ IDneD”(”h))en (x). (54)

nZ:l‘ VA2 +4k/\9

Thus, using Parseval’s equality, we have immediately that

[0, ¢+ - 00|

H(Q)
. AT Cat C,(t+h) D, t D, (t h)2
- —n ” n + — n n +
= Z ERwTY 12 (Cne —Cye D, + Dye ) . (55)
n=1
Looking at the inequality 1 —e™” < C.p® for p 2 0, ¢ > 0, we know that
Cnecy,t _ Cnecy,(t+h) — CneC”(t+h)(1 _ e—C,,h) < CEEC”T|C;1|1+6hS, (56)
and
— D™t + D, e M) = —ID, (1 - eP") < C| - D[Rt (57)

Using Lemma[3.T} we obtain

CHEC"t _ CHEC"(Hh) _ ]Dne]D”t + Dne]D,,(tJrh)

I+e
" e |14 f1+4kA02
< CeHM T (2kA2—1) —— | AR

+
2

< CgeCnTICnllJrehe + Cgl _ ]Dn|1+eha‘

(58)

Since 1 < 6 < 2, we note that
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Thus, there exists a positive constant M, which depends on k, ¢, A1, 0 such that

— 0-1 q e
Cnecy,t _ Cnecy,(Hh) _ ]Dne]D”t + Dne]Dn(tJrh) < MlezkA" TA]Jré K.
n

Combining and (59), we infer that
2 _ > .
Hy(l)(., F+ h) _ y(l)(_, l’)” < |M1|2h25 Z e4kTA2 /\315+2£f3'
Hs5(Q) et

Hence, we have immediately that

O t+ 1) -y, || < Mkt .
”y ( )=y )]H*(Q) Gy, yr(Q)

From (42), we see that

t+h
(H)(x t+h) — II)(x 1) = Z f (eCn(Hh—T) _ e]Dn(tJthr))Gn(T)dT] en()
VAZ + 4k/\9
. 1 ' C,(t—1) D, (t-7) G d
_ Z{ \/ﬁ[ i (e —e ) 2(7) T]en(x)

eC”(H-h—T) _ e]D,,(t+h—I))Gn (T)dT]en (x)

o 1 t+h
_,,Z_{ \/A,%+4kA2[ft (

eC,,(t+h—'[) _ eCn(t—T) + e]D,,(t—'[) _ e]D”(H-h—T))GH(T)dT]en(x)

Z m”(

= 02”1(36, t)+ L (x, b).

Applying Holder inequality, the norm of .#; is bounded by

N

n:l

oo AZS t+h C (t+h) (t+h) 2
w(t+h—1) _ Dy(t+h—-1 2
Z RTST) f f e ) Gn(’c)d’c].

n:l

IN

It is obvious to see that

2 _
(eC,,(Hh—T) _ e]D,,(t+h—r)) < 2T < e4kA§ 1T‘

This implies that

ol <o [ (e ez
n=1

In view of Parseval’s equality, we have the following bound for the first term %

Joico

\/E” :
H(Q) L20,T,G ()

7904

(59)

(60)

(61)

(62)

(63)

(64)

(65)
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Let us now estimate the second term .%. Using and Holder inequality, one has

2
°° AZS t c
W(t+h=1) _ Calt=1) | Du(t-1) _ Dy(t+h—1)
—_— e —e +e —-e Gu(t)dr
H 2 )H]HS(Q) )\2 +4k/\9[f( ) n(T) ]
sl /\25 t 2
<Y 74 Cnltth=1) _ ,Calt=1) 4 Dult=1) _ Dut+h-0\ 15 (0\Rdr
nZ A2 +4k)\9[f( ) 160
& /\25 t o 2
<y T———— M@ T AR ) |G (1) Pd T
HZAHWU(l o) |G (o)
— T 6-1
< T|M; Ph* f (Ze‘*k"n A2+ GY(7) )dr. (66)
0 n=1
This implies that
20| <M VTr|G . 67
H 2+ H(Q) ! L20,T/Gy, 4o () (67)
Combining [@2), (65), and (67), we obtain
D, t+h) -y, ¢t ||
||y & )=y ]H(Q) L20,TGy 7, 4r(Q)
+ My VTht||G . (68)
L2O.TGy yr ()
This estimate together with (53) and (61) yields to
eyl <m0+ [y -y o
R O] S O R AL O) Y VTR R o)
bl Ve
Gseﬂl 4kT(Q) L20,T; Gy 4kT(Q))
+ M, VTH||G ‘ . (69)
L2(0,T;Gy2, 4r(€2)
It is easy to observe that
he—min(e,%) < max (1/ Ts—min(e,%)) (70)
and
pEmmined) < max (1, T2 ), (71)
Thus, combining all previous observations, we get that
v £+ -y, 1))
—_ ]HS(Q) ( 1 Té- min(e, 1) T——mm(e 2) [M1||f
Jmin(e, ) Gy~ 14kT(Q)
+| 7, Vo | %
L20,TGy 7, 7 (©) L20,TGy, ()

From the definition (2.3), we know that y € Cmin(e2)([0, T); H(QQ)), and we also obtain the desired result
(52). The proof is completed. [
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The following theorem gives us the continuous result of the solution according to the parameter k.

Theorem 4.3. Let f € G5/ 2.(Q) N Gs+2164k3T(Q) and G € L*(0, T; G 37(€)) N L*(0, T; H(Q)). Let 0 < kK.

Let u* and u¥" be the solution to Problem (I)-@2). Then we obtain

||uk(.,t)—uk’(.,t)||H5(Q) < V2 (\/7 +2)l -k

+ V32K = KT\ |, Ml K|

0-2
GSQtlAkT(Q)

f | Hs(Q)

|k k| |k—k'| (1+4kA
(2 ﬁ> SkHG 12(0,T;Gy 4 21(Q) * (2 \/k_k/) ”

293Q

2 L2(0,T;H*(CY)
+ V8BIk — K| |G + “ . (73)
L2(0,T,Gy 92, (Q) L2(0,T;H+0-2(Q))
Proof. Let us re-notify the expressions as follows
—Ap + VA2 + 4kA§ —Ap — VAZ +4kA9
Cn,k = 2 ’ Dn,k = ) . (74)
It is obvious to see that
—Ap+ VA2 +4kA] A, + A2+ 4K A
Cn,k - Cn,k’ = B - )
4(k — kA9
VA2 + 4kA9 + /A2 + 4k AQ
Hence, we find that
Cux — Cop| <2k —KAS (76)
By a similar techniques, we obtain that
Dy = Dy < 20k - K12, 77)
Let us continue to have
Coo | V4] - VA
- <
\//\2 + 4k)\9 VA2 + 4k A9 VA2 + 4kA9 \JA2 + 4k’ \D
Cn,k - Cn,k’
+ — =FE; + E,. (78)

In view of Lemma one has
4k - K'|A9
VAZ + 4kAG A2 + 4k AS(| VAZ + 4k AT + A2 + 4k

E; < 2kA91

)

AZG 1 k o 2
< 8kk — K|——— = 4/ ~ |k — K|S (79)
8 Vkk'A9A,, k
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In addition, using (76), we find that
E, < 2/k — K'|A92, (80)
Combining (78), (79) and (80), we derive that
C, C,x
L X < (4 /5, +2)lk - K122, (81)
VA2 +4kA9 A2 + 4k AP k

In a similar way, we also have

Dy D | o |]x/)\% FARAD - A2
VZ+aA8  AZeakae| Y A2+ 4kA0 VA2 + 4k AT
'Dn,k - Dn,k'

=E; + [E,. (82)

+ e ——
VA2 +4k'A§

In view of Lemma one has

4lk - K|AY
Es < (1+ \1+40102) 2 kKl

2 N 2kAT A2+ AR AY(| VA AR AT + AT+ K

)
1041 1+ 1 +4kA02
<2(1+ \J1+4kA%2)lk - k'|8 \/k_li'%% = e k- K. (83)
By a similar to E; as in , we know that
E4 <2k - k'W’—2 < 2/\9‘2|k - K. (84)
By collecting (82), (83) and (84), one gets

0-2
_Dn,k ~ _Dn,k’ B (1 + 1’1 + 4k/\1
VAZ +4kA8 A2+ 4kAl| 4Vkk'

Let us denote

+2192)k - K. (85)

Co et = Dy et Jey (), (86)

e p) =
ot Zm

and

(o]

X _ 1
i sz [ VAZ + 4k fo
Let us divide into two steps.
Step 1. Estimate of the term Huk(., ) —uf (., t)|
From (86), we have

t
eCrilt=) — e]D”fk(t_T))Gn(’c)d’c]en(x). (87)

H(Q)'

m N2
ol - Eo S - e
" (Q) \/AZ + 4](/\6 \/A% + 4k//\2

sl _D ,ke rz,kt _ID ’k,e]Dn,k't
+ Z A’zls( 2” 7 2” 0 Ifal?
— VA2 +4kA9 A2 + 4k’ AD

=P, + IP,. (88)




N. H. Can et al. / Filomat 38:22 (2024), 7895-7921 7908

Let us now treat the term P first. It is easy to check that

2 2
( Cupe™  Cppet! ) <oCut| Gk G
VA2 +4kA9 A2 + 4k AQ VA2 +4kA9 A2 + 4k AD
(eCn,kt — ecn,k’t)z
+2|Cp = s + . (89)

A2 + 4k’ A9

For considering Es, we have the following estimation by using Lemma [3.1]and the inequality

,1 2
Es < 247§ /kE +2) Jk - k2204, (90)

Let us continue to consider the term [E¢. Indeed, using the inequality |¢* — | < |a — bjmax(é®, e), we find
that

Cy,ykt _ eCn,k't

|e < |Cpx — C |t max (ec”*t, ec"*’t). (91)
Using Lemma 3.1 we obtain

8k2A26 2(2|k K| /\0 1)2{.2 AkAO~ lt

712 4 46—-672 4kAO 1t
Ee < SRRy < 32Kk — K'[PA%6-6T2¢ ) (92)
Combining (89), and (92), we derive that
C,, it , C, it 2 2
(Gt ot o [E i
VA2 +4kA? A2+ 4k A0 k
+ 32K2 [k — K/ PARO-6 T2 (93)

Based on the above bound, we infer that

P; < 2(\/k?+2) lk — k’|2z/\25+2‘9 —4 _4kAY- ]Tf

+ 32k2|k kl|2T2 Z A25+49 6 ,4kA0- 1Tfn (94)
n=1

In view of Parseval’s equality, we find that

k

Py <2(+/= +2) k- k'2| + 322 — k’2T2|| . 95

A a0 T T W g0 )

Let us return to the study the term IP,. It is obvious to see that

“DyePt Dy et \2 -D -D 2
( nkt k€ ) < ZEZ]D""‘t nk _ n,k’

VA2 +4kA8 A2 + 4k AQ VA2 +4kA0 /A2 + 4k 0D

(e]Dn,kf _ e]Dn,k'f)z
+2[Dy [ = E7 + Es. (96)

A2 + 4k’ A9
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Since the fact that D,,x < 0, we follows from that

1+ 1+ 4kA9-2

2
E; < 2(4—«/W +2092) - K1 (97)

We continue to bound [Es. By looking at the inequality e — e7?| < |a — b| for any ,b > 0, we follows from
Lemma Bl that

2/\2 (2|k _ k'|/\6_1)2
6-2 n n
Es < (1+ /1 +4kA072) S I
2 2
=21+ \J1+4kA02) k=K PAZ2 <2(1+ (1 +4kA92) 202k — kP (98)

Combining (96), ©7), (98), we derive that
2
( —Dn/keD”'kt _Dn © e]D,,,k/t

- ’ ) <Mlk-KP, 0<t<T. (99)
VA2 +4kA9 A2 + 4k AD

Here

. 1+ \f1+4k70-2 ) )
My = 2(—————— +21972) +2(1+ /1 +4kA02) 2202,

4Kk’
This follows from @ that
o0 D Pt D, oDt \? _ o
P=Y ﬁ( C——— ) il < Mk - KP Y 222, (100)
— VAZ +4kA8 A2 + 4k AQ p—

Using Parseval’s equality, one gets

P, < Mok — K2 | f| . (101)
By collecting some known results (88), and (I01I), we derive that
, 2 k
k K 712
[N t)”m <2+ 2) k- |f| G @
+ 320k - KT o k- kP[] o (102)
6-1,4kT
Hence, using the inequality Va2 + b2+ 2 <a+b+c, foranya,b,c > 0, we deduce that
| k
k _ - _ 1
|| (=" (, t)”]H Q) "~ \/E( K 2)|k k ll f| Gy 2,(Q)
+ V32K - k1] ., o M=K fH]HS(Q). (103)
6-1,4kT

Step 2. Estimation of the term Hw y
From (87), we find that

(o)

wh(x, £) —wF (x, 1) = ;[mf

Ll ¢

= [Eg + IEqp. (104)

nk(t—’f) _ eID/r,k(t_T))Gn(T)dT]en(x)

Cow (t=0) _ eIDn,k/(tﬂ)Gn(T)dT}en(x)
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Here

(o)

¢
Z [ \/Az 4k/\9 \/Az 14k /\9)](; (ecn,k(f—'[) _ eD"'k(t‘T))Gn(’c)dT]en(x) (105)
+ a+4k'A;

n=1

and

)

Eqo = [ f
HZ;‘ VAZ + 4k’/\6
Let us consider the term [Ey. It is obvious to see that

| . . |_|\//\§+4k’/\2—\//\§+4kn

Coi(t=7) _ pDunj(t=1) _ oCup (t=7) 4 e]Dn,k’(t_T))Gn(T)drl—:|en(x) (106)

V21400 2 1Al A4 4kAD A2 1 AR A
) 4k — KA
VAZ + 4kAG VA2 + 4k AS(|VAZ + 4k AT + A2 + 4k
ak-KIAe k- K|

= Svk KA A2+ 4kA0 2 VRK A2 1 4kAD

)

(107)

This implies that

2 ) 1 1 t
E “ _ Aﬁs[ B f (Coslt=1) _ pDislt-0)\ g (T)d’l']
|| 9 H(Q) ; (\/)\2 +4k/\9 \//\2 +4k'/\6) 0 ( ) n

< (Ik—k’l 2

Nl ZA[mf

2

2
Cn(t_T) _ E]D"(t_T))Gn(T)dT]

2 2
(1)
TAIC0) . (108)

= (u)
2 Vkk'
where in the last line, we have used (50). In view of (5I), we find that
E B k — k| \/gk c k- k| (1 + 4k/\?_2)
‘ 9”]1{59 _( ,) ” L2(0, TGy 2,(Q +( /) 2 H
@ 2 vk OTG @) 2 vk
Let us now treat the term [Eg. Indeed, from (76) and (1), one gets

Cn,kt

(109)

L2(0,T;H(Q)

Cn/k’ t

e 4

< [k = Cpelt max (¢St €4t < 2t exp (2kAT ke = K1A9. (110)
In addition, using (77), we also have

e]Dn,kt —_ e]Dn,k’t

< Dy x — Dy |t max (e]D”'kt, eDnrk'f) < 2tk — K'|A971, (111)

From two latter observations, we arrive at

2
[l

2

[\”/Jg

nk t T) n/k(t_T) — eCn,k’(t_T) + eDrZ,k’(t_T))Gn(T)dT:I

7 [ VAZ + 4k’/\6 f

AZS t 2
- f (€540 = (Putt=0) _ Cort=0) 4 Do -0)G, (r)Pde
4 A2 1+ 4k28 Jo

n

:Mg

< 48k - kP ti Lm(ex (2kA971) + 1)2|G (0)Pdt (112)
- 0 &4 A2 +4k'Ag P ! '
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In view of Parseval’s equality, one has

2
||IE10H <8Pk - K2 |G + 880k — K |G . (113)
Hs (Q) L2(0,T;Gy S 2 () L2(0,T;Hs+0-2(QQ))
This implies that
||1E10H < V8Bl - K| |G + || . (114)
H(Q) ~ L2(0,T:Gy 0 2,(Q) L2(0, T;H+0-2(Q2))
Combining (104), (109) and (114), we obtain
k
||w b - ( t)HH(Q) H 9“11{5(9) * ||]E10||]H~*‘(Q)
0-2
<( ) VB + (5= [te
2 ViK' 2OTGH2Q) N2kl 2 L2(0,T;Hs(Q)
+ V8B — K| |G + HG . (115)
L2(0,T:Gy2,(0) L2(0,T;H+0-2(Q2))

Combining (I03) and (I15), we obtain the desired result (73). [

5. Regularization and error estimate

The main purpose of this section is to introduce two regularize method for Problem (I)-@) under two
cases: homogeneous case and inhomogeneous case.

5.1. Quasi-boundary value method
In this section, we study the following problem

& _ £ t _A\O4,€ — :
yt, Ay +kf0( A)’yé(x,s)ds =0, Tn Qx(0,T], (116)
¥loa =0, in Q,
with the nonlocal condition
ye(x,0)+ By (x, T) = fi(x), xe€Q. (117)
Here B = B(¢) is the parameter regularization which satisfies that
s =0
Theorem 5.1. Let f¢ € L*(Q) such that
|f -f . <e €>0. (118)

Then Problem (116)-(117) has a unique solution y¢ € L*(0,T;L*(QQ)). Let us assume that Problem (@D-@) has a
unique solution y(., T) € H*%(Q). Then if we choose p = €, 0 < p < 1, then we obtain

1+ 41+ 4k/\f‘2
A
2(QY)

5 (119)

1-p p-5
e+e + Cgeb™T

v 5= v ¥ 7|

H2-9(Q) ’

Here C3 is a positive constant which depends only on A1,k, 6,t,T.
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Proof. Let us give the explicit fomula of the solution of Problem (116)-(I17). From (2), we get that

vilt) = i 5O (e~ D, e, . (120)

=1 VA2 +4kAD

Thus, using (120) and (117), we know that

ﬁ(CneC"T - ]Dne]D"T)
( VA + 4kA]
Hence, we have immediately that
VI = 3601 + €T~ Do)
From and (122), we infer that

- C,eft — D, ePrt .
ACEDY feea(x). (123)
=1

A+ 4RAL + B(CreSrT — DyeDiT)

It is obvious to see that
C,,eC"t CneC,,t <

1
VA2 + 4KAT + B(CeST — D,ePiT) ~ PCuST =

and using Lemma 3.1} we get that

D, D . (1 + 41 +4k/\§"2)% . 1

VAZ + kAT + B(CueCT — Dy T) — VAZ+4RAT
1+ 1

< il

p

150 = (121)

¥y (0) = (122)

(124)

+ 1+ 4kA02

2

(125)

Two latter observations implies that

CneC”t — Dne]D"t V T+ 4kA?72
VAZ + kAT + B(C,eCT — D7) 2

Thus, we obtain that the following bound for y*

+

(126)

ye ()

g YV

L2Q) n=1 \/m + ﬁ(cneC"T - DneD“T) !
T+ (J1+4kA92 e
Y ey

< 5 (127)

n=1

Hence, we arrive at

1+ J1+4kA92 1
<l _

V] gy < —+5|IF (128)

2Q)
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Since the right above is independent of t, we deduce that y¢ € L*(0, T; L*(Q2)). In order to give the error
(119), we need to introduce the following function

o)

2 =) e D (129)

n=1 \/m + ﬁ(CHECnT _ DnelD,,T)

We divide the proof into two steps.
—z5(t .
2O

Combining ([123) and (129) and using Parseval’s equality, we infer that

2 = C,eCt — D, ePrt 2 5
= C—fu) - 130
L2(Q) ,,,Z_‘f ( (A% i 4k/\2 + ﬁ(CHCC”T _ DnelDV’T)) (fn f ) ( )

This inequality together with (130) yields to

Step 1. Error

—z(h)

1+ 1/1 + 4kA0-2 2 0
-z <|l— ) - 131
() 5 ann f) (131)
Hence, we find that
T+ (1+4kA02
T DY e T
’ Q" 2 B L2(Q)
T+ 1+4kA02
< (f + B)s. (132)
Step 2. Error ”y(., ) —z8(., t) L@
From and (129), we find that
y(x, t) = z°(x, t) = Z C Gt — ]Dne]D"t)e,,(x)
\/AZ 4k/\6
© C, eCnt — D, eDnt
- z fen(x)
VAZ + kAT + B(C,eCT — D7)
0 C ST — ]Dne]D"T)(CneC"t - ]Dne]D"t)
Z fuen(x). (133)
= A2+ 4k/\9( VAZ + 4kAT + B(C,eCT — D))
Since the fact that
yx,T) = C ST —1D,eP e, (x), (134)
Zl‘ VA2 + 4kA0 4k/\3 e e
we know that
B(Ce% - D eDnt)
Y, £) — 2 (x, ) = Z Yu(T)en(x). (135)

VT + AT + B(CeST — D)
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It is obvious to see that

|a:ne‘ﬁnf - Dnean' < (K207 + (14 1 +4kA0 2)A2 JeSrt < Ci(A1, k, B),C".

In addition, we get

VA2 + KA + B(CeST = DyeT) > Ay, + BC,eST
2k /\9 1 C,,T /\9 1|:A2 9 ﬁ 2k EC"T:|

1+,/1+4k)\?2 1+,/1+4k/\1‘9‘2

> )\S‘l(/ﬁ‘e + BCa(A1, k, e)eCwT),

> A+

where

2k

1+ 1+ 4k/\f‘2

Combining (136)) and (137), we arrive at

Co(A1,k, 0) =

(C eCrt — 1D eD"t) oot

< Ci(Ay, k, Q)Ai_e

VAT + AT + (€T — Do)

It is easy to verify that

eC,,t eC,Zt

A270 4 BCa (A, k, 0)eCrT

2270 4 BCy(Ay, K, 0)eCT
Moreover, we get that

()\%‘9 + BCa(A1, k, )T )%( + BCa(Ay, k, Q)ECKT)%
> ﬁ%(c2(/\1,k, 9)) (/\2 e)TT it
This follows from that

(C St — D e]D,,t)

T2+ 3 + B(CoeS DD

where C3 depends on Ay, k, 6,t, T. Thus, we remind (I35) in order to obtain that
(Cn oGt — D, e]D,,t) 2

L2(Q) = Z /AZ + 4k/\6 + ﬁ( eCnT _ ane]D,,T)
< gt Z A8201y (TP

n=1

Cg)\%_eﬁ_%

[P EEe (TP

(A2 4+ BCa(Ar, K, 0)eSiT)" (420 4+ Ca(Aa, k, 0)eC:T) T

7914

(136)

(137)

(138)

(139)

(140)

(141)

(142)
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In view of Paseval’s equality, one has

e 1-£
”y(., D=2 () = o, T)’ . (143)
Combining (132)) and (143), we infer that
vy 0)] g = oD =00 + [ =200 L
1+ (/1 +4kA0~2 1
<( > + ﬁ)g + C3p |y, T)| . (144)

Under the choice = €/, 0 < p < 1, we get the desired result (119). O

5.2. The truncation method

In this subsection, we provide a truncation method to approximate the solution to Problem (T). Com-
pared to Theorem (5.1), the truncation method has the advantage that we can estimate the error in the space
H.

By applying Fourier truncation method, we introduce the following regularized solution

fi‘f C,t D, t
Ye(x, t) = —————(C e —IDye" )en(x)
A.;‘/L VAZ + 4k)\2( )

Cult-1) _ e]D"(t‘T))G,i(T)dT]en (x). (145)

1 t
" AZA‘*A [ JC + 40 fo (e

Theorem 5.2. Let (f, G) be the function which is noised by (f¢, G*) such that

Let us choose M, such that

+|ce - GHLZ(QW@» <e. (146)

- f

12(Q)

lim (%79 4 (M,))e = 0, lim M, = +oo. (147)

e—0

Let us assume that y € L=(0, T; H**¥(Q)) for any s > 0 and 8 > 0. Then we get

_ = T\ 2KT(M,)0! s -9
[y -], 0 = C+T)e +0M)e + M|, raveeicr (148)
Here1l <0 <2and0<s<2-0.
Remark 5.3. Let us choose M, > 0 such that
M, >0= (L)%(log(l))ﬁ O<h<l. (149)
¢ 2hkT € ’

Then the error ’ Y.(, 1) —y(, t)H]H_(Q) is of order

max (( log(%))%, s( log(%))ﬁ, sl_h). (150)
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Proof. Let us set the following function W, as follows

Ja ot Dyt
We(x, t) = —(Cpe" =D, e, (x)
AHZI\‘/I AY; A2 + 4k/\6( )

C”(t ) _ Dult= T))G (’[)dT}en(X)

Using triangle inequality, we get that

Let us divide two steps.

)= (., t)”]HS(Q) <| ~ W) [ - e

H(Q)

=Wl B
From (145) and (I5I), we obtain the following bound

fo = fu Cat D, t
Ye(x, ) — We(x, t) = —————(Ce —Dye " Jen(x)
A;A VA2 +4kA2< ! ek
t

Cult=1) _ eDn(t—T))(GZ(T) - Gn(T))dT]en(X)

el
A<M, A% + 4k/\2 0

= F1(x, £) + Fa(x, 1).
Using Parseval’s equality and (5), we infer that

2

Hﬂ( )HH @ A;A Aﬁs(—%(cne@t _ ]Dne]D,,t>)

€

2

1+ 4kA9-2 2

sﬁlkﬁwﬂw%mf+ﬁ_erlﬁ*ﬁ—ﬁy
AYISME

If s + 6 < 2 then we get

_. 6-1 _ 0-1
/\%ﬁze 4 AKTAST A:i.s+26 4 AKT(M,)
and
2 2
A < (M)~

for A, < M,. Thus, we find that

70l < G+ 0a) T, (=)

An<M,

— -1 . 2
<G+ 0P -
where 62 = Ez(k, A1, s, 0). Hence, we obtain

|7, < + ).

H (Q)

H(Q)

7916

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)
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Using Parseval’s equality and and Holder inequality, we infer that

t
it~ 3, ¥ e [

t /\%S -7 t—1 ! e 2
<L (fo m(‘?@(t =) dT)( fo (Gi(0) ~ Gu(0)) dT).

A<M,

Using (5) and (155 , we obtain that
¢ 2
f /\ns (eC,,(t—T) _ ED"(t_T))sz
0 /\% + 4kA,91

2
6-2
< STIRAZ+20—4 HTAT T(l + 4kA )

4
T(1+ 4kAf—2)2
4

2s
/\1’1

< 8TI2A2+20-4 PARTM) (M,)*

for A, < M,. Hence, we have immediately that
[,
where C; = C3(k T, A1, s, 0). This implies that
72 0 < T + Y.
Combining (I53), (I58) and (162), we infer that
(D) = Wels t)“ = “7:1(" t)HHs(Q) " “772(" t)”Hs(Q)
< (EZ + 63)(32”(1\’1*’)971 + (Mg)s)e.

< [GP(eHT™ + M) = Gl iz

H:(Q)

1 (Q)

Step 2. Estimation of H y(., 1) = We(, t)HH(Q). It is obvious to see that the following equality

YD =Wew, = Y yalen).

An>M,

By using Parseval’s equality, we get that

[stn-weenl, = X o= Y A=aEge

el S
< )2y 0|

for any § > 0. Thus, we deduce that
vty =Wt o, < @10 vt
Combining and (T66), we deduce that
vt - (., t)”}HS(Q) <| ~Wel - W)

< (Co + Go)(HTMI™ + (ML) )e + (M{’)_S”y

Hs +S(Q)

L

Hs+(Q) L(0,T;Hs+5(Q))

Hs(Q) Hs(Q)

L=(0,T;H*(Q))
The proof of Theorem 5.2]is completed. [

Cnlt=1) _ ean(H))(G;(T) - Gn(T))dT]

7917

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)
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Theorem 5.4. Let us assume f* is the noisy data for f which satisfies that

”ff - fHLr’(Q) + ”Ge - GHLZ(O,T:L”(Q)) =

ore>0and1<p<2.
p

o Ifs+6-2< 2

and y € L*(0, T; H%(Q)), we get that

gy = o+ N+ e

Hs(Q)

+(Me)” ”y L0, TS (Q2)

fors+0-2<{< %};2). Here M, is chosen suitable such that

. 0-1
hn& ATM)™ e =,
E—

lim M, = +oo.
=0

o Ifs+60—2> =N then

)8—1

_ y(., t)“]HS( < Cz,p/566((M€)sf€+6—282kT(ME n (Mg)sff)g

+ M)y

Lo(0,T;H+5(Q))
wheres+ 0 —-2> € > %. Here M, is chosen suitable such that

. — — -1 .
Hm(M, ) 0722 TMI ™ e =0, lim M, = +co.
e—0 e—0

7918

(168)

(169)

(170)

(171)

(172)

Remark 5.5. In the above theorem, we need the condition of the input data which is in LV spaces. This is the

interesting point of our method.

Proof. From Sobolev embedding LP(Q) < H!(Q) for % <{¢{<0andp >
constant Cl,p,é’ which depends on p, £ such that

”ft - fH]H"(Q) < CLP"’HfE - f”LP(Q) < eCupe

and

”Gs - G”LZ(O,T;]H"(Q)) = Cz%"”Gs - G”LZ OTLr(Q) = < eCopy

- WE('/ t)”
In view of (154), we know that

2 S fn fn " "
[7260]0 = A;A 2 ( \/m(ctne‘E ' D,e” f))

2
0-2
< Z [8k2 )\is+2672[7464kT/\571 " (1 + 4k ) 22 2{] /\2€<f

4
A<M,

H Q)

2

Since the assumption s + 0 < 2, one has

/\is+29—2f—4e4kTA,‘,H < /\%s+29—2€—4e4kT(Mz)fH

N 45, there exists a positive

(173)

(174)

fn) : (175)

(176)
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and
25-2¢ 25-2¢
AT < (M)

for A, < M,. Hence, we have immediately that

< |E4|2<e4kT(ML)6H + (MS)ZS) Z /\ZF(f fn)

An<M;

< |€4|2<€4kT(M()H71 N (MS)ZS—ZZ)” oo f”; ‘o

Jric.o,

H:(Q)

where C; = E4(k, £, A1,s,0). Thus, one has
”771(" t)”Hs(Q)

In view of (159), we know that

- ! t n{f=T (-7 £
H7"2( )HH(Q) A;/L_Aﬁ ZK[W fo A2t _ Dit ))(cn(f)—Gn(T))dT]
t 25-2¢ "
< ¥ ([ e -V ar)| [ (G - Guco) )

—= 0-1 _
< C4(€2kT(M‘) + (ME)S [)€C1,p,f-

2

A<M,
Using (@4), we find that
2
/\25—2[ . (1 + 4k/\?72)
(Cn St — D, eDnt ) < 8k2)\25-20+20—4 e4kT/\,9,* + A2
A2 + 4kA9 - " 4 8
Let us divide two cases.
Case 1. Thecases + 60 —2 < {.
If ¢ satisfies thats + 6 — 2 < £ and A,, < M,, we know that
2
o (1+4K292)
8k2/\§5—2(’+23—4e4kT/\n + 1 ATZIS—Zf
2
o (14402
< 8K2 A%572€+2674 PART(MT | : (M,)=2.
Thus, we obtain that
AKT(M,)0! 25-2€
”7:2( )“IH 5(Q) = |C | ( + (Me)™" )”G G“LZ(OTIHf(Q))

where Cs = E5(k, T, ¢, Ay,s,0). Hence, we find that
||%(" t)“Hs(Q)

Combining (I79) and (184), we obtain

<[7en

— 0-1 _
< Cz/,;/ng,(eZkT(MZ) + (Mé)s 6)6.

D) = W) + |70

e *

H(Q) H:(Q)

0-1 _ - 0-1 —
< CaCp(TMI™ 4 (M) ) + € Co2TMI™ 1 (M) e

7919

177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)



N. H. Can et al. / Filomat 38:22 (2024), 7895-7921

Under the assumption y € L=(0, T; H**¥(Q2)), we remind that

<M

v 5= W,

Hs(Q) L=(0,T;H+(Q)

By collecting two previous results (185) and (186), we confirm that

Yo t) = ., t)”Hs(Q) < ’ Yo () = W, t)” + Hy(., B - We(, t)”

< (E4C1,p,[ + ([Zz,p,fES)(EZkT(M‘)w1 + (ME)S_€)8 + (Mg)‘SHy

Hs(Q) Hs(Q)

Case 2. Thecases+ 60 —2 > ¢.
If £ satisfies that s + 6 — 2 > £ and A, < M,, we derive that

2
6-2
K2 A%s—25+26—4 PAKTATT | (1 + Ak ) A%s—%’

4
(1+ 4k)t?*2)2

< 8k2(Mé_)25—2€+29—4e4kT(ML)6’] + (MS)ZS—ZK‘
In a similar process, we also obtain that
- _ _ 6-1 _
”‘Fz(., t)”HS(Q) < Cz,p,gcé((Mg)s (H0-2, KT (M) c) c.

where Cg = Cy(k, T, s, 0). This inequality together with (T79) yields to

Yo(, ) - W, t)” < H?—q(., t)H F(., t)”

— 0-1 _
< C4C1,p,g(€2kT(M*) + (M,)* [)E

|

H:(Q) H:(Q) H:(Q)

+C, ) 566(( Mg)s—€+e—2 eZkT(ME)‘H

By collecting (186) and (190), we obtain that

+ (MY ~)e.

Yo t) =y, t)”}HS(Q) <|ve.o-wen| v n-wei |

— 0-1 _
< CyCp (T 4+ (M) )e

H:(Q) H:(Q)

+ Cap Cof (M 01020 My~ e. + (M) |y

The proof is completed. [

6. Conclusion

L (0,T;Hs+(Q))

L=(0,T;H+*(Q)

7920

(186)

(187)

(188)

(189)

(190)

(191)

The focus of this study lies in examining the Cauchy problem for a parabolic equation with a memory
term. The memory component incorporates a fractional Laplacian operator. Initially, we express the mild
solution using a Fourier series. Subsequently, we investigate the well-posedness of the Cauchy problem
when the initial data and source function belong to Gevrey spaces. Additionally, the this presents results
demonstrating the ill-posedness in the sense of Hadamard and proposes regularized methods. In the
homogeneous case, we applied the quasi-boundary value method to regularize the problem and estimate
errors when observing data in L2. For inhomogeneous source terms, we used the truncation method to

approximate the problem with observed data in L*.
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