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Abstract. In a graph G, a clique partition of G is a partition P = {V1,V2, . . . ,Vq} of V(G) such that the
induced subgraph G[Vi] is a clique (called a clique of P) for each i ∈ [q]. If a clique partition P also satisfies
that |G[Vi]| = t for each i ∈ [q], the graph G is called a Kt-partitionable graph. A Kt-partition edge-fault set
of G is a subset F of E(G) such that the deletion of F results in a graph where no Kt-partitions exist. The
Kt-partition edge-fault number of G, denoted by ft(G), is the smallest size among all Kt-partition edge-fault
sets of G. The Kt-preclusion number of G, denoted by 1t(G), is the minimum size of an edge subset A such
that there exists at least one vertex in G not contained in any clique Kt ⊆ G−A. In this paper, we prove that
arrangement graphs and data center networks are clique partitionable. Furthermore, arrangement graphs
are shown to be clique decomposable. We determine the exact value of fn−k+1 for the arrangement graphs
An,k and establish bounds for ft(An,k) and ft(Kn) for specific values of t. Additionally, we derive the exact
values of 13 for maximal planar graphs, 1r for Turán graphs T(n, r), and ft for graphs obtained from the
arrangement graphs An,k by shrinking a partition R, for specific values of t.

1. Introduction

Clustering is an important aspect for designing interconnection networks. The idea is to partition
the vertex set of a given graph (interconnection network) into groups of vertices (processors) such that
each group of vertices is assigned an important task. Therefore, the vertices (processors) in each group
will communicate with each other frequently, but less frequently with vertices (processors) outside of their
group. With this assumption, one may want the subgraph induced by each group to be dense, perhaps a
complete graph. So one may question the existence of such partitioning if there are vertex or edge faults.
The most basic type is when each group consists of two vertices. For this special case, many problems
(including NP-Hard problems) were introduced with many results obtained in the past decade. It is time
to go beyond this basic setting and consider the case where each group has more than two vertices.

All graphs considered in this paper are undirected, finite and loopless. A clique partition of a graph G,
denoted by P, is a partition P = {V1,V2, . . . ,Vq} of V(G) such that the induced subgraph G[Vi] is a clique
(called a clique of P) for each i ∈ [q]. If a clique partition P also satisfies that |G[Vi]| = t for each i ∈ [q],
then the graph G is called Kt-partitionable. Given the focus on clique partitions where all cliques are of the
same size, we call such partitions uniform clique partitions. A Kt-partitionable graph contains qt vertices for
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some positive integer q and at least q
(t

2
)

edges. In this paper, uniform clique partitions are often of a given
size t. If t = 2, then G has a perfect matching. A matchin1 preclusion set of a graph G is a set of edges whose
deletion leaves the resulting graph with neither perfect matchings nor almost perfect matchings (matchings
that cover all but one vertex in a graph with an odd number of vertices). The matchin1 preclusion number of
G, denoted by mp(G), is the size of a smallest matching preclusion set of G. A matching preclusion set of
minimum cardinality is called optimal. For graphs with an even number of vertices, clearly the set of edges
incident to a single vertex is a matching preclusion set and such a set is called a trivial matchin1 preclusion
set. Moreover, as for an r-regular graph G, if G is r-ed1e-colorable which implies that G can be decomposed
into r edge-disjoint perfect matchings, a matching preclusion set of G must intersect each of these r perfect
matchings. We refer the readers to [8, 18, 19, 23, 26] for details and references.

In what follows we are going to give a generalization of perfect matchings. Let G be a simple graph
with tq vertices for positive integers t and q, where q ⩾ 2. Let qKt denote the disjoint union of q copies of
complete graph on t vertices, Kt.

A graph G is Kt-decomposable if there is a partition of E(G) into edge-disjoint spanning subgraphs, each
of them isomorphic to qKt, for some q. The necessary condition of a graph G being Kt-decomposable is that
G contains qt vertices for some positive integer q and mq

(t
2
)

edges for some positive integer m. The existence
of a Kt-decomposition for Kn is equivalent to the existence of a resolvable combinatorial design on n vertices
with block size t. This problem has been extensively studied, with notable results such as the existence of
Kirkman triple systems, which are resolvable Steiner triple systems decomposing Kn into triangles. In this
context, each clique is akin to a “block”, and a clique partition is analogous to a “parallel class” (a partition
of points into blocks of the same size), with their union referred to as a “resolution” (a partition of edges
of Kn into clique partitions) [9, 16]. Although some networks considered in this paper are vertex-transitive,
Kt-decomposable graphs are not essentially vertex-transitive. For example, each 3-edge-colorable cubic
(3-regular) graph is K2-decomposable but a few of them are vertex-transitive.

Clearly, if t = 2, a Kt-partitionable graph is a graph with a perfect matching. In other words, if a graph
G has a perfect matching, then it is K2-partitionable. Also, if t is a divisor of an integer k with 2 ⩽ t ⩽ k − 1,
then the k-dimensional complete graph Kk is Kt-partitionable.

As a measure of the robustness of a graph G, the matching preclusion number is defined as the minimum
number of edges that, upon removal, result in the absence of all perfect matchings (if the number of vertices,
|V(G)|, is even) or almost perfect matchings (matchings that cover all but one vertex in a graph with an odd
number of vertices). This concept can be generalized to Kt-partition edge-fault set. A Kt-partition edge-fault
set of G is a subset of E(G) whose deletion leaves the resulting graph with no Kt-partitions. The Kt-partition
edge-fault number of G is the smallest size among all Kt-partition edge-fault sets of G, denoted by ft(G). In
the following, we provide a definition for the Kt-preclusion number.

Definition 1. Let t be a positive integer greater than 1, and let G = (V,E) be a graph. For a vertex v ∈ V, if there
exists F ⊂ E such that v is not contained in any clique of order t in G − F, then F is called a Kt-preclusion set for v.
The Kt-preclusion number of v in G, denoted by 1tv(G), is defined as the minimum size among all Kt-preclusion sets
for v in G. The Kt-preclusion number of G, denoted by 1t(G), is the minimum among the Kt-preclusion numbers of
all vertices in V(G) i.e. 1t(G) = min{1tv(G) : v ∈ V(G)}.

If G is not Kt-partitionable, then ft(G) = 0. By the definitions, ft(G) ⩽ 1t(G). Later, in Example 2, we will
provide an illustration of graphs where ft(G) < 1t(G). Let G be a vertex-transitive graph. Then G is r-regular
for a positive integer r and 1t(G) = 1tv(G) for each vertex v ∈ V(G). If f2(G) = 12(G), then there exists a trivial
matching preclusion set of G which isolates a single vertex of G. In a similar way, if ft(G) = 1t(G), there
exists a Kt-preclusion set of G called a trivial Kt-partition edge-fault set with a minimum size which equals
ft(G).

Plenty of interconnection networks, including fat trees [21] and hypercubes [17], have a recursive
structure, that is, they can be constructed by some isomorphic subgraphs. To improve the computational
efficiency, a large amount of networks take cliques which is a generalization of matchings as initial graphs,
such as arrangement graphs [7] and DCell [11]. The clique coverin1 number of a graph G is the minimum
number of cliques in G needed to cover the vertex set of G. And the clique cover problem which is to
find a minimum clique number was one of Richard Karp’s original 21 problems shown NP-complete [14].
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References [15, 22] and [2, 5, 6] are consulted for some results on clique covering and edge clique covering,
respectively. Additionally, [4] is employed as an instance to explore the problem within a special network
architecture.

A network whose initial graph is a clique and having a partition of its vertex set such that the induced
subgraph of each part of this partition is isomorphic to a complete graph with a fixed size will be considered.
In [13], Átila A.Jones et al. show some results of edge clique partition. And in [10], Grahame Erskine et al.
show the construction of clique-partitioned graphs.

In this paper, we prove that arrangement graphs and data center networks are clique partitionable.
Furthermore, arrangement graphs are clique decomposable. We determine the exact values of ft(G) for
specific arrangements, such as fn−k+1(An,k) and establish bounds for ft(An,k) and ft(Kn) for certain values of
t. Furthermore, we derive the exact values of 13(G) for maximal planar graphs G, 1r(T(n, r)), and ft(G) for
graphs obtained from the arrangement graphs An,k by shrinking a partition R, for specific values of t.

2. Preliminary

Let G be a graph with vertex set V(G) and edge set E(G). For a vertex u in G, we define the nei1hbourhood
of the vertex u in G by NG(u) (or simply say N(u)) and closed neighbourhood NG[u] = NG(u)∪ {u}. If U ⊆ V(G),
then NG(U) = (

⋃
v∈U NG(v)) \U. The de1ree of the vertex v in G is denoted by dG(v). The induced sub1raph by

V′ in G, denoted by G[V′], is a graph whose vertex set is V′ and whose edge set consists of all edges of G
which have both ends in V′. If dG(v) = k for any vertex v of G, then G is a k-regular graph. For an edge e and
a graph G, G ∪ {e} is abbreviated to G ∪ e. Let Ii

n = {i, i + 1, . . . ,n} be the positive integer set. If i = 1, I1
n is

abbreviated to [n].
Let X and Y be subsets of V(G), E[X,Y] be the subset of E(G) with one end in X and the other end in Y,

and e(X,Y) denote its number. If Y = X, we simply write E(X) and e(X) for E[X,X] and e(X,X), respectively.
When Y = V\X, the set E[X,Y] is called the ed1e cut of G associated with X, or the coboundary of X, and is
denoted by ∂(X). An edge cut ∂(v) associated with a single vertex v is a trivial ed1e cut.

Let X be a proper subset of V(G). The resulting graph of G to shrink X, denoted by G/X, is the obtained
graph from G by deleting all edges between vertices of X and then identifying the vertices of X into a single
vertex. Given a partition P = {V1,V2, . . . ,Vp} of V(G), the graph of G to shrink P is the graph obtained from
G by shrinking each Vi as a single vertex for each i ∈ [p], and the resulting p-vertex graph is denoted by G/P.
Note that G/P might have multiple edges even if G is simple, but not any loops. Let P = {V1,V2, . . . ,Vp}

be a partition of V(G), if the induced subgraph by each part of P is isomorphic to a subgraph H of G, the
partition P is called a H-partition of G. Clearly, H-partition is a generalization of Kt-partition.

The arrangement graphs were introduced by Day and Tripathi in [7]. The (n, k)-arrangem-ent graph,
denoted by An,k, is defined for positive integers n and k such that n ⩾ 2 and 1 ⩽ k ⩽ n − 1. The vertex set of
An,k is the set of k-permutations from [n]. Let u = a1a2 · · · ak be a vertex of An,k, then ai is the ith-position of u
for i ∈ [k]. Two vertices corresponding to the permutations a1a2 · · · ak and b1b2 · · · bk are adjacent if and only
if they differ in exactly one position. Indeed, the graph An,n−1 is isomorphic to the star graph Sn and An,n−2
is isomorphic to the alternating group graph AGn. Also, An,1 is isomorphic to the complete graph Kn. The
n-dimensional star graph Sn is defined as follows. The n-dimensional star graph Sn has vertex set Sym(n)
= {v = u1u2 · · · un|u1u2 · · · un is a permutation on [n]}. Each vertex v = u1u2 · · · un is adjacent to the following
n − 1 vertices vi = uiu2 · · · ui−1u1ui+1 · · · un, where 2 ⩽ i ⩽ n. In fact, An,k is a k(n − k)-regular vertex transitive
graph with n!/(n − k)! vertices [7].

A server-centric data center network called DCell was proposed by Guo et al. in [11], which can support
millions of servers with high network capacity by only using commodity switches. For integers k ⩾ 0 and
n ⩾ 2, the data center network of k-dimensional DCell with n-port switches is denoted by Dk,n. For notational
convenience, let tk,n = |V(Dk,n)|. Let D0,n be a complete graph on n nodes such that each node has a distinct
label chosen from [n]. Clearly, t0,n = n. For k ⩾ 0 and n ⩾ 2, tk,n = tk−1,n(tk−1,n + 1). Then, Dk,n can be defined
as follows:

The data center network Dk,n is a graph with the node set V(Dk,n) = {ukuk−1 · · · u0 : ui ∈ [ti−1,n + 1] for
i ∈ [k] and u0 ∈ [n]}. Two nodes u = ukuk−1 · · · u0 and v = vkvk−1 · · · v0 in V(Dk,n) are adjacent if and only if
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there is an integer l such that
(1) ukuk−1 · · · ul = vkvk−1 · · · vl,
(2) ul−1 , vl−1,
(3) ul−1 = v0 + Σ

l−2
j=1(v j × t j−1,n) and vl−1 = u0 + Σ

l−2
j=1(u j × t j−1,n) + 1 with l > 1 and ul−1 < vl−1.

As a matter of fact, the DCell network Dk,n can be built from tk−1,n + 1 disjoint copies of Dk−1,n.
The book [1] is referred for notations and terminologies undefined here. For more properties about

networks can be referred to [12, 24, 25].
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Figure 1: An illustration of data center networks Dk,n for some k and n.

3. Main results

Theorem 1. Let k,n be two integers such that k ⩾ 1 and n ⩾ 2. The (k,n)-data center networks Dk,n is Kn-
partitionable.

Proof. Recall that D0,n is isomorphic to Kn and V(Dk,n) can be partitioned into P = {V1,V2, . . . ,Vξ} such that
Di = Dk,n[Vi] � Dk−1,n for i ∈ [ξ], and ξ = tk−1,n + 1 while tk,n denotes |V(Dk,n)|. It implies that Dk,n has a
spanning subgraph K which is isomorphic to ξDk−1,n. By the inductive hypothesis, we assume that Di has
a spanning subgraph Gi which is isomorphic to qKn for q ⩾ 2. Then Dk,n has a spanning subgraph ∪i∈[ξ]Gi
which is isomorphic to ξqKn. So Dk,n is Kn-partitionable.

3.1. The exact value of fn−k+1(An,k)

Let An,k be the (n, k)-arrangement graph. Let x = 12 · · · k ∈ V(An,k), and Ak(x) = {12 · · · (k − 1)s : s ∈
Ik+1
n } ⊂ NAn,k (x). Indeed, any two vertices from Ak(x)∪ {x} are adjacent in An,k. That is, the induced subgraph

by Ak(x) ∪ {x} of An,k is a (n − k + 1)-dimensional complete graph Kn−k+1, denoted by Sk(x). Note that Ak(x)
is the set of all vertices differing only in kth-position from x. Analogously, considering vertices differing
exactly in ith-position from x for i ∈ [k − 1], each vertex subset Ai(x) with |Ai(x)| = n − k of V(An,k) and
Si(x) � Kn−k+1 for i ∈ [k] can be obtained. Since An,k is a k(n − k)-regular vertex transitive graph, for each
vertex u ∈ V(An,k), Ai(u) and Si(u) can be given directly as those of x. Furthermore, A(u) = ∪k

i=1Ai(u) and
Si(u) � Kn−k+1 for i ∈ [k].

Lemma 1. Let n, k be two integers such that n ⩾ 3 and 2 ⩽ k ⩽ n − 1. Then the (n, k)-arrangement graph An,k is
Kn−k+1-decomposable.
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Proof. For each vertex u ∈ V(An,k), let Ai(u) = {v : v differs in exactly ith-position from u}, Si(u) =
An,k[Ai(u) ∪ {u}] and A(u) = NAn,k (u) = {v : v differs in exactly one position from u}. Then A(u) = ∪k

i=1Ai(x)
and Si(u) � Kn−k+1 for i ∈ [k]. Let Hi = {Si(u) : u ∈ V(An,k)} for i ∈ [k]. Each Hi is a spanning subgraph of
An,k and Hi � Pk−1

n Kn−k+1, in which Pk−1
n stands for the number of all (k − 1)-permutations of n. Moreover,

E(Hi) ∩ E(H j) = ∅ for any i, j ∈ [k], i , j and ∪k
i=1E(Hi) = E(An,k). So An,k is Kn−k+1-decomposable.

Lemma 2. Let G be a Kt-decomposable graph with m factors (the term “factor” refers to each of the Hi¡¯s), then
ft(G) ⩾ m.

Proof. There exist m spanning subgraphs H1,H2, . . . ,Hm of G and each of them is isomorphic to Kt such that
∪

m
i=1E(Hi) = E(G) and E(Hi) ∩ E(H j) = ∅ for any i , j. Let F ⊂ E(G). If |F| ⩽ m − 1, then there exists an i ∈ [m]

such that F ∩ Hi = ∅. It implies that Hi is also a spanning subgraph of G − F, so G − F is Kt-partitionable,
that is, ft(G) ⩾ m.

It is straightforward to obtain Lemma 3, by Lemma 2.

Lemma 3. Let t, q,m be three positive integers with q ≥ 2 and G be a Kt-decomposable graph with tq vertices and
mq
(t

2
)

edges. Thus ft(G) ≥ m.

Theorem 2. Let n, k be two integers such that n ⩾ 3 and 2 ⩽ k ⩽ n − 1. If G is the (n, k)-arrangement graph An,k,
then fn−k+1(G) = k.

Proof. By Lemma 1, the arrangement graph An,k is Kn−k+1-decomposable with k factors. By Lemma 2,
fn−k+1(An,k) ⩾ k. Let F0 be a subset of E(G) with |F0| = k such that |F ∩ Si(u)| = 1 for each i ∈ [k], then the
vertex u will not be in any subgraph isomorphic to Kn−k+1 in G − F. It implies that fn−k+1(An,k) ⩽ k. Thus
fn−k+1(An,k) = k.

Theorem 3. Let n, k, l be three integers for n ⩾ 3 and 2 ⩽ k ⩽ n − 1. Let n − k + 1 has a divisor t such that
2 ⩽ t ⩽ n − k. If ft(Kn−k+1) = l, then ft(An,k) ⩾ kl.

Proof. By Lemma 1, An,k is Kn−k+1-decomposable, that is, there exist k spanning subgraphs H1,H2, . . . ,Hk
of An,k and each of them is isomorphic to Pk−1

n Kn−k+1 such that ∪k
i=1E(Hi) = E(An,k) and E(Hi) ∩ E(H j) = ∅

for any i , j. Let F ⊂ E(An,k) be any Kt-partition edge-fault set of An,k. If ft(Kn−k+1) = l, we claim that
|F| ⩾ kl. Otherwise, assume that |F|<kl. So there exists some Hi ∈ {H1,H2, . . . ,Hk} such that |F ∩ Hi| < l.
Since Hi � Pk−1

n Kn−k+1 and ft(Kn−k+1) = l, for any clique Kn−k+1 in Hi, we have to delete at least l edges to
make it not Kt-partitionable. However, since |F ∩Hi| < l, no clique Kn−k+1 is not Kt-partitionable without F.
Therefore, Hi−F is Kt-partitionable. Since Hi is a spanning subgraph of An,k, An,k−F is also Kt-partitionable,
contradicting that F is a Kt-partition edge-fault set of An,k. So |F| ≥ kl. By the arbitrariness of F, we have that
ft(An,k) ⩾ kl.

Note that plenty of networks such as An,k and Dk,n are Kt-partitionable for some t. From Theorem 3, we
find that some related results of ft(An,k) will be obtained by exploring ft(Kn). However, it maybe difficult to
determine the exact values of ft(Kn). Therefore, we give some bounds of ft(Kn) in the next subsection.

3.2. The bounds of ft(Kn)
Let n and t be two positive integers with n ⩾ t. We can verify that 1t(Kn) = n − t as Kn is a vertex-

transitive graph and 1t(Kn) = 1tv(Kn) for each vertex v ∈ V(Kn). However, determining the exact value of
ft(Kn) is not straightforward. We will now consider the bounds of ft(Kn). Using similar proof techniques as
in Theorem 2, we derive Lemma 3.

Lemma 4. Let G be a Kt-partitionable graph with minimum degree δ. Then ft(G) ≤ δ − t + 2.

Proof. Let v be a vertex with minimum degree δ of G. Let F ⊂ ∂(v) ⊂ E(G) and |F| = δ − t + 2. Since the
vertex v has only t− 2 neighbours in G− F, implying that v is not included in any Kt subgraph of G− F, F is
therefore a Kt-partition edge-fault set of G. Since ft(G) is the smallest size of all such sets, ft(G) ⩽ δ− t+ 2.

Theorem 4. Let t be a divisor of a positive integer n with 2 ⩽ t ⩽ n − 1. Then ft(Kn) ⩽ min{n − t + 1,
( n

t +1
2

)
}.
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Proof. Let F ⊂ E(Kn). By Lemma 4, ft(Kn) ⩽ n− t+1 since Kn is (n−1)-regular. Let X ⊂ V(Kn) and |X| = n
t +1.

Let F0 = E(Kn[X]). Then |F0| =
( n

t +1
2

)
. Assume that Kn−F0 is a Kt-partitionable graph, then V(Kn−F0) = V(Kn)

has a partition P such that the induced subgraph by each part on Kn − F is isomorphic to Kt. It implies that
|P|= n

t . Since X is an independent set in the graph Kn − F0, no two vertices of X can be in the same part of
P, which implies that |P|≥ n

t + 1, which is a contradiction. So Kn − F0 is not a Kt-partitionable graph which
show that F0 is a Kt-partition edge-fault set. As a result, ft(Kn) ⩽ |F| ≤

( n
t +1
2

)
. Based on the above discussions,

one has that ft(Kn) ⩽min{n − t + 1,
( n

t +1
2

)
}.

Note. In most cases, especially as n increases relative to t,
( n

t +1
2

)
is larger than n − t + 1. But sometimes( n

t +1
2

)
is not larger than n − t + 1. We give two examples with

( n
t +1
2

)
⩽ n − t + 1 as following.

Example 1. For n = 4, t = 2, n − t + 1 =
( n

t +1
2

)
=3. We can check that f2(K4) = 3.

Figure 2: Example 1.

Example 2. For n = 8, t = 4, n − t + 1 = 5 ≥ 3 =
( n

t +1
2

)
. We can check that f4(K8) = 3.

In this subsection, we mainly determine the upper bound of ft(Kn) which is equal to min{n− t+ 1,
( n

t +1
2

)
}.

Does there exist a lower bound close to such a value? Nevertheless, we still believe that the exact value of
ft(Kn) is equal to this upper bound and put it as a conjecture.

Conjecture. Let t be a divisor of a positive integer n with 2 ⩽ t ⩽ n−1. Then ft(Kn) =min{n− t+1,
( n

t +1
2

)
}.

3.3. The exact value of 13(G) for maximal planar graph G and 1r(T(n, r))

A maximal planar 1raph is a planar graph whose all faces are triangles. Rotation systems encode
embeddings of graphs onto orientable surfaces by describing the circular ordering of a graph’s edges
around each vertex.

Figure 3: Triangles containing the vertex v in a maximal planar graph.
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Theorem 5. Let G be a maximal planar graph with minimum degree δ. If v ∈ V(G) is a degree d vertex, then
13(v) = ⌈ d

2 ⌉. Consequently, 13(G) = ⌈ δ2 ⌉.

Proof. Let G̃ be a planar embedding of the maximal planar graph G with a rotation system ϕ. Since d(v) = d,
thus v is in d distinct triangles in G̃. By deleting one edge incident to v (resp. not incident to v), at most
two triangles (resp. at most one triangles) containing v are destroyed. Thus 13(v) ≥ ⌈ d

2 ⌉. In the rotation
ϕ, we label all edges incident to v clockwise by e1, e2, . . . , ed, respectively. If d is even, deleting all ei with
even i ∈ [d] can destroy all triangles containing v. If d is odd, deleting all ei with even i ∈ [d] can destroy
all triangles containing v except one, so we need to delete one more edge. Then 13(v) ≤ ⌈ d

2 ⌉. As a result,
13(v) = ⌈ d

2 ⌉. By the minimum of 13(G), one has that 13(G) = ⌈ δ2 ⌉.

A Turán 1raph, denoted by T(n, r) is a complete r-partite graph with n vertices whose each part has the
size ⌊ n

r ⌋ or ⌊ n
r ⌋ + 1. The following result is given.

Figure 4: A Turán graph T(11, 3).

Theorem 6. Let n and r be two positive integers for n ⩾ r. Let T(n, r) be a Turán graph. Then the value of 1rv(T(n, r))
is either ⌊ n

r ⌋ or ⌊ n
r ⌋ + 1. Therefore 1r(T(n, r)) = ⌊ n

r ⌋.

Note. Let P = {V1,V2, . . . ,Vr} be a partition of V(T(n, r)) such that each part is an independent set with
size ⌊ n

r ⌋ or ⌊ n
r ⌋+1 of T(n, r) with ni = |Vi|. There exists the following equivalent representation of 1rv(T(n, r)):

1rv(T(n, r)) = ⌊ n−ni
r−1 ⌋ for each v ∈ Vi and i ∈ [r], that is, 1rv(T(n, r)) is the cardinality of the smallest part among

all parts except that contains a vertex v.

Proof. We will prove that 1rv(T(n, r)) equals either ⌊ n
r ⌋ or ⌊ n

r ⌋ + 1, that is 1rv(T(n, r)) = ⌊ n−ni
r−1 ⌋ for each v ∈ Vi

and i ∈ [r], where |Vi| = ni.
For each vertex v ∈ V(T(n, r)), choose one vertex from each part of T(n, r) except the part containing

v, then, these vertices together with v induce a clique with order r. We have to delete some edges in the
clique. So we only need to consider the minimum part which is not containing v. Since the difference
of the size of each part is at most one, one has that 1rv(T(n, r)) ≥ ⌊ n−ni

r−1 ⌋. On the other hand, we can
find the part V j with ⌊ n−ni

r−1 ⌋ vertices, and let F = E[v,V j]. Then |F| = ⌊ n−ni
r−1 ⌋ and F is a Kt-preclusion set

of v in T(n, r). Thus, 1rv(T(n, r)) ≤ ⌊ n−ni
r−1 ⌋. As a result, 1rv(T(n, r)) = ⌊ n−ni

r−1 ⌋. Further more, 1r(T(n, r)) =
min{1rv(T(n, r)) : v ∈ V(T(n, r))} =min{⌊ n−ni

r−1 ⌋ : i ∈ [r]} = ⌊ n
r ⌋.
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4. To shrink a partition for An,k

In this subsection, we focus on the graphs obtained from the arrangement graphs An,k by shrinking
a partition R. We give two recursive decomposition approaches of An,k. And the Kt-partition edge-fault
numbers of resulting graphs for some special t are determined.

By Lemma 1, we know that An,k is Kn−k+1-decomposable and has a spanning subgraph Hi isomorphic
to Pk−1

n Kn−k+1. Let Pi = {Vi
1,V

i
2, . . . ,V

i
Pk−1

n
} be the partition of V(An,k) for i ∈ [k] such that An,k[Vi

j] � Kn−k+1

for j ∈ [Pk−1
n ] and Hi = ∪ j∈[Pk−1

n ]An,k[Vi
j]. For any vertex u = a1a2 · · · ak ∈ V(An,k), V(Si(u)) containing

the vertex u is shrunk into a single vertex, denoted by the (k − 1)-permutations a1a2 · · · ai−1ai+1 · · · ak. If
u, v ∈ V(An,k) are adjacent and v < Si(u), then v differs in exactly jth-position from u for some j , i. Let v =
a1a2 · · · ai−1aiai+1 · · · a j−1b ja j+1 · · · ak and let B = {a1a2 · · · ai−1tai+1 · · · a j−1b ja j+1 · · · ak : t ∈ [n]\{a1, a2, . . . , ak, b j}} ⊂

Si(v). Note that |B| = n − k − 1 and each vertex of B ∪ {v} is adjacent to a vertex in Si(u), as they are different
in exactly two positions i and j. It implies that there exist n − k crossing edges between Si(u) and Si(v). The
vertex set of An,k/Pi is the set of (k− 1)-permutations from [n]. And the adjacency of two vertices in An,k/Pi
corresponds to the edges between Si(u) and Si(v). Therefore, the simple subgraph obtained from An,k/Pi
by deleting extra multiple edges is isomorphic to An,k−1 which is (k − 1)(n − k + 1)-regular. There are n − k
multiple edges between any two adjacent vertices in An,k/Pi. Then An,k/Pi is (k− 1)(n− k+ 1)(n− k)-regular.

By repeating this process, An,k−2 is a spanning subgraph of the graph obtained from An,k−1 by shrinking
a Kn−k+2-partition, and An,k−3 is a spanning subgraph of the graph obtained from An,k−2 by shrinking a
Kn−k+3-partition. Then by shrinking a series of clique partitions, An,1 can be obtained. The resulting graph
is (n − k)!-regular with (n − k)! multiple edges between any two adjacent vertices. Recall that An,1 � Kn.

Let Ji, j be the subgraph of An,k induced by the vertices whose ith-position is j for i ∈ [k] and j ∈ [n]. It
implies that Ji, j � An−1,k−1. For a given integer i ∈ [k], Ji,1, Ji,2, . . ., Ji,n are n disjoint subgraphs of An,k. Let
Ji = ∪ j∈[n] Ji, j. Then Ji is a spanning subgraph of An,k. For any i, l ∈ [k], E(Ji)∩E(Jl) = ∅ and ∪k

i=1E(Ji) = E(An,k).
Let Qi = {Xi

1,X
i
2, . . . ,X

i
n} be the partition of V(An,k) for i ∈ [k] such that An,k[Xi

j] = Ji, j for j ∈ [n]. For

any m, s ∈ [n], there are (n−2)!
(n−k−1)! crossing edges between Ji,m and Ji,s. So An,k/Qi contains the simple graph

isomorphic to An,1 � Kn.
In fact, Xi

j is the set of vertices with i-th position is j (only one position is fixed). Generally, for a given
γ ∈ [k], consider γ positions being fixed. Without loss of generality, assume that these γ positions has ζ
possible choices. Let R = {V1,V2, . . . ,Vζ} be a partition of V(An,k), where Vτ is the set corresponding to τ-th
choice of γ positions and the subgraph induced by Vτ is isomorphic to An−γ,k−γ for τ ∈ [ζ] and γ ∈ [k − 1].
The partition is called a recursive partition of V(An,k).

Each Vτ is shrunk into a vertex in An,k/R. Since γ positions are fixed in R, the vertex set of An,k/R is
the set of γ-permutations from [n]. And the adjacency of two vertices in An,k/R corresponds to the edges
between two copies of An−γ,k−γ. Therefore, the simple subgraph obtained from An,k/R by deleting extra
multiple edges is isomorphic to An,γ and there are (n−γ−1)!

(n−k−1)! multiple edges between any two adjacent vertices

in An,k/R. Please see Figure 6 and Figure 7 as examples.¡¡ ( For example, there are (n−2)!
(n−k−1)! multiple edges

between any two adjacent vertices in An,k/Qi.) Based one the above analysis, the graph An−γ+1,k−γ+1 can be
decomposed into An−γ,k−γ for γ ∈ [k − 1]. For the graph An,k, shrinking Pi and shrinking Qi are two distinct
methods. Since An,k has a recursive decomposition of An−1,k−1, repeating the process, An,k has a recursive
decomposition of An−γ,k−γ.

Theorem 7. Let n, k be two integers such that n ⩾ 3 and 2 ⩽ k ⩽ n − 1. If R = {V1,V2, . . . ,Vζ} is a recursive
partition of V(An,k), where the subgraph induced by Vi in An,k is isomorphic to An−γ,k−γ for i ∈ [ζ] and γ ∈ [k − 1],
then An,k/R is Kn−γ+1-decomposable and fn−γ+1(An,k/R) = γ · (n−γ−1)!

(n−k−1)! .

Proof. Recall that V(An,k) is the set of k-permutations from [n]. Fix γ positions of the k-permutations by
using γ numbers from [n]. When the γ numbers are placed in the fixed γ positions, then the k-permutations
are obtained by arranging k−γmember from n−γ numbers, thus the set of these vertices induces a subgraph
isomorphic to An−γ,k−γ.
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Figure 5: Partitions of V(A3,2) such that the induced subgraph of each part is isomorphic to K2 (red edges corresponding the partition
of fixing the first position and black edges corresponding the partition of fixing the second position).

Figure 6: The subgraph J2 containing J2,1, J2,2, J2,3 and J2,4 (red triangles) and the subgraph J1 containing J1,1, J1,2, J1,3 and J1,4 (black
triangles) in A4,2.

Figure 7: The graph A5,3/Qi, where Qi is a A4,2-partition of A5,3.

The γ given numbers are arbitrary, so there are Pγn disjoint subgraphs isomorphic to An−γ,k−γ in An,k.
Without loss of generality, we assume that R is obtained by arranging γ numbers from [n] into the first

γ positions, that is, vertices with the same numbers in the first γ positions are in the same part of R. If two
adjacent vertices of An,k are in different parts of R, then they differ in exactly one of the first γ positions.
Recall that R = {V1,V2, . . . ,Vζ}. For i ∈ [ζ], we denote the vertex V̄i by the vertex in An,k/R corresponding
to Vi.

Assume that u = a1a2 · · · ak ∈ Vx and v = b1b2 · · · bk ∈ Vy with x , y of R. Vertices u and v are adjacent
in An,k if and only if there is an integer t ∈ [γ] such that ai , bi while a j = b j for any j ∈ [k] and j , i which
implies that V̄x and V̄y is adjacent in An,k/R.

To determine the number of crossing edges between any two adjacent parts Vx and Vy, count the vertices
in both parts that share exactly the same k−γ numbers in the last k−γ positions. So there are Pk−γ

n−γ−1 crossing
edges between two adjacent parts of R. The graph obtained from An,k/R by deleting extra multiple edges
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is isomorphic to An,γ. And there are Pk−γ
n−γ−1 multiple edges between any two adjacent vertices V̄x and V̄y in

An,k/R.
By Lemma 1, An,γ is Kn−γ+1-decomposable. There are exactly Pk−γ

n−γ−1 edge-disjoint subgraphs isomorphic

to An,γ in An,k/R. So An,k/R is Kn−γ+1-decomposable. By Theorem 3, fn−γ+1(An,k/R) ⩾ γ · (n−γ−1)!
(n−k−1)! . On the other

hand, by Theorem 2, fn−γ+1(An,γ) = γ. We have to delete all Pk−γ
n−γ−1 multiple edges between two adjacent

vertices to destroy the adjacency in An,k/R compared with in An,γ. So fn−γ+1(An,k/R) ⩽ γ · (n−γ−1)!
(n−k−1)! . To sum

up, fn−γ+1(An,k/R) = γ · (n−γ−1)!
(n−k−1)! .

5. Conclusion

In this paper, we introduce several new concepts, including Kt-partitionable graph, Kt-partition
edge-fault number ft(G) of G and Kt-preclusion number 1t(G) of G which generalize perfect matching and
matching preclusion number. Then for specific values of t and for various networks such as arrangement
graphs, the complete graphs and data center graphs, we determine either the exact value or the bounds of
ft(G) and 1t(G). Clique partitions play a crucial role in maintaining the overall structure of networks and
can help increase their diameters [20]. We hope that the clique partition structure can be applied to the base
graphs of blockchain and neural networks. Exploring the values of ft(G) and 1t(G) for various networks G
would be an interesting area for further investigation. Additionally, further research into applications of
Kt-partitions would be valuable.
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[2] Csilla Bujtás, Akbar Davoodi, Ervin Györi, Zsolt Tuza, Clique coverings and claw-free graphs, European J. Combin. 88 (2020)

103114.
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