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Abstract. In this article, we derive several numerical radius interpolation inequalities related to positive
semidefinite block matrices by employing matrix convex function features. In particular, we show that if

A,B,C ∈Mn(C) are such that B is normal and
[

A B
B∗ C

]
≥ 0, then

w2r(B) ≤

∥∥∥∥∥∥
∫ 1

0

(
(1 − t)

(
αA

r
α + (1 − α)C

r
1−α

)
+ tw2r(B)I

)2
dt

∥∥∥∥∥∥
1/2

≤

∥∥∥αA
r
α + (1 − α)C

r
1−α

∥∥∥
for 0 ≤ α ≤ 1, r ≥ 1.

1. Introduction

LetMn(C) denote the space of n× n complex matrices. A Hermitian matrix A ∈Mn(C) is called positive
semidefinite if ⟨Ax, x⟩ ≥ 0 for all x ∈ Cn. To indicate that A is positive semidefinite, we write A ≥ 0. We write
A ≥ B to indicate that A − B is positive semidefinite for Hermitian matrices A,B ∈ Mn(C). A real-valued
function 1(t) on [0,∞) is said to be matrix monotone if for all A,B ∈Mn(C), A ≥ B ≥ 0 implies 1(A) ≥ 1(B)
and it is said to be matrix convex if

1((1 − α)A + αB) ≤ (1 − α) 1(A) + α1(B),

for all Hermitian matrices A,B ∈Mn(C), and for all real numbers 0 ≤ α ≤ 1. On the other hand, a function
1 : J→ (0,∞),where J is a subinterval of (0,∞), is said to be geometrically convex if

1(a1−αbα) ≤ 11−α(a)1α(b)

for all real numbers 0 ≤ α ≤ 1.
The topic of comparison of matrices has been the subject of current research because of its significance in

numerous mathematical fields, such as mathematical analysis, operator theory, and mathematical physics.
A norm N(.) onMn(C) is said to be unitarily invariant if it has the basic property N(UAV) = N(A),where

A ∈Mn(C) and U,V ∈Mn(C) are unitary, it is called weakly unitarily invariant if N(UAU∗) = N(A), where
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A ∈Mn(C) and U ∈Mn(C) is unitary, and it is called normalized if N(dia1(1, 0, ..., 0)) = 1. Examples of such
norms are the usual operator norm defined by ∥A∥ = max

∥x∥=1
∥Ax∥ = s1(A),where s1(A) ≥ s2(A) ≥ ... ≥ sn(A) are

the singular values of A, that is, the eigenvalues of the positive semidefinite matrix |A| = (A∗A)1/2, arranged
in decreasing order and repeated according to multiplicity.

For A ∈Mn(C), the numerical radius of A is defined by

w(A) = max {|⟨Ax, x⟩| : x ∈ Cn, ∥x∥ = 1} .

It is well known that w(.) defines a norm onMn(C). In fact, for every A ∈Mn(C),we have

w(A) ≤ ∥A∥ ≤ 2w(A),

which indicates that the numerical radius and the operator norm are equivalent. The norm w(.) is self-adjoint
and weakly unitarily invariant, but it is not unitarily invariant.

A useful identity for the numerical radii of matrices was given in [14] as follows:

w(A) = max
θ∈R

∥∥∥Re(eiθA)
∥∥∥ .

Abu-Omar and Kittaneh [1] defined the generalized numerical radius induced by a norm N(.) onMn(C))
by

wN(A) = max
θ∈R

N
(
Re(eiθA)

)
for every A ∈Mn(C).

Several generalizations of the numerical radius have been discussed in [2], [3], [5], [13], [15], and
references therein.

Established matrix inequalities involving positive semidefinite block matrices of the form P =
[

A B
B∗ C

]
,

where A,B,C ∈Mn(C) is one of the issues that have attracted the interest of scholars in recent years.
An estimation of the numerical radius of the off-diagonal part of P was given by Burqan and Al-Saafin

[6] as follows:

w(B) ≤
1
2
∥A + C∥ . (1)

Burqan and Abu-Rahma [7] generalized the inequality (1) as follows:

wr(B) ≤
1
2
∥Ar + Cr

∥ for r ≥ 1. (2)

An interesting generalization of the inequality (2) was introduced by Burqan, Alkhalely, and Conde [8]
as follows:

w2r(B) ≤
∥∥∥αA

r
α + (1 − α)C

r
1−α

∥∥∥ for r ≥ 1, 0 ≤ α ≤ 1. (3)

Moreover, Al-Naddaf, Burqan, and Kittaneh [9] generalized the inequality (1) for all normalized unitarily
invariant norm N(.) as follows:

1(2wN(B)) ≤ N
(
1(A) + 1(C)

)
, (4)

where 1(t) is a non-negative matrix monotone function on [0,∞).
The primary objective of this paper is to propose new interpolation inequalities of the aforementioned

inequalities via the use of the characteristics of matrix convex functions.
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2. Lemmas

The following lemmas are essential to obtain and prove our results. The first lemma is a norm inequality
for matrix monotone functions and can be found in [11]. The second lemma has been proved in [4]. Hermite-
Hadamard’s type inequalities for matrix convex functions of Hermitian matrices is presented in the third
lemma (see [10]). The forth lemma is a Cauchy-Schwarz inequality including block positive semidefinite
matrices (see [16]). The fifth lemma is derived from Jensen’s inequality and the spectral theorem for positive
semidefinite matrices (see [12]).

Lemma 2.1. Let 1(t) be a non-negative matrix monotone function on [0,∞) and let N(.) be a normalized unitarily
invariant norm onMn(C). Then for every A ∈Mn(C),

1(N(A)) ≤ N
(
1 (|A|)

)
.

Lemma 2.2. Let 1(t) be a non-negative matrix monotone function on [0,∞) and let N(.) be a unitarily invariant
norm onMn(C). Then for every positive semidefinite A,C ∈Mn(C),

N(1(A + C)) ≤ N(1 (A) + 1(C)).

Lemma 2.3. Let 1 : J → R be a matrix convex function on an interval J. Let A,C ∈Mn(C) be Hermitian matrices
with spectra in J. Then

1(
A + C

2
) ≤

∫ 1

0
1 ((1 − t)A + tC) dt ≤

1
2
(
1(A) + 1(C)

)
.

If 1(t) is non-negative, then the matrix inequality can be reduced to the following norm inequality

N
(
1(

A + C
2

)
)
≤ N

(∫ 1

0
1 ((1 − t)A + tC) dt

)
≤

1
2

N
(
1(A) + 1(C)

)
. (5)

Lemma 2.4. Let A,B,C ∈Mn(C) be such that
[

A B
B∗ C

]
≥ 0. Then

∣∣∣〈Bx, y
〉∣∣∣2 ≤ ⟨Ax, x⟩

〈
Cy, y

〉
for x, y ∈ Cn.

Lemma 2.5. Let A ∈Mn(C) be positive semidefinite and x ∈ Cn with ∥x∥ = 1. Then

⟨Ax, x⟩r ≤ ⟨Arx, x⟩ for r ≥ 1.

3. Main Results

At the beginning of this section, we introduce interpolation and generalization inequalities of Inequality
(3) using Hermite-Hadamard’s type inequalities for matrix convex functions of Hermitian matrices.

Theorem 3.1. Let A,B,C ∈Mn(C) be such that B is normal and
[

A B
B∗ C

]
≥ 0. If 1(t) is a non-negative increasing

matrix convex function on [0,∞), then

1
(
w2r(B)

)
≤

∥∥∥∥∥∥
∫ 1

0
1
(
(1 − t)

(
αA

r
α + (1 − α)C

r
1−α

)
+ tw2r(B)I

)
dt

∥∥∥∥∥∥
≤

∥∥∥∥1 (αA
r
α + (1 − α)C

r
1−α

)∥∥∥∥
for r ≥ 1, 0 ≤ α ≤ 1.
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Proof. Using the fact∥∥∥αA
r
α + (1 − α)C

r
1−α + w2r(B)I

∥∥∥ = ∥∥∥αA
r
α + (1 − α)C

r
1−α

∥∥∥ + w2r(B), (6)

Inequality (3) and Equality (6) yield that

2w2r(B) ≤
∥∥∥αA

r
α + (1 − α)C

r
1−α + w2r(B)I

∥∥∥
and so,

1
(
w2r(B)

)
≤ 1

(∥∥∥∥∥∥αA
r
α + (1 − α)C

r
1−α + w2r(B)I

2

∥∥∥∥∥∥
)

for any increasing function 1(t) on [0,∞). Thus, Lemma 2.1 implies that

1
(
w2r(B)

)
≤

∥∥∥∥∥∥1
(
αA

r
α + (1 − α)C

r
1−α + w2r(B)I

2

)∥∥∥∥∥∥ .
Inequality (5), Equality (6), and Inequality (3), respectively introduce

1
(
w2r(B)

)
≤

∥∥∥∥∥∥1
(
αA

r
α + (1 − α)C

r
1−α + w2r(B)I

2

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∫ 1

0
1
(
(1 − t)

(
αA

r
α + (1 − α)C

r
1−α

)
+ tw2r(B)I

)
dt

∥∥∥∥∥∥
≤

1
2

∥∥∥∥1 (αA
r
α + (1 − α)C

r
1−α

)
+ 1(w2r(B))I

∥∥∥∥
=

1
2

(∥∥∥∥1 (αA
r
α + (1 − α)C

r
1−α

)∥∥∥∥ + 1(w2r(B))
)

≤

∥∥∥∥1 (αA
r
α + (1 − α)C

r
1−α

)∥∥∥∥ .
This completes the proof.

The following corollary is an immediate consequence of Theorem 3.1 by considering 1(t) = t2.

Corollary 3.2. Let A,B,C ∈Mn(C) be such that B is normal and
[

A B
B∗ C

]
≥ 0. Then

w2r(B) ≤

∥∥∥∥∥∥
∫ 1

0

(
(1 − t)

(
αA

r
α + (1 − α)C

r
1−α

)
+ tw2r(B)I

)2
dt

∥∥∥∥∥∥
1
2

≤

∥∥∥αA
r
α + (1 − α)C

r
1−α

∥∥∥
for r ≥ 1, 0 ≤ α ≤ 1.

Again applying Inequality (5), we get another improvements of Inequality (3).

Theorem 3.3. Let A,B,C ∈Mn(C) be such that B is normal and
[

A B
B∗ C

]
≥ 0. If 1(t) is a non-negative increasing

matrix convex function on [0,∞), then

1
(
w2r(B)

)
≤

∥∥∥∥∥∥
∫ 1

0
1
(
2(1 − t)

(
αA

r
α

)
+ 2t(1 − α)C

r
1−α )

)
dt

∥∥∥∥∥∥
≤

1
2

∥∥∥∥1 (2αA
r
α

)
+ 1(2(1 − α)C

r
1−α )

∥∥∥∥
for r ≥ 1, 0 ≤ α ≤ 1.



A. Burqan / Filomat 38:22 (2024), 7941–7947 7945

Considering 1(t) = t in Theorem 3.3, we get the following corollary.

Corollary 3.4. Let A,B,C ∈Mn(C) be such that B is normal and
[

A B
B∗ C

]
≥ 0. Then

w2r(B) ≤ 2

∥∥∥∥∥∥
∫ 1

0
(1 − t)

(
αA

r
α

)
+ t(1 − α)C

r
1−α )dt

∥∥∥∥∥∥
≤

∥∥∥αA
r
α + (1 − α)C

r
1−α )

∥∥∥
for r ≥ 1, 0 ≤ α ≤ 1.

In the following theorem, we get a refinement of Inequality (4).

Theorem 3.5. Let A,B,C ∈ Mn(C) be such that B is normal and
[

A B
B∗ C

]
≥ 0. If 1(t) is a non-negative matrix

monotone and convex function on [0,∞), then

1 (wN(B)) ≤ N
(∫ 1

0
1 ((1 − t)A + tC) dt

)
≤ N

(
1 (A) + 1 (C)

2

)
for every normalized unitarily invariant norm N(.).

Proof. Since 1(t) is a non-negative matrix monotone function, from Inequality (4) we get

1(wN(B) ≤ 1
(
N

(A + C
2

))
.

Lemma 2.1 yields that

1

(
N

(A + C
2

))
≤ N

(
1

(A + C
2

))
.

Thus, by applying Lemma 2.3, we have

1(wN(B)) ≤ N
(
1

(A + C
2

))
≤ N

(∫ 1

0
1 ((1 − t)A + tC) dt

)
≤ N

(
1 (A) + 1 (C)

2

)
.

Using the fact
[

A A1/2B1/2

B1/2A1/2 B

]
=

[
A1/2 0
B1/2 0

] [
A1/2 0
B1/2 0

]∗
≥ 0 for any positive semidefinite matri-

ces A,B ∈Mn(C), Theorem 3.1, Theorem 3.3, and Theorem 3.5 produce the following results.

Corollary 3.6. Let A,B ∈Mn(C) be positive semidefinite matrices and let 1(t) be a non-negative increasing matrix
convex function on [0,∞). Then

1
(
w2r(A1/2B1/2)

)
≤

∥∥∥∥∥∥
∫ 1

0
1
(
(1 − t)

(
αA

r
α + (1 − α)B

r
1−α

)
+ tw2r(A1/2B1/2)I

)
dt

∥∥∥∥∥∥
≤

∥∥∥∥1 (αA
r
α + (1 − α)B

r
1−α

)∥∥∥∥
for r ≥ 1, 0 ≤ α ≤ 1.
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Corollary 3.7. Let A,B ∈Mn(C) be positive semidefinite matrices and let 1(t) be a non-negative increasing matrix
convex function on [0,∞). Then

1
(
w2r(A1/2B1/2)

)
≤

∥∥∥∥∥∥
∫ 1

0
1
(
2(1 − t)

(
αA

r
α

)
+ 2t(1 − α)B

r
1−α )

)
dt

∥∥∥∥∥∥
≤

1
2

∥∥∥∥1 (2αA
r
α

)
+ 1(2(1 − α)B

r
1−α )

∥∥∥∥
for r ≥ 1, 0 ≤ α ≤ 1.

Corollary 3.8. Let A,B ∈ Mn(C) be positive semidefinite matrices and let 1(t) be a non-negative matrix monotone
and convex function on [0,∞). Then

1
(
wN(A1/2B1/2)

)
≤ N

(∫ 1

0
1 ((1 − t)A + tB) dt

)
≤ N

(
1 (A) + 1 (B)

2

)
for every normalized unitarily invariant norm N(.).

In particular, for 1(t) = t and N(.) = ∥.∥ ,we have

w(A1/2B1/2) ≤

∥∥∥∥∥∥
∫ 1

0
((1 − t)A + tB) dt

∥∥∥∥∥∥ ≤ 1
2
∥A + B∥ .

Theorem 3.9. Let A,B,C ∈Mn(C) be such that
[

A B
B∗ C

]
≥ 0 and let 1(t) be an increasing geometrically convex

function on (0,∞). If in addition 1 is convex and 1(1) = 1, then

12 (w(B)) ≤
1
2

∥∥∥∥1 (A2
)
+ 1(C2)

∥∥∥∥ .
Proof. For any unit vector x ∈ Cn, Lemma 2.4 and the arithmetic-geometric mean inequality imply that

|⟨Bx, x⟩| ≤ (⟨Ax, x⟩ ⟨Cx, x⟩)
1
2

≤

(
⟨Ax, x⟩2 + ⟨Cx, x⟩2

2

) 1
2

.

Considering the given assumptions for the function 1(t) and Lemma 2.5,we have

1 (|⟨Bx, x⟩|) ≤ 1

( ⟨Ax, x⟩2 + ⟨Cx, x⟩2

2

) 1
2


≤ 1
1
2

(
⟨Ax, x⟩2 + ⟨Cx, x⟩2

2

)
1

1
2 (1)

≤

1
(
⟨Ax, x⟩2

)
+ 1

(
⟨Cx, x⟩2

)
2


1
2

≤

1
(〈

A2x, x
〉)
+ 1

(〈
C2x, x

〉)
2


1
2

≤


〈
1(A2)x, x

〉
+

〈
1(C2)x, x

〉
2


1
2

=


〈(
1(A2) + 1(C2)

)
x, x

〉
2


1
2
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Thus,

1 (w(B)) = 1(max
∥x∥=1
|⟨Bx, x⟩|) = max

∥x∥=1
1(|⟨Bx, x⟩|)

≤ max
∥x∥=1


〈(
1(A2) + 1(C2)

)
x, x

〉
2


1
2

=


max
∥x∥=1

〈(
1(A2) + 1(C2)

)
x, x

〉
2


1
2

=
(1

2

∥∥∥∥1 (A2
)
+ 1(C2)

∥∥∥∥) 1
2

.

This completes the proof.

Inequality (2) is a special case of Theorem 3.9 since the function 1(t) = tr, r ≥ 1 satisfies the assumptions
of Theorem 3.9.
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