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Nonlinear mixed bi-skew Jordan-type derivations on prime *-algebras

Yuan Yang?, Jianhua Zhang®*

#School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, P.R. China

Abstract. Let A be a unite prime =-algebra containing a non-trivial projection. Assume that ¢ : A —» A
satisfies ¢(Al 1 AZ O Oy An+1) = Z:i Al O1° Opp Ah—l Op-1 q)(Ah) n Ah+l On+1 * 7 On An+l (1’[ > 2) for any
A, Ay, A € Aand o, iseorowith1l <r <n, where AeB = AB*+ BA*and Ao B = AB+ BA. In
this article, we prove that if 7 is even and ¢, = ®, 0, = o with 1 < u < 7, then there exists an element
A € Zs(A) such that p(A) = 6(A) + iAA, where 6 is an additive #-derivation. Otherwise, ¢ is an additive

+-derivation. In particular, the nonlinear mixed bi-skew Jordan-type derivations on factor von Neumann
algebras and standard operator algebras are characterized.

1. Introduction

Let Abe a +-algebra over the complex field C. For any A, B € A, we say the products A*B = AB+BA" and
AeB = AB*+BA" are the +-Jordan product and the bi-skew Jordan product, respectively. These two products
have been studied by a lot of scholars in many topics, see [1-10]. Recall that an additive map ¢ : A — A
is called an additive derivation if ¢(AB) = ¢(A)B + AP(B) for all A,B € A. Besides, if p(A*) = §(A)" for
all A € A, then ¢ is an additive *-derivation. Correspondingly, a map (without the additivity assumption)
¢ : A — Ais called a nonlinear *-Jordan derivation if ¢p(A = B) = ¢(A) * B+ A * p(B) for all A,B € A, and
is called a nonlinear bi-skew Jordan derivation if ¢(A ® B) = (p(A) ® B+ A o ¢(B) for all A, B € A. Taghavi
et al. [11] showed that each nonlinear *-Jordan derivation on factor von Neumann algebras is an additive
+-derivation. Darvish et al. [12] prove that each nonlinear bi-skew Jordan derivation on prime *-algebras is
an additive *-derivation. In addition, Zhao et al. [13] and Khan et al. [14] extended to the cases of nonlinear
+-Jordan triple derivations on von Neumann algebras with no central summands of type I; and nonlinear
bi-skew Jordan triple derivations on prime *-algebras, respectively. With the nonlinear *-Jordan triple

derivation and the nonlinear bi-skew Jordan triple derivation. A map (without the additivity assumption)
¢ : A — Ais called a nonlinear *-Jordan-type derivation if

n+1

D1 % Agxoon ) = Y Apneeox Ajy (AR * Ay %+ % Ay
h=1
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forany A1, Ay, -+ ,Ant1 € A, where A1+ Ag -+ Ay = (- (A1 * A2) * Az) - - -+ A,), and is called a nonlinear
bi-skew Jordan-type derivation if

n+1

PA1 oA e o A1) =) Are--e A ep(Ar)e A oo Au
h=1

forany A, A, - -+ , A1 € A. Lietal. [15] proved that any nonlinear *-Jordan-type derivation on *-algebras
is an additive *-derivation. Ashraf etal. [16] obtained similar structure of the nonlinear bi-skew Jordan-type
derivation on *-algebras.

Recently, many researchers have shown great interest in the study of maps related to mixed products
comprising skew Jordan products or bi-skew Jordan products, see [17-21]. For instance, a map (without
the additivity assumption) ¢ : A — A is called a second nonlinear mixed Jordan triple derivation if

P(AoB+C)=p(A)oBxC+Aop(B)*C+AoBx(C)

forall A,B,C € A, where A o B = AB + BA. Rehman et al. [22] proved that every second nonlinear mixed
Jordan triple derivation on *-algebras is an additive *-derivation. Let ¢p : A — A be a map (without the
additivity assumption), then ¢ is called a nonlinear mixed Jordan triple derivation on A if

P(A*BoC)=d(A)+BoC+Axp(B)oC+AxBo¢(C)

forall A, B, C € A. Ning and Zhang [23] proved that each nonlinear mixed Jordan triple derivation on factor
von Neuamnn algebras is an additive *-derivation. Similarly, a map (without the additivity assumption)
¢ : A — Ais called a second nonlinear mixed bi-skew Jordan triple derivation if

Pp(AoBe(C)=¢p(A)oBeC+Aop(B)eC+AoBep(C) (1.1)
forall A, B, C € A, and is called a nonlinear mixed bi-skew Jordan triple derivation if

Pp(AeBoC)=¢p(A)eBoC+AepB)oC+AeBop(C) (1.2)
forall A, B, C € A. In [24], Ferreira et al. considered a map ¢ : A — A such that

n+1
P(A10Ar0 -0 A @ A1) =Y Ajo- oAy 0p(Ar) 0 A o0 Ay e A (1.3)
h=1

for any Ay, Ay, -+, Ans1 € A, which is called a nonlinear mixed *-Jordan-type derivation. We can see that
if ¢ satisfies Eq. (1.3) with n = 2, then ¢ is Eq. (1.1). Also, the authors [24] prove that each nonlinear
mixed *-Jordan-type derivation on *-algebras is an additive *-derivation. Define a map ¢ : A — A such
that (A) = [A, T] —iA, where T* = —T. It is easy check that ¢ is a nonlinear mixed bi-skew Jordan triple
derivation, but it does not an additive *-derivation. Encouraged by the above work, let ¢ : A — A be a
map (without the additivity assumption). If

n+1

P(A1 01 Ap0p -0y Apr) = ZAl o1+ op Ayt Op—1 P(An) oh A1 O+ O Ana (1.4)
=

for any A1, Az, -+, Aps1 € A (n = 2), where o, is ® or o with 1 < r < n, then ¢ is called a nonlinear mixed
bi-skew Jordan-type derivation. Obviously, take ¢, = o with1 <r <n -1 and ¢, = e in Eq. (1.4), then ¢
is Eq. (1.3). Meanwhile, if ¢ satisfies Eq. (1.4) with ¢; = e, ¢, = o and n = 2, we can obtain that ¢ is Eq.
(1.2). Hence, Egs. (1.2) and (1.3) are special forms of Eq. (1.4). In this paper, we will give the structure
of the nonlinear mixed bi-skew Jordan-type derivation on prime x-algebras. Let A be a prime *-algebra,
iee A=0orB=0if AAB =0, and Ay, = {A € A: A" = A}. Denote by Z(A) the central of A and
Zs(A) = Z(A) N Ag,.
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2. Additivity

In this section, we will prove the following theorem.

Theorem 2.1. Let A be a unite prime *-algebra containing a non-trivial projection, and let ¢ : A — A
such that

n+l

P(A1 01 Ay 0p -+ 0y Apr) = ZAl o1+ opp Apoq on—1 P(An) o A1 O =+ On Ana
=1

forany A1, Az, , Aus1 € A withn > 2, then ¢ is additive.
To prove Theorem 2.1, we need some lemmas.
Lemma 2.2. ¢(0) = 0.

Proof. It is clear that

n+1

P(0) = 2001 <0052 0031 @(0) 04 0 0ppyq - -+ 0, 0 = 0.
h=1

The proof is completed.

Let P; € A be a non-trivial projection and P, = I — P;, where I is the unite of this algebra. Put A;; = P, AP;
for i,j = 1,2. Then by Peirce decomposition of A, we have A = Ay & A, & Ayn & Axp. Note that any
T € A can be written as T = T1y + T1a + Ta1 + Tap, where Tj; € A;j for i, j = 1,2. From [24] and [26], we only
need to consider the case when at least one of ¢, is e, wherer € {1,2,3--- ,n —1}. Let o, = ® and ¢, = o with
1<r<s-1.

T(A,B,C,D) =A01 A0y 02 A0 1BosCog1 Dosin A Os43 " on A
| —
s—1 n—s—1

and
TH(A,B,CD) = A o1 Aoy 0p g PA) 0+ 052 A 051 B o5 C oguy D ogen Adgyz oo 0, A

forany A,B,C, D e A, wherel<m<s—-1,s+3<m<n+1.

Lemma 2.3. ¢(X7,; Aij) = X7 iy P(Aj) for all Ayj € Ay with1 <, j < 2.

Proof. Let T = qb(Ziz,]-:1 Ajj) = Z?,j:l ¢(Aij). For 1 < k # 1 < 2, it follows from F(%,Pk, A, Py = 0,
r(%/Pk/All/PD =0and r(%/Pk/Akl/PD = 0 that

2 2
¢(F<é,1’k, Z Aij, Pr)) = Z ¢(F<£1sz Aij, Pr))

i,j=1 i,j=1
s—1 o I 2 n+1 " I 2
= Zrm<§/Pk/Z‘Aij/Pl> + Z Fm<§,Pk,ZAij,Pz>
m=1 i,j=1 m=s+3 i,j=1

2 2 2
TP, Y A P + T3, P Y 0Aw), P +TC5, Py, Y Ay (P).

ij=1 ij=1 ij=1
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On the other hand,
n+1 I 2
Gb(F( Pk/ZAz]/Pl» ZFQ Pk/ZAz]/Pl> + Z F?n<§zpk/Z‘Aij/Pl>
i,j=1 m=1 ij=1 m=s+3 i,j=1

I 2 I - I v
T3 B(Pr), ), Aijs Py + T, Py () Ai), P} + T3, P, ) Ay 9(PD),

ij=1 ij=1 ij=1

which implies that F(%,Pk, T,P;) = 0. Thus PyT*P; + P/TP; = 0, and so Ty = 0. For any Xy € Ay, it follows
from I(§, Xu, Ak, Py = 0, T(%, Xi, Ay, Py = 0 and T(%, Xy, Ay, Py = 0 that

2 2
I I
O, X, ), Ay P) = ) (T, X, Ay, Pr)
i,j=1 i,j=1
s—1 n+l I 2
=Y T /XkerA1]/Pl> + Z E,XkI/ZAij,PD
m=1 i,j=1 m=s+3 i,j=1
I - I - I -
+ F<§, O (Xx), Z Aij, Pr) + r(z, X1, Z P(Aij), Py + r(zl X1, Z Aij, ¢(Py)).
i,j=1 i,j=1 ij=1
On the other hand,
> X Z A, Pp) = Z o5 X, Z A P)
i,j=1 i,j=1
n+1
0]
+ Y T X Z A P + T, (X, Z A P
m=s+3 i,j=1 i,j=1

2 2
TG, X, 0 A, P+ TG, Xia, Y A (P

i,j=1 ij=1

This implies that F(%,Xkl, T,P;) = 0. Thus XyT*P; + pTX;, =0. It follows from the primeness of A that
Ty = 0. Hence T = 0. The proof is completed.

Lemma 2.4. For all A;j, B;; € A;; with (i # j), we have
(1) ¢(A12 + B12) = P(Ar2) + ¢(B12);
(2) ¢(A2 + Ba1) = P(A21) + ¢(Bar).

Proof. Let T = (P(Alz + B12) - ((P(Alz) + @(Blz)) For any X € Ay, it follows from r(%,Xkl,Alz, Pl> =0
that

I
¢(T( , X, (A2 + B12), Pp)) = (P(r( Xker12/PI>)+¢(r<_/Xkl/B12/PI>)
n+1

-
Z sz, (A12 + B12), Pr) + Z rm( , Xit, (A12 + B12), Pp)

=1 m=s+3
+T(, 0K, (A2 + B, Py + T3, Xig ($(Ara) + 9(Bro)), P

1
+ T<§, X, (A12 + B12), ¢(P))).
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On the other hand,
I s—1 " I
O X (Ara + B P) = ) Tty X (e + Bro) P
n+l I I
+ ), Tk5 Xu, (A + Buo), Py + T(5, 6(Xu), (Ara + Bro), P
m=s+3

I I
+ r(z, Xu, (A12 + B12), Pp) + F<§'Xkl' (A12 + B12), p(P1)).

This implies that F(%,Xkl, T,P) = 0. Thus XyT*P; + PITX;, = 0, and so Ty = 0. It follows from
r<%1P11A121P2> = 0 that

O3, Pr, (Arz + Bi2), P2)) = 4T3, Py, Ay, ) + G(T3, Py, B, P2)

s—1 n+1
I I
= ) Tl P (A +Bu), P2) + ) Tds, Py, (A + Bio), Po)
m=1 m=s+3

+ F<é/ ¢(P1), (A2 + B12), Py) + F(érpl/ (p(A12) + ¢(B12)), P2)

+T(3, Py, (Ara + Bua), (P

On the other hand,
I s—1 p I
Qb(r(E,Pl, (A12 + B12), P2)) = le rm<§,P1, (A12 + B12), Py)
n+1 N I I
+ Z TME,PL(AH + By2), Py) + r<§,¢(1’1)/ (A1 + B12), Py)
m=s+3

1 I
+ F<E/P1/¢(A12 + B12), Py) + r(z,Pll (A1 + B12), p(P2)).

This implies that F(%,Pl, T,P,) =0. Thus P1T*P, + P,TP; = 0. Hence T»; = 0.
It follows from the above expression that T1» = ¢(A12 + B12) — (¢(A12) + $(B12)). Meanwhile, there exists

821 € An such that 521 = (P(A;z+B;2)—(¢(A;2)+(P(B;2)) Since F(%, (p2+A;2), (P1+Blz), %) = A12+B12+A;2+B12,
it follows from Lemma 2.3 that

Oz + Bia) + G(AL, + Byy) = 65, (Pr + Aig), (Pr + B), )

2/
s—1 p I I n+1 o I |
= mZ:l Fm<§/ (P2 + A3y, (P1 + B12), 5) + n;3 Fm<§, (P2 + AY,), (P1 + Br2), §>

TG, @(P2) + AL, (Pr + Br), 2+ T3, (P + A3p) (0P + 6(B1)), )

Lo

T(, (P + Ay, (P + Bi2), 0(3)) = 95, P Bia, ) + G5, Ay Pr, )

= ¢(A12) + ¢(B12) + P(A,) + ¢(BY,).
This implies that T1, + So1 = 0, and so Ty, = 0. Hence T = 0. Similarly, we can show that (2) holds. The
proof is completed.

Lemma 2.5. For all A;;, B;; € A;; withi € {1,2}, we have
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(1) ¢(A11 + B11) = ¢p(A11) + ¢(Bn);
(2) P(Az + B) = Pp(Ax) + P(B2z).

Proof. Let T = ¢(A11 + B11) — (¢(A11) + ¢(B11)). Since F(%,Pk,AH,PD = 0, we have that

O3, Pe(Any + Bu), P) = 6T, P Av, P) + G5, Pr B, P)

s—1 n+1

A 91
= 2T Py G + B, P + m23 T3/ Pe (An + Bu), P)
I I
+ 1—‘<§/ ¢(Pk)/ (All + Bll)/ Pl> + r(irpk/ (¢(A11) + Qb(Bll))/ Pl>
I
+ r<§,Pk, (A11 + B11), p(Py)).
On the other hand,
I ol
(T3, Pry (Ant +Bu), P) = ) T35, Pe, (Au + Bu), )
m=1
n+1 I I
0]
+ ), T3, Po(An +Bu), Py + Tz, ¢(Py), (Ari + Bu), Pr)
m=s+3

1 I
+ r(zlpk, ¢(A11 + Bn), Py + F<E,Pkr (A11 + B11), p(Py)).

This implies that F(%,Pk, T,P;) = 0. Thus PyT*P; + P/TP; = 0, and so Ty = 0. For any X, € Ay, it follows
from F(%, Xlz,An,P2> =0 that

O Xia, (An + Bua), P2)) = G, X, An, P2)) + 95, Xia, By, Pa)

et n+1

= Fﬁ(élxur (A11 + B11), Py + Z rf1<é/X12/ (A11 + B11), Py
m=1 m=s+3
+ T3, $(X), (Anr + Bun), ) + T3, Xua, (9(An) + 9(Ba), Po)
+ T3, Xua, (Arr + Bun), 9(P)).
On the other hand,

I S
O, Xiz, (An + Bu), P) = ) T3, Xia, (Aus + Bu), P2)

m=1
n+l I I
+ Z Fﬁ<§,X12, (A1 + Bu1), Py + r<§,¢(xlz)/ (A11 + B11), Po)
m=s+3

I I
+ r(z, X12, (A1 + B11), Po) + r<§’ X12,(A11 + B11), ¢(P2)).

This implies that F(%,Xlz, T,P;) = 0. Thus X;2T*P, + P,TX], = 0. Hence Ty, = 0. For any Xy € Ay, it
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follows from Lemma 2.3 and Lemma 2.4 that

¢(F<é,X21/ (A11 + B11), P1)) = p(X21A%;) + ¢(A X5) + P(X21B3;) + ¢(B11X3)

= O(XnAj + AnXy) + (X By, + BuXy,)

I I & o 1
= p(I'(5, X21, A11, P1)) + ¢(I (5, X1, B11, P1)) = Ffz<—,Xz1,(A11 + B11), P1)
2 2 Ly 7

n+1

I I
+ F?,,(—,le, (A1 + Bu1), P1) +I(z, (X21), (A1 + B11), P1)
2 2

m=s+3

+ r(é/ Xo1, (P(A11) + $(B11)), P1) + r(é,Xm, (A11 + B11), (P1)).

On the other hand,
I = oo 1
Qb(r(E,XzL(An + B11),P1)) = Zri(z,XZL(An + B11), P1)
m=1
n+1 I I
+ Z Tﬁ(ﬁ,le,(fln + B11), P1) + T<§,¢(X21), (A1 + B11), Pp)
m=s+3

I I
+ r<§, X1, P(A11 + B11), Pr) + r<51X21/ (A11 + B11), p(P1)).

This implies that F(é,Xn, T,Py) = 0. Thus X1 T*P; + P1TX;, = 0, and so T1; = 0. Hence T = 0. Similarly,
we can show that (2) holds. The proof is completed.

Lemma 2.6. ¢ is additive on A.

Proof. Let A = Z?,j:l Ajj, B = 21,2,],:1 Bjj, where Ajj, B;; € Ajj. It follows from Lemma 2.3-2.5 that

2 2 2
oA +B) = (Y Ay + Y By = o) (A + By)

ij=1 ij=1 i,j=1
2 2 2
= Y $(Ay+ By) = () Ai) + &) Bi) = $(A) + 4(B).
ij=1 ij=1 i,j=1

Hence ¢ is additive. The proof is completed.

3. Structures
In this section, we will prove the following theorem.

Theorem 3.1. Let A be a unite prime *-algebra containing a non-trivial projection, and let ¢ : A — A
such that

n+l

P(A1 01 Az 000y Ayr) = ZAl 01+ opn Ap_1 On1 P(AR) O Apst One1 -+ On Anna
=)
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for any A1, Az, -+, Aus1 € A withn > 2. Ifn is even and ¢;,-1 = ®, 03, = o with 1 < u < 7, then there exists
an element A € Zs(A) such that p(A) = 6(A) +1AA, where 6 is an additive *-derivation. Otherwise, ¢ is an

additive *-derivation.

By the results of [24] and [26], we only need to consider the case when at least one of o, is e, where
re{l,2,3--- ,n—1}

Lemma 3.2. Ifn is even and oy, = ®, 03, = o with1 < u < 7, then ¢(I)* = —¢(I) and ¢(I) € Z(A).
Otherwise, ¢(I) = 0.

Proof. Let o5, = o, o = owithl <8 <s, <y, <n 1<t <t; <t, <n wherel <p <y,
1<g<upand g + pp = n.
If n > 2 and s, = n, then it follows from Theorem 2.1 and ¢(I) e I

I e p(I) € A, that

n+1

210(I) = Loy Loy -+ 0y 1) = Zlol e opa Topg GU) op I opyr -+ oy I
h=1

= (n+ 12" YD) + p(I)).

Moreover, 2"¢(I)* = (n + 1)2""H(p(I)* + ¢(I)). Hence ¢(I) = 0.
Ifn>3and1<s, <n-1,then

n+l

() = Gl o1 T 03+ 0p D)= Y Ty opa Loy ¢(I) o Loy -+ 0y 1
h=1

= (50 + 12" (@D + GD) + (1 = 5,)2" (D).

Moreover,
2" ()" = (s, + D2 NP + PD) + (1 = 5,,)2" ()"

Comparing the above two equations, we can obtain that ¢(I)* = ¢(I). Hence ¢(I) = 0.
Ifn>2t,,;qn=n-20r-1)and s, 1 =n-2(r-1)-1with1l <r < g <[5]. Take A, = [ with
1 <c <n+1,it follows from Theorem 2.1 and ¢(I) o I = I o P(I) € A,, that

n+l

2'¢(1) = plorTon- 0, 1) = Y Tor 042101 (1) 0 Lopar -+ 0y I
h=1

= n2"" ()" + p(D) + 2"P(D).

It follows that ¢(I)* = —¢(I). There are seven further cases:
Case 1: When n > 3 with nis odd, s; = 1 and g = [5]. On the one hand, take A; = I, Ay = I, A3 = il and
A, =Iwith4 < ¢ <n+1, it follows from Theorem 2.1 and ¢p(I) ® [ = I ® ¢(I) = 0 that

0= oy Toyil o3 --- 0, I) = 2" L(AD)* + P(il)).

Thus ¢@Gl)* + ¢(il) = 0. On the other hand, take A; =1, A; =il and A, = I with 3 < ¢ < n + 1, we have that
2M¢(I) = 2" Hp(ED)* + P(il)). Hence ¢(I) = 0.
Case 2: When n > 3 withnisodd, t; =1and g = [5]. Take A; =il and A, = I with2 <c <n +1, then
0=p@lo1Iop -0, I)=p@) o110y -0 I+il o1 P(I) 02 ---0y 1
+il o1 T oy p(I) o3 --- 0,1

= 2" (D" + ¢(iD)).



Y. Yang, ]. Zhang / Filomat 38:22 (2024), 7707-7718 7715

Thus ¢(il)* + ¢@l) = 0. On the other hand, take A; =, Ay =, A3 =iland Ac = [ with4 <c<n+1, we
have that
0= oy [ogil o3+ 0, I) = =2"igp(I) + 2" (HGI)* + P(I)).
Thus ¢(I) = 0.
Case3: Whenn > 4,t,, , = n-2g-1ands,,, = n-2gwith1 < g <[7]. Take A, = Iwith1 < ¢ <n-2g+1,
n—-2g+3 <c<n+1land A, o442 =1il, it follows from Theorem 2.1 and ¢(I) e I = I @ (I) = 0 that there exists
a1 > 0 such that

0 =(I o1 [0+ 0png41 il Op-ngsn -+ 0y I)
n-2g+1

= Z [oy---Topg @) oplopr - opage1il 0212 -+ 0y 1
h=1

tlorlog-- On-2g+1 ol61) On—2g+2 """ On I
= a1p(I) g I on-zge1 il Onagea -+ on I+ 2" H(GGD)" + P(I))
= 2" YD) + P(l)).

Hence ¢(il)* + ¢(il) = 0. Take A, = Iwith1 <c<n-2g,n-2g+2 <c<n+1and A, 251 = il, then there
exists ap > 0 such that

0= (P(I 1 I 0t <>n—2g i <>n—2‘q+1 © Op I)
n—2g

= Z‘ [og o5 qb(l) Op L opyy -+ On-2g il On-2g+1 """ ©n I
h=1

+ 101+ 0ngg G(I) Op-2gs1 -+ 0n 1
= P(I) onzg il On_age1 -+ -1 op I+ 2" (PG + (i)
= =227 anigh(I).

Hence ¢(I) = 0.

Case 4: Whenn > 4, uy + g = nwith 1 < g < [37]. Similarly Case 3, take Ac = Iwith1 <c<n-2g+1,
n-2g+3<c<n+1and Ap-2g+2 = il, we can easy obtain that ¢p@{l)* + ¢(il) = 0. Take A; =1, A, =il and
A =1Iwith3 <c<n+1,then

O=¢lo1il oy -0, ) =) o1il0op -0, I+ 101 P(I) 0p--- 0, 1

= =2"ip(D) + 2" H(P(D)" + P(iD))
= =2"i¢p(I).
Hence ¢(I) = 0.
Case 5: Whenn > 5,1 < t,, ; <n-2g-2with1 < g < [5]. Similarly Case 3, take A, = I with

1<c<n-2g+1,n-29+3<c<n+1and A, 5 =il, we have that ¢(il)* + ¢@il) = 0. Take A, = [ with
1<c<n-29-1,n-2g+1<c<n+1and A, =il, then there exists > 0 such that

O=¢orloy il 0y ng--- 0y 1)

n-2g-1
= Z Top---Topq ¢(1) ol opyy -+ On-2g-1 il On-2g** To,l
h=1
+107--- On-2g-1 (p(lI) Op—2g """ To,1
= Bd(D) Onzget il Opg -+ o I+ 2" (PG + P(I))
= —227*28idh(I).
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Hence ¢(I) = 0.

Case 6: Whenn >4, t,, ;1 =n—-2g—-1andt,,, =n—-2gwith1 < g <[35]. On the one hand, take A, = I
withl<c<n-29+1,n-29+3<c<n+1and A, 244 =il, it follows from Theorem 2.1 that there exists
y1 2 0 such that

0= o1 oy opags1il 042442 - 0n D)
n-2g-1
= Z Loy - opq @) op - on I+ 101+ 0pn5-1 P(I) Op—2g -+ 0p 1
h=1
+Ioy-0u 05 P(I) 0p-2ge1 - On I+ 101 -+ 0yngs1 QL) 02442 -+ On I
= y19(I) On-2g-1 I On-2g I On-2g+1 il On—2g+2 " n I- 2n+1i¢(1)

+ 2" (P + ¢(il)).

Thus (2%+2y1 + 2" )ig(I) = 2" 1(p(I)* + ¢(il)). On the other hand, take A, = Iwith1 <c<n-2g-1,
n—2g+1<c<n+1land A, =il, it follows from Theorem 2.1 that there exists y» > 0 such that

0= 01105+ 021 il Opg - 0n )
n—-2g-1

= Y Tore o ¢ op e on I+ Tor - 0uayy G opg -0y
h=1

= VZ(P(I) <>71—29—1 il <>‘rz—Zg I <>n—2g+l Y] I+ 2n—1(¢(i1)* + (;Z)(II))

Thus 227+2y,ip(I) + 2" (P + ¢(il)) = 0. Hence ¢(I) = 0.
Case 7: Whenn > 2withnisevenand g = 5. Take A; = A € Ay, and A. = I with2 < ¢ < n+1, it follows
from (A e ¢(I))* = A e p(I) and (A o ¢(I))* = —(A o ¢(I)) that
2"p(A) = (A o1 T oy -+ T o, 1) = 2" HP(A) + P(A)) + 2" ' g(Ap(D)*
+G(DA) + 2" (AG(I) + p(D)A).
Thus
P(A) = ¢(A)" + g(Pp(DA — Ap(D)) + AP(D) + P(DA.
On the other hand,
P(A)" = P(A) + g(Pp(DA — Ap(D)) — AP(D) — Pp(DA.
We can get that ¢p(I)A = A¢(I) for all A € Ay,. Hence ¢(I) € Z(A). The proof is completed.

Proof of Theorem 3.1. Let o, = eand oy, =owith1 <h<s-1. If¢(I) =0, Let A, =Iwithl <c<s-1,
s+ 2 <c<n+1,it follows from Theorem 2.1 that

2n71¢(As Os As+1) = ¢(I 1 I 020 051 As Cs As+1 Cs+1* " On I)
= 2n71(¢(As) s As+1 + As s ¢(As+1))
for any A,, As+1 € A. Thus
¢(As s As+1) = ¢(As) 05 Agy1 + Ag 0 ¢(As+1)-

It follows from [25, Main Theorem] that ¢ is an additive *-derivation.
If nis even and op,-1 = ®, 03, = o with 1 < u < 7. Define a map 6 : A — Aby 6(A) = ¢(A) — p(DA. It
follows from Lemma 3.2 that 6 is an additive map and satisfies

n+1
O0(A101 A2 090 Apyr) = ZAl o1 -+ op_1 O(Ap) op =+ on Apsa
h=1
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forany Ay, Az, , Ays1 € Aand 6(I) = 0. It follows from the above conclusion that
O(A o5 B) = 0(A) o5 B+ A o5 O(B)

for any A, B € A. It follows from [25, Main Theorem] that 6 is an additive #-derivation. Hence, there exists
an element A € Zs(A) such that
P(A) = 0(A) +irA

for any A € A, where 6 is an additive *-derivation. The proof is completed.
As a consequences of Theorem 3.1, we have the following corollaries.

Corollary 3.1. Let M be a factor von Neumann algebra with dimM > 1, and let ¢ : M — M be a
nonlinear mixed bi-skew Jordan-type derivation, that is, ¢ satisfies

n+1

P(A1 01 Ay 0p -0y Apr) = ZAl o1+ opp Ayt On—1 P(An) oh A1 O -+ O Ana
=

for any Ay, Az, -+ ,Aps1 € M withn > 2. If n is even and 3,1 = e, 03, = o with 1 < u < 7, then there

exists an number A € R such that $(A) = 6(A) +iAA, where 0 is an additive *-derivation. Otherwise, ¢ is an
additive *-derivation.

Corollary 3.2. Let A be a standard operator algebra on an infinite-dimensional complex Hilbert space H
containing the identity operator I, which A is closed under the adjoint operation. Assume that ¢ : A — A

is a nonlinear mixed bi-skew Jordan-type derivation. It is show that if n is even and ¢y,—1 = ®, 03, = o

with 1 < u < 4, then there exist T,S € B(H) satisfying T* + T = 0, T — S € iRI such that ¢(A) = AT - SA.

Otherwise, there exists Y € B(H) such that p(A) = AY - YA withY* +Y = 0.
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