

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear mixed bi-skew Jordan-type derivations on prime *-algebras

Yuan Yanga, Jianhua Zhanga,*

^a School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, P.R. China

Abstract. Let \mathcal{A} be a unite prime *-algebra containing a non-trivial projection. Assume that $\phi: \mathcal{A} \to \mathcal{A}$ satisfies $\phi(A_1 \diamond_1 A_2 \diamond_2 \cdots \diamond_n A_{n+1}) = \sum_{h=1}^{n+1} A_1 \diamond_1 \cdots \diamond_{h-2} A_{h-1} \diamond_{h-1} \phi(A_h) \diamond_h A_{h+1} \diamond_{h+1} \cdots \diamond_n A_{n+1} (n \geq 2)$ for any $A_1, A_2, \cdots, A_{n+1} \in \mathcal{A}$ and \diamond_r is \bullet or \circ with $1 \leq r \leq n$, where $A \bullet B = AB^* + BA^*$ and $A \circ B = AB + BA$. In this article, we prove that if n is even and $\diamond_{2u-1} = \bullet, \diamond_{2u} = \circ$ with $1 \leq u \leq \frac{n}{2}$, then there exists an element $\lambda \in \mathcal{Z}_S(\mathcal{A})$ such that $\phi(A) = \delta(A) + i\lambda A$, where δ is an additive *-derivation. Otherwise, ϕ is an additive *-derivation. In particular, the nonlinear mixed bi-skew Jordan-type derivations on factor von Neumann algebras and standard operator algebras are characterized.

1. Introduction

Let \mathcal{A} be a *-algebra over the complex field \mathbb{C} . For any $A, B \in \mathcal{A}$, we say the products $A*B = AB+BA^*$ and $A \bullet B = AB^* + BA^*$ are the *-Jordan product and the bi-skew Jordan product, respectively. These two products have been studied by a lot of scholars in many topics, see [1–10]. Recall that an additive map $\phi: \mathcal{A} \to \mathcal{A}$ is called an additive derivation if $\phi(AB) = \phi(A)B + A\phi(B)$ for all $A, B \in \mathcal{A}$. Besides, if $\phi(A^*) = \phi(A)^*$ for all $A \in \mathcal{A}$, then ϕ is an additive *-derivation. Correspondingly, a map (without the additivity assumption) $\phi: \mathcal{A} \to \mathcal{A}$ is called a nonlinear *-Jordan derivation if $\phi(A*B) = \phi(A)*B + A*\phi(B)$ for all $A, B \in \mathcal{A}$, and is called a nonlinear bi-skew Jordan derivation if $\phi(A*B) = \phi(A)*B + A*\phi(B)$ for all $A, B \in \mathcal{A}$. Taghavi et al. [11] showed that each nonlinear *-Jordan derivation on factor von Neumann algebras is an additive *-derivation. Darvish et al. [12] prove that each nonlinear bi-skew Jordan derivation on prime *-algebras is an additive *-derivation. In addition, Zhao et al. [13] and Khan et al. [14] extended to the cases of nonlinear *-Jordan triple derivations on von Neumann algebras with no central summands of type I_1 and nonlinear bi-skew Jordan triple derivations on prime *-algebras, respectively. With the nonlinear *-Jordan triple derivation and the nonlinear bi-skew Jordan triple derivation. A map (without the additivity assumption) $\phi: \mathcal{A} \to \mathcal{A}$ is called a nonlinear *-Jordan-type derivation if

$$\phi(A_1 * A_2 * \cdots * A_{n+1}) = \sum_{h=1}^{n+1} A_1 * \cdots * A_{h-1} * \phi(A_h) * A_{h+1} * \cdots * A_{n+1}$$

2020 Mathematics Subject Classification. Primary 47B47; Secondary 16N60.

Keywords. *-derivations, prime *-algebra, mixed bi-skew Jordan-type derivations.

Received: 10 January 2024; Accepted: 11 March 2024

Communicated by Dragan S. Djordjević

Research supported by the National Natural Science Foundation of China (Grant No. 11771261).

* Corresponding author: Jianhua Zhang

Email addresses: yangyuanmath@163.com (Yuan Yang), jhzhang@snnu.edu.cn (Jianhua Zhang)

for any $A_1, A_2, \dots, A_{n+1} \in \mathcal{A}$, where $A_1 * A_2 * \dots * A_{n+1} = (\dots ((A_1 * A_2) * A_3) \dots * A_n)$, and is called a nonlinear bi-skew Jordan-type derivation if

$$\phi(A_1 \bullet A_2 \bullet \cdots \bullet A_{n+1}) = \sum_{h=1}^{n+1} A_1 \bullet \cdots \bullet A_{h-1} \bullet \phi(A_h) \bullet A_{h+1} \bullet \cdots \bullet A_{n+1}$$

for any $A_1, A_2, \dots, A_{n+1} \in \mathcal{A}$. Li et al. [15] proved that any nonlinear *-Jordan-type derivation on *-algebras is an additive *-derivation. Ashraf et al. [16] obtained similar structure of the nonlinear bi-skew Jordan-type derivation on *-algebras.

Recently, many researchers have shown great interest in the study of maps related to mixed products comprising skew Jordan products or bi-skew Jordan products, see [17–21]. For instance, a map (without the additivity assumption) $\phi : \mathcal{A} \to \mathcal{A}$ is called a second nonlinear mixed Jordan triple derivation if

$$\phi(A \circ B * C) = \phi(A) \circ B * C + A \circ \phi(B) * C + A \circ B * \phi(C)$$

for all $A, B, C \in \mathcal{A}$, where $A \circ B = AB + BA$. Rehman et al. [22] proved that every second nonlinear mixed Jordan triple derivation on *-algebras is an additive *-derivation. Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption), then ϕ is called a nonlinear mixed Jordan triple derivation on \mathcal{A} if

$$\phi(A * B \circ C) = \phi(A) * B \circ C + A * \phi(B) \circ C + A * B \circ \phi(C)$$

for all $A, B, C \in \mathcal{A}$. Ning and Zhang [23] proved that each nonlinear mixed Jordan triple derivation on factor von Neuamnn algebras is an additive *-derivation. Similarly, a map (without the additivity assumption) $\phi : \mathcal{A} \to \mathcal{A}$ is called a second nonlinear mixed bi-skew Jordan triple derivation if

$$\phi(A \circ B \bullet C) = \phi(A) \circ B \bullet C + A \circ \phi(B) \bullet C + A \circ B \bullet \phi(C) \tag{1.1}$$

for all $A, B, C \in \mathcal{A}$, and is called a nonlinear mixed bi-skew Jordan triple derivation if

$$\phi(A \bullet B \circ C) = \phi(A) \bullet B \circ C + A \bullet \phi(B) \circ C + A \bullet B \circ \phi(C) \tag{1.2}$$

for all $A, B, C \in \mathcal{A}$. In [24], Ferreira et al. considered a map $\phi : \mathcal{A} \to \mathcal{A}$ such that

$$\phi(A_1 \circ A_2 \circ \cdots \circ A_n \bullet A_{n+1}) = \sum_{h=1}^{n+1} A_1 \circ \cdots \circ A_{h-1} \circ \phi(A_h) \circ A_{h+1} \circ \cdots \circ A_n \bullet A_{n+1}$$
 (1.3)

for any $A_1,A_2,\cdots,A_{n+1}\in\mathcal{A}$, which is called a nonlinear mixed *-Jordan-type derivation. We can see that if ϕ satisfies Eq. (1.3) with n=2, then ϕ is Eq. (1.1). Also, the authors [24] prove that each nonlinear mixed *-Jordan-type derivation on *-algebras is an additive *-derivation. Define a map $\phi:\mathcal{A}\to\mathcal{A}$ such that $\phi(A)=[A,T]-iA$, where $T^*=-T$. It is easy check that ϕ is a nonlinear mixed bi-skew Jordan triple derivation, but it does not an additive *-derivation. Encouraged by the above work, let $\phi:\mathcal{A}\to\mathcal{A}$ be a map (without the additivity assumption). If

$$\phi(A_1 \diamond_1 A_2 \diamond_2 \cdots \diamond_n A_{n+1}) = \sum_{h=1}^{n+1} A_1 \diamond_1 \cdots \diamond_{h-2} A_{h-1} \diamond_{h-1} \phi(A_h) \diamond_h A_{h+1} \diamond_{h+1} \cdots \diamond_n A_{n+1}$$
(1.4)

for any $A_1, A_2, \dots, A_{n+1} \in \mathcal{A}$ ($n \ge 2$), where \diamond_r is \bullet or \diamond with $1 \le r \le n$, then ϕ is called a nonlinear mixed bi-skew Jordan-type derivation. Obviously, take $\diamond_r = \diamond$ with $1 \le r \le n-1$ and $\diamond_n = \bullet$ in Eq. (1.4), then ϕ is Eq. (1.3). Meanwhile, if ϕ satisfies Eq. (1.4) with $\diamond_1 = \bullet, \diamond_2 = \diamond$ and n = 2, we can obtain that ϕ is Eq. (1.2). Hence, Eqs. (1.2) and (1.3) are special forms of Eq. (1.4). In this paper, we will give the structure of the nonlinear mixed bi-skew Jordan-type derivation on prime *-algebras. Let \mathcal{A} be a prime *-algebra, i.e. A = 0 or B = 0 if $A\mathcal{A}B = 0$, and $A_{sa} = \{A \in \mathcal{A} : A^* = A\}$. Denote by $\mathcal{Z}(\mathcal{A})$ the central of \mathcal{A} and $\mathcal{Z}_S(\mathcal{A}) = \mathcal{Z}(\mathcal{A}) \cap \mathcal{A}_{sa}$.

2. Additivity

In this section, we will prove the following theorem.

Theorem 2.1. Let $\mathcal A$ be a unite prime *-algebra containing a non-trivial projection, and let $\phi:\mathcal A\to\mathcal A$ such that

$$\phi(A_1 \diamond_1 A_2 \diamond_2 \cdots \diamond_n A_{n+1}) = \sum_{h=1}^{n+1} A_1 \diamond_1 \cdots \diamond_{h-2} A_{h-1} \diamond_{h-1} \phi(A_h) \diamond_h A_{h+1} \diamond_{h+1} \cdots \diamond_n A_{n+1}$$

for any $A_1, A_2, \dots, A_{n+1} \in \mathcal{A}$ with $n \ge 2$, then ϕ is additive.

To prove Theorem 2.1, we need some lemmas.

Lemma 2.2. $\phi(0) = 0$.

Proof. It is clear that

$$\phi(0) = \sum_{h=1}^{n+1} 0 \diamond_1 \cdots \diamond_{h-2} 0 \diamond_{h-1} \phi(0) \diamond_h 0 \diamond_{h+1} \cdots \diamond_n 0 = 0.$$

The proof is completed.

Let $P_1 \in \mathcal{A}$ be a non-trivial projection and $P_2 = I - P_1$, where I is the unite of this algebra. Put $\mathcal{A}_{ij} = P_i \mathcal{A} P_j$ for i, j = 1, 2. Then by Peirce decomposition of \mathcal{A} , we have $\mathcal{A} = \mathcal{A}_{11} \oplus \mathcal{A}_{12} \oplus \mathcal{A}_{21} \oplus \mathcal{A}_{22}$. Note that any $T \in \mathcal{A}$ can be written as $T = T_{11} + T_{12} + T_{21} + T_{22}$, where $T_{ij} \in \mathcal{A}_{ij}$ for i, j = 1, 2. From [24] and [26], we only need to consider the case when at least one of \diamond_r is \bullet , where $r \in \{1, 2, 3 \cdots, n-1\}$. Let $\diamond_s = \bullet$ and $\diamond_r = \circ$ with $1 \le r \le s - 1$.

$$\Gamma\langle A, B, C, D \rangle = \underbrace{A \diamond_1 A \diamond_2 \cdots \diamond_{s-2} A}_{s-1} \diamond_{s-1} B \diamond_s C \diamond_{s+1} D \diamond_{s+2} \underbrace{A \diamond_{s+3} \cdots \diamond_n A}_{n-s-1}$$

and

$$\Gamma^{\phi}_{m}\langle A,B,C,D\rangle = A \diamond_{1} A \diamond_{2} \cdots \diamond_{m-1} \phi(A) \diamond_{m} \cdots \diamond_{s-2} A \diamond_{s-1} B \diamond_{s} C \diamond_{s+1} D \diamond_{s+2} A \diamond_{s+3} \cdots \diamond_{n} A$$

for any A, B, C, $D \in \mathcal{A}$, where $1 \le m \le s - 1$, $s + 3 \le m \le n + 1$.

Lemma 2.3. $\phi(\sum_{i,j=1}^{2} A_{ij}) = \sum_{i,j=1}^{2} \phi(A_{ij})$ for all $A_{ij} \in \mathcal{A}_{ij}$ with $1 \le i, j \le 2$.

Proof. Let $T = \phi(\sum_{i,j=1}^2 A_{ij}) - \sum_{i,j=1}^2 \phi(A_{ij})$. For $1 \le k \ne l \le 2$, it follows from $\Gamma(\frac{l}{2}, P_k, A_{kk}, P_l) = 0$, $\Gamma(\frac{l}{2}, P_k, A_{ll}, P_l) = 0$ and $\Gamma(\frac{l}{2}, P_k, A_{kl}, P_l) = 0$ that

$$\begin{split} &\phi(\Gamma\langle\frac{I}{2},P_{k},\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle) = \sum_{i,j=1}^{2}\phi(\Gamma\langle\frac{I}{2},P_{k},A_{ij},P_{l}\rangle) \\ &= \sum_{m=1}^{s-1}\Gamma_{m}^{\phi}\langle\frac{I}{2},P_{k},\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle + \sum_{m=s+3}^{n+1}\Gamma_{m}^{\phi}\langle\frac{I}{2},P_{k},\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle \\ &+ \Gamma\langle\frac{I}{2},\phi(P_{k}),\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle + \Gamma\langle\frac{I}{2},P_{k},\sum_{i,j=1}^{2}\phi(A_{ij}),P_{l}\rangle + \Gamma\langle\frac{I}{2},P_{k},\sum_{i,j=1}^{2}A_{ij},\phi(P_{l})\rangle. \end{split}$$

On the other hand,

$$\phi(\Gamma(\frac{I}{2}, P_k, \sum_{i,j=1}^{2} A_{ij}, P_l)) = \sum_{m=1}^{s-1} \Gamma_m^{\phi}(\frac{I}{2}, P_k, \sum_{i,j=1}^{2} A_{ij}, P_l) + \sum_{m=s+3}^{n+1} \Gamma_m^{\phi}(\frac{I}{2}, P_k, \sum_{i,j=1}^{2} A_{ij}, P_l) + \Gamma(\frac{I}{2}, \phi(P_k), \sum_{i,j=1}^{2} A_{ij}, P_l) + \Gamma(\frac{I}{2}, P_k, \phi(P_k), \sum_{i,j=1}^{2} A_{ij}, P_l) + \Gamma(\frac{I}{2}, P_k, \sum_{i,j=1}^{2} A_{ij}, \phi(P_l)),$$

which implies that $\Gamma(\frac{I}{2}, P_k, T, P_l) = 0$. Thus $P_k T^* P_l + P_l T P_k = 0$, and so $T_{lk} = 0$. For any $X_{kl} \in \mathcal{A}_{kl}$, it follows from $\Gamma(\frac{I}{2}, X_{kl}, A_{kk}, P_l) = 0$, $\Gamma(\frac{I}{2}, X_{kl}, A_{kl}, P_l) = 0$ and $\Gamma(\frac{I}{2}, X_{kl}, A_{lk}, P_l) = 0$ that

$$\begin{split} &\phi(\Gamma\langle\frac{I}{2},X_{kl},\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle) = \sum_{i,j=1}^{2}\phi(\Gamma\langle\frac{I}{2},X_{kl},A_{ij},P_{l}\rangle) \\ &= \sum_{m=1}^{s-1}\Gamma_{m}^{\phi}\langle\frac{I}{2},X_{kl},\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle + \sum_{m=s+3}^{n+1}\Gamma_{m}^{\phi}\langle\frac{I}{2},X_{kl},\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle \\ &+ \Gamma\langle\frac{I}{2},\phi(X_{kl}),\sum_{i,j=1}^{2}A_{ij},P_{l}\rangle + \Gamma\langle\frac{I}{2},X_{kl},\sum_{i,j=1}^{2}\phi(A_{ij}),P_{l}\rangle + \Gamma\langle\frac{I}{2},X_{kl},\sum_{i,j=1}^{2}A_{ij},\phi(P_{l})\rangle. \end{split}$$

On the other hand,

$$\phi(\Gamma\langle \frac{I}{2}, X_{kl}, \sum_{i,j=1}^{2} A_{ij}, P_{l} \rangle) = \sum_{m=1}^{s-1} \Gamma_{m}^{\phi} \langle \frac{I}{2}, X_{kl}, \sum_{i,j=1}^{2} A_{ij}, P_{l} \rangle$$

$$+ \sum_{m=s+3}^{n+1} \Gamma_{m}^{\phi} \langle \frac{I}{2}, X_{kl}, \sum_{i,j=1}^{2} A_{ij}, P_{l} \rangle + \Gamma\langle \frac{I}{2}, \phi(X_{kl}), \sum_{i,j=1}^{2} A_{ij}, P_{l} \rangle$$

$$+ \Gamma\langle \frac{I}{2}, X_{kl}, \phi(\sum_{i,j=1}^{2} A_{ij}), P_{l} \rangle + \Gamma\langle \frac{I}{2}, X_{kl}, \sum_{i,j=1}^{2} A_{ij}, \phi(P_{l}) \rangle.$$

This implies that $\Gamma(\frac{1}{2}, X_{kl}, T, P_l) = 0$. Thus $X_{kl}T^*P_l + P_lTX_{kl}^* = 0$. It follows from the primeness of \mathcal{A} that $T_{ll} = 0$. Hence T = 0. The proof is completed.

Lemma 2.4. For all A_{ij} , $B_{ij} \in \mathcal{A}_{ij}$ with $(i \neq j)$, we have

- (1) $\phi(A_{12} + B_{12}) = \phi(A_{12}) + \phi(B_{12})$;
- (2) $\phi(A_{21} + B_{21}) = \phi(A_{21}) + \phi(B_{21}).$

Proof. Let $T = \phi(A_{12} + B_{12}) - (\phi(A_{12}) + \phi(B_{12}))$. For any $X_{kl} \in \mathcal{A}_{kl}$, it follows from $\Gamma(\frac{I}{2}, X_{kl}, A_{12}, P_l) = 0$ that

$$\phi(\Gamma\langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), P_l \rangle) = \phi(\Gamma\langle \frac{I}{2}, X_{kl}, A_{12}, P_l \rangle) + \phi(\Gamma\langle \frac{I}{2}, X_{kl}, B_{12}, P_l \rangle)$$

$$= \sum_{m=1}^{s-1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), P_l \rangle + \sum_{m=s+3}^{n+1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), P_l \rangle$$

$$+ \Gamma\langle \frac{I}{2}, \phi(X_{kl}), (A_{12} + B_{12}), P_l \rangle + \Gamma\langle \frac{I}{2}, X_{kl}, (\phi(A_{12}) + \phi(B_{12})), P_l \rangle$$

$$+ \Gamma\langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), \phi(P_l) \rangle.$$

On the other hand,

$$\phi(\Gamma\langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), P_l \rangle) = \sum_{m=1}^{s-1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), P_l \rangle$$

$$+ \sum_{m=s+3}^{n+1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), P_l \rangle + \Gamma\langle \frac{I}{2}, \phi(X_{kl}), (A_{12} + B_{12}), P_l \rangle$$

$$+ \Gamma\langle \frac{I}{2}, X_{kl}, \phi(A_{12} + B_{12}), P_l \rangle + \Gamma\langle \frac{I}{2}, X_{kl}, (A_{12} + B_{12}), \phi(P_l) \rangle.$$

This implies that $\Gamma(\frac{1}{2}, X_{kl}, T, P_l) = 0$. Thus $X_{kl}T^*P_l + P_lTX_{kl}^* = 0$, and so $T_{ll} = 0$. It follows from $\Gamma(\frac{1}{2}, P_1, A_{12}, P_2) = 0$ that

$$\begin{split} &\phi(\Gamma\langle\frac{I}{2},P_{1},(A_{12}+B_{12}),P_{2}\rangle) = \phi(\Gamma\langle\frac{I}{2},P_{1},A_{12},P_{2}\rangle) + \phi(\Gamma\langle\frac{I}{2},P_{1},B_{12},P_{2}\rangle) \\ &= \sum_{m=1}^{s-1} \Gamma_{m}^{\phi}\langle\frac{I}{2},P_{1},(A_{12}+B_{12}),P_{2}\rangle + \sum_{m=s+3}^{n+1} \Gamma_{m}^{\phi}\langle\frac{I}{2},P_{1},(A_{12}+B_{12}),P_{2}\rangle \\ &+ \Gamma\langle\frac{I}{2},\phi(P_{1}),(A_{12}+B_{12}),P_{2}\rangle + \Gamma\langle\frac{I}{2},P_{1},(\phi(A_{12})+\phi(B_{12})),P_{2}\rangle \\ &+ \Gamma\langle\frac{I}{2},P_{1},(A_{12}+B_{12}),\phi(P_{2})\rangle. \end{split}$$

On the other hand,

$$\phi(\Gamma\langle \frac{I}{2}, P_{1}, (A_{12} + B_{12}), P_{2} \rangle) = \sum_{m=1}^{s-1} \Gamma_{m}^{\phi} \langle \frac{I}{2}, P_{1}, (A_{12} + B_{12}), P_{2} \rangle$$

$$+ \sum_{m=s+3}^{n+1} \Gamma_{m}^{\phi} \langle \frac{I}{2}, P_{1}, (A_{12} + B_{12}), P_{2} \rangle + \Gamma\langle \frac{I}{2}, \phi(P_{1}), (A_{12} + B_{12}), P_{2} \rangle$$

$$+ \Gamma\langle \frac{I}{2}, P_{1}, \phi(A_{12} + B_{12}), P_{2} \rangle + \Gamma\langle \frac{I}{2}, P_{1}, (A_{12} + B_{12}), \phi(P_{2}) \rangle.$$

This implies that $\Gamma(\frac{1}{2}, P_1, T, P_2) = 0$. Thus $P_1 T^* P_2 + P_2 T P_1 = 0$. Hence $T_{21} = 0$.

It follows from the above expression that $T_{12} = \phi(A_{12} + B_{12}) - (\phi(A_{12}) + \phi(B_{12}))$. Meanwhile, there exists $S_{21} \in \mathcal{A}_{21}$ such that $S_{21} = \phi(A_{12}^* + B_{12}^*) - (\phi(A_{12}^*) + \phi(B_{12}^*))$. Since $\Gamma(\frac{I}{2}, (P_2 + A_{12}^*), (P_1 + B_{12}), \frac{I}{2}) = A_{12} + B_{12} + A_{12}^* + B_{12}^*$, it follows from Lemma 2.3 that

$$\begin{split} &\phi(A_{12}+B_{12})+\phi(A_{12}^*+B_{12}^*)=\phi(\Gamma\langle\frac{I}{2},(P_2+A_{12}^*),(P_1+B_{12}),\frac{I}{2}\rangle)\\ &=\sum_{m=1}^{s-1}\Gamma_m^\phi\langle\frac{I}{2},(P_2+A_{12}^*),(P_1+B_{12}),\frac{I}{2}\rangle+\sum_{m=s+3}^{n+1}\Gamma_m^\phi\langle\frac{I}{2},(P_2+A_{12}^*),(P_1+B_{12}),\frac{I}{2}\rangle\\ &+\Gamma\langle\frac{I}{2},(\phi(P_2)+\phi(A_{12}^*)),(P_1+B_{12}),\frac{I}{2}\rangle+\Gamma\langle\frac{I}{2},(P_2+A_{12}^*),(\phi(P_1)+\phi(B_{12})),\frac{I}{2}\rangle\\ &+\Gamma\langle\frac{I}{2},(P_2+A_{12}^*),(P_1+B_{12}),\phi(\frac{I}{2})\rangle=\phi(\Gamma\langle\frac{I}{2},P_2,B_{12},\frac{I}{2}\rangle)+\phi(\Gamma\langle\frac{I}{2},A_{12}^*,P_1,\frac{I}{2}\rangle)\\ &=\phi(A_{12})+\phi(B_{12})+\phi(A_{12}^*)+\phi(B_{12}^*). \end{split}$$

This implies that $T_{12} + S_{21} = 0$, and so $T_{12} = 0$. Hence T = 0. Similarly, we can show that (2) holds. The proof is completed.

Lemma 2.5. For all A_{ii} , $B_{ii} \in \mathcal{A}_{ii}$ with $i \in \{1, 2\}$, we have

(1)
$$\phi(A_{11} + B_{11}) = \phi(A_{11}) + \phi(B_{11});$$

(2)
$$\phi(A_{22} + B_{22}) = \phi(A_{22}) + \phi(B_{22}).$$

Proof. Let $T = \phi(A_{11} + B_{11}) - (\phi(A_{11}) + \phi(B_{11}))$. Since $\Gamma(\frac{I}{2}, P_k, A_{11}, P_l) = 0$, we have that

$$\phi(\Gamma\langle \frac{I}{2}, P_k, (A_{11} + B_{11}), P_l \rangle) = \phi(\Gamma\langle \frac{I}{2}, P_k, A_{11}, P_l \rangle) + \phi(\Gamma\langle \frac{I}{2}, P_k, B_{11}, P_l \rangle)$$

$$= \sum_{m=1}^{s-1} \Gamma_m^{\phi} \langle \frac{I}{2}, P_k, (A_{11} + B_{11}), P_l \rangle + \sum_{m=s+3}^{n+1} \Gamma_m^{\phi} \langle \frac{I}{2}, P_k, (A_{11} + B_{11}), P_l \rangle$$

$$+ \Gamma\langle \frac{I}{2}, \phi(P_k), (A_{11} + B_{11}), P_l \rangle + \Gamma\langle \frac{I}{2}, P_k, (\phi(A_{11}) + \phi(B_{11})), P_l \rangle$$

$$+ \Gamma\langle \frac{I}{2}, P_k, (A_{11} + B_{11}), \phi(P_l) \rangle.$$

On the other hand,

$$\phi(\Gamma\langle \frac{I}{2}, P_k, (A_{11} + B_{11}), P_l \rangle) = \sum_{m=1}^{s-1} \Gamma_m^{\phi} \langle \frac{I}{2}, P_k, (A_{11} + B_{11}), P_l \rangle$$

$$+ \sum_{m=s+3}^{n+1} \Gamma_m^{\phi} \langle \frac{I}{2}, P_k, (A_{11} + B_{11}), P_l \rangle + \Gamma\langle \frac{I}{2}, \phi(P_k), (A_{11} + B_{11}), P_l \rangle$$

$$+ \Gamma\langle \frac{I}{2}, P_k, \phi(A_{11} + B_{11}), P_l \rangle + \Gamma\langle \frac{I}{2}, P_k, (A_{11} + B_{11}), \phi(P_l) \rangle.$$

This implies that $\Gamma(\frac{I}{2}, P_k, T, P_l) = 0$. Thus $P_k T^* P_l + P_l T P_k = 0$, and so $T_{lk} = 0$. For any $X_{12} \in \mathcal{A}_{12}$, it follows from $\Gamma(\frac{I}{2}, X_{12}, A_{11}, P_2) = 0$ that

$$\begin{split} &\phi(\Gamma\langle\frac{I}{2},X_{12},(A_{11}+B_{11}),P_{2}\rangle) = \phi(\Gamma\langle\frac{I}{2},X_{12},A_{11},P_{2}\rangle) + \phi(\Gamma\langle\frac{I}{2},X_{12},B_{11},P_{2}\rangle) \\ &= \sum_{m=1}^{s-1} \Gamma_{m}^{\phi}\langle\frac{I}{2},X_{12},(A_{11}+B_{11}),P_{2}\rangle + \sum_{m=s+3}^{n+1} \Gamma_{m}^{\phi}\langle\frac{I}{2},X_{12},(A_{11}+B_{11}),P_{2}\rangle \\ &+ \Gamma\langle\frac{I}{2},\phi(X_{12}),(A_{11}+B_{11}),P_{2}\rangle + \Gamma\langle\frac{I}{2},X_{12},(\phi(A_{11})+\phi(B_{11})),P_{2}\rangle \\ &+ \Gamma\langle\frac{I}{2},X_{12},(A_{11}+B_{11}),\phi(P_{2})\rangle. \end{split}$$

On the other hand,

$$\phi(\Gamma\langle \frac{I}{2}, X_{12}, (A_{11} + B_{11}), P_2 \rangle) = \sum_{m=1}^{s-1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{12}, (A_{11} + B_{11}), P_2 \rangle$$

$$+ \sum_{m=s+3}^{n+1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{12}, (A_{11} + B_{11}), P_2 \rangle + \Gamma\langle \frac{I}{2}, \phi(X_{12}), (A_{11} + B_{11}), P_2 \rangle$$

$$+ \Gamma\langle \frac{I}{2}, X_{12}, \phi(A_{11} + B_{11}), P_2 \rangle + \Gamma\langle \frac{I}{2}, X_{12}, (A_{11} + B_{11}), \phi(P_2) \rangle.$$

This implies that $\Gamma(\frac{1}{2}, X_{12}, T, P_2) = 0$. Thus $X_{12}T^*P_2 + P_2TX_{12}^* = 0$. Hence $T_{22} = 0$. For any $X_{21} \in \mathcal{A}_{21}$, it

follows from Lemma 2.3 and Lemma 2.4 that

$$\begin{split} &\phi(\Gamma\langle\frac{I}{2},X_{21},(A_{11}+B_{11}),P_{1}\rangle) = \phi(X_{21}A_{11}^{*}) + \phi(A_{11}X_{21}^{*}) + \phi(X_{21}B_{11}^{*}) + \phi(B_{11}X_{21}^{*}) \\ &= \phi(X_{21}A_{11}^{*} + A_{11}X_{21}^{*}) + \phi(X_{21}B_{11}^{*} + B_{11}X_{21}^{*}) \\ &= \phi(\Gamma\langle\frac{I}{2},X_{21},A_{11},P_{1}\rangle) + \phi(\Gamma\langle\frac{I}{2},X_{21},B_{11},P_{1}\rangle) = \sum_{m=1}^{s-1} \Gamma_{m}^{\phi}\langle\frac{I}{2},X_{21},(A_{11}+B_{11}),P_{1}\rangle \\ &+ \sum_{m=s+3}^{n+1} \Gamma_{m}^{\phi}\langle\frac{I}{2},X_{21},(A_{11}+B_{11}),P_{1}\rangle + \Gamma\langle\frac{I}{2},\phi(X_{21}),(A_{11}+B_{11}),P_{1}\rangle \\ &+ \Gamma\langle\frac{I}{2},X_{21},(\phi(A_{11})+\phi(B_{11})),P_{1}\rangle + \Gamma\langle\frac{I}{2},X_{21},(A_{11}+B_{11}),\phi(P_{1})\rangle. \end{split}$$

On the other hand,

$$\phi(\Gamma\langle \frac{I}{2}, X_{21}, (A_{11} + B_{11}), P_1 \rangle) = \sum_{m=1}^{s-1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{21}, (A_{11} + B_{11}), P_1 \rangle$$

$$+ \sum_{m=s+3}^{n+1} \Gamma_m^{\phi} \langle \frac{I}{2}, X_{21}, (A_{11} + B_{11}), P_1 \rangle + \Gamma\langle \frac{I}{2}, \phi(X_{21}), (A_{11} + B_{11}), P_1 \rangle$$

$$+ \Gamma\langle \frac{I}{2}, X_{21}, \phi(A_{11} + B_{11}), P_1 \rangle + \Gamma\langle \frac{I}{2}, X_{21}, (A_{11} + B_{11}), \phi(P_1) \rangle.$$

This implies that $\Gamma(\frac{1}{2}, X_{21}, T, P_1) = 0$. Thus $X_{21}T^*P_1 + P_1TX_{21}^* = 0$, and so $T_{11} = 0$. Hence T = 0. Similarly, we can show that (2) holds. The proof is completed.

Lemma 2.6. ϕ *is additive on* \mathcal{A} .

Proof. Let $A = \sum_{i,j=1}^{2} A_{ij}$, $B = \sum_{i,j=1}^{2} B_{ij}$, where A_{ij} , $B_{ij} \in \mathcal{A}_{ij}$. It follows from Lemma 2.3-2.5 that

$$\phi(A+B) = \phi(\sum_{i,j=1}^{2} A_{ij} + \sum_{i,j=1}^{2} B_{ij}) = \phi(\sum_{i,j=1}^{2} (A_{ij} + B_{ij}))$$

$$= \sum_{i,j=1}^{2} \phi(A_{ij} + B_{ij}) = \phi(\sum_{i,j=1}^{2} A_{ij}) + \phi(\sum_{i,j=1}^{2} B_{ij}) = \phi(A) + \phi(B).$$

Hence ϕ is additive. The proof is completed.

3. Structures

In this section, we will prove the following theorem.

Theorem 3.1. Let $\mathcal A$ be a unite prime *-algebra containing a non-trivial projection, and let $\phi:\mathcal A\to\mathcal A$ such that

$$\phi(A_1 \diamond_1 A_2 \diamond_2 \cdots \diamond_n A_{n+1}) = \sum_{h=1}^{n+1} A_1 \diamond_1 \cdots \diamond_{h-2} A_{h-1} \diamond_{h-1} \phi(A_h) \diamond_h A_{h+1} \diamond_{h+1} \cdots \diamond_n A_{n+1}$$

for any $A_1, A_2, \dots, A_{n+1} \in \mathcal{A}$ with $n \ge 2$. If n is even and $\diamond_{2u-1} = \bullet, \diamond_{2u} = \circ$ with $1 \le u \le \frac{n}{2}$, then there exists an element $\lambda \in \mathcal{Z}_S(\mathcal{A})$ such that $\phi(A) = \delta(A) + i\lambda A$, where δ is an additive *-derivation. Otherwise, ϕ is an additive *-derivation.

By the results of [24] and [26], we only need to consider the case when at least one of \diamond_r is \bullet , where $r \in \{1, 2, 3 \cdots, n-1\}$.

Lemma 3.2. If n is even and $\diamond_{2u-1} = \bullet$, $\diamond_{2u} = \circ$ with $1 \le u \le \frac{n}{2}$, then $\phi(I)^* = -\phi(I)$ and $\phi(I) \in \mathcal{Z}(\mathcal{A})$. Otherwise, $\phi(I) = 0$.

Proof. Let $\diamond_{s_p} = \bullet$, $\diamond_{t_q} = \circ$ with $1 \le s_1 \le s_p \le s_{\mu_1} \le n$, $1 \le t_1 \le t_q \le t_{\mu_2} \le n$, where $1 \le p \le \mu_1$, $1 \le q \le \mu_2$ and $\mu_1 + \mu_2 = n$.

If $n \ge 2$ and $s_{\mu_1} = n$, then it follows from Theorem 2.1 and $\phi(I) \bullet I = I \bullet \phi(I) \in \mathcal{A}_{sa}$ that

$$2^{n}\phi(I) = \phi(I \diamond_{1} I \diamond_{2} \cdots \diamond_{n} I) = \sum_{h=1}^{n+1} I \diamond_{1} \cdots \diamond_{h-2} I \diamond_{h-1} \phi(I) \diamond_{h} I \diamond_{h+1} \cdots \diamond_{n} I$$
$$= (n+1)2^{n-1}(\phi(I)^{*} + \phi(I)).$$

Moreover, $2^n \phi(I)^* = (n+1)2^{n-1}(\phi(I)^* + \phi(I))$. Hence $\phi(I) = 0$. If $n \ge 3$ and $1 \le s_{\mu_1} < n-1$, then

$$2^{n}\phi(I) = \phi(I \diamond_{1} I \diamond_{2} \cdots \diamond_{n} I) = \sum_{h=1}^{n+1} I \diamond_{1} \cdots \diamond_{h-2} I \diamond_{h-1} \phi(I) \diamond_{h} I \diamond_{h+1} \cdots \diamond_{n} I$$
$$= (s_{\mu_{1}} + 1)2^{n-1}(\phi(I)^{*} + \phi(I)) + (n - s_{\mu_{1}})2^{n}\phi(I).$$

Moreover,

$$2^{n}\phi(I)^{*} = (s_{\mu_{1}} + 1)2^{n-1}(\phi(I)^{*} + \phi(I)) + (n - s_{\mu_{1}})2^{n}\phi(I)^{*}.$$

Comparing the above two equations, we can obtain that $\phi(I)^* = \phi(I)$. Hence $\phi(I) = 0$.

If $n \ge 2$, $t_{\mu_2-r+1} = n - 2(r-1)$ and $s_{\mu_1-r+1} = n - 2(r-1) - 1$ with $1 \le r \le g \le [\frac{n}{2}]$. Take $A_c = I$ with $1 \le c \le n+1$, it follows from Theorem 2.1 and $\phi(I) \bullet I = I \bullet \phi(I) \in \mathcal{A}_{sa}$ that

$$2^{n}\phi(I) = \phi(I \diamond_{1} I \diamond_{2} \cdots \diamond_{n} I) = \sum_{h=1}^{n+1} I \diamond_{1} \cdots \diamond_{h-2} I \diamond_{h-1} \phi(I) \diamond_{h} I \diamond_{h+1} \cdots \diamond_{n} I$$
$$= n2^{n-1}(\phi(I)^{*} + \phi(I)) + 2^{n}\phi(I).$$

It follows that $\phi(I)^* = -\phi(I)$. There are seven further cases:

Case 1: When $n \ge 3$ with n is odd, $s_1 = 1$ and $g = \left[\frac{n}{2}\right]$. On the one hand, take $A_1 = I$, $A_2 = I$, $A_3 = iI$ and $A_c = I$ with $4 \le c \le n + 1$, it follows from Theorem 2.1 and $\phi(I) \bullet I = I \bullet \phi(I) = 0$ that

$$0 = \phi(I \diamond_1 I \diamond_2 iI \diamond_3 \cdots \diamond_n I) = 2^{n-1}(\phi(iI)^* + \phi(iI)).$$

Thus $\phi(iI)^* + \phi(iI) = 0$. On the other hand, take $A_1 = I$, $A_2 = iI$ and $A_c = I$ with $3 \le c \le n + 1$, we have that $2^n i \phi(I) = 2^{n-1} (\phi(iI)^* + \phi(iI))$. Hence $\phi(I) = 0$.

Case 2: When $n \ge 3$ with n is odd, $t_1 = 1$ and $g = \lfloor \frac{n}{2} \rfloor$. Take $A_1 = iI$ and $A_c = I$ with $1 \le c \le n + 1$, then

$$0 = \phi(iI \diamond_1 I \diamond_2 \cdots \diamond_n I) = \phi(iI) \diamond_1 I \diamond_2 \cdots \diamond_n I + iI \diamond_1 \phi(I) \diamond_2 \cdots \diamond_n I + iI \diamond_1 I \diamond_2 \phi(I) \diamond_3 \cdots \diamond_n I$$

$$= 2^{n-1}(\phi(iI)^* + \phi(iI)).$$

Thus $\phi(iI)^* + \phi(iI) = 0$. On the other hand, take $A_1 = I$, $A_2 = I$, $A_3 = iI$ and $A_c = I$ with $4 \le c \le n + 1$, we have that

$$0 = \phi(I \diamond_1 I \diamond_2 iI \diamond_3 \cdots \diamond_n I) = -2^{n+1} i\phi(I) + 2^{n-1} (\phi(iI)^* + \phi(iI)).$$

Thus $\phi(I) = 0$.

Case 3: When $n \ge 4$, $t_{\mu_2-g} = n-2g-1$ and $s_{\mu_1-g} = n-2g$ with $1 \le g < \left[\frac{n}{2}\right]$. Take $A_c = I$ with $1 \le c \le n-2g+1$, $n-2g+3 \le c \le n+1$ and $A_{n-2g+2} = iI$, it follows from Theorem 2.1 and $\phi(I) \bullet I = I \bullet \phi(I) = 0$ that there exists $\alpha_1 > 0$ such that

$$0 = \phi(I \diamond_1 I \diamond_2 \cdots \diamond_{n-2g+1} iI \diamond_{n-2g+2} \cdots \diamond_n I)$$

$$= \sum_{h=1}^{n-2g+1} I \diamond_1 \cdots I \diamond_{h-1} \phi(I) \diamond_h I \diamond_{h+1} \cdots \diamond_{n-2g+1} iI \diamond_{n-2g+2} \cdots \diamond_n I$$

$$+ I \diamond_1 I \diamond_2 \cdots \diamond_{n-2g+1} \phi(iI) \diamond_{n-2g+2} \cdots \diamond_n I$$

$$= \alpha_1 \phi(I) \diamond_{n-2g} I \diamond_{n-2g+1} iI \diamond_{n-2g+2} \cdots \diamond_n I + 2^{n-1} (\phi(iI)^* + \phi(iI))$$

$$= 2^{n-1} (\phi(iI)^* + \phi(iI)).$$

Hence $\phi(iI)^* + \phi(iI) = 0$. Take $A_c = I$ with $1 \le c \le n - 2g$, $n - 2g + 2 \le c \le n + 1$ and $A_{n-2g+1} = iI$, then there exists $\alpha_2 > 0$ such that

$$0 = \phi(I \diamond_1 I \diamond_2 \cdots \diamond_{n-2g} iI \diamond_{n-2g+1} \cdots \diamond_n I)$$

$$= \sum_{h=1}^{n-2g} I \diamond_1 \cdots \diamond_{h-1} \phi(I) \diamond_h I \diamond_{h+1} \cdots \diamond_{n-2g} iI \diamond_{n-2g+1} \cdots \diamond_n I$$

$$+ I \diamond_1 \cdots \diamond_{n-2g} \phi(iI) \diamond_{n-2g+1} \cdots \diamond_n I$$

$$= \alpha_2 \phi(I) \diamond_{n-2g} iI \diamond_{n-2g+1} \cdots I \diamond_n I + 2^{n-1} (\phi(iI)^* + \phi(iI))$$

$$= -2^{2g+1} \alpha_2 i \phi(I).$$

Hence $\phi(I) = 0$.

Case 4: When $n \ge 4$, $\mu_1 + g = n$ with $1 \le g < \left[\frac{n}{2}\right]$. Similarly Case 3, take $A_c = I$ with $1 \le c \le n - 2g + 1$, $n - 2g + 3 \le c \le n + 1$ and $A_{n-2g+2} = iI$, we can easy obtain that $\phi(iI)^* + \phi(iI) = 0$. Take $A_1 = I$, $A_2 = iI$ and $A_c = I$ with $3 \le c \le n + 1$, then

$$0 = \phi(I \diamond_1 iI \diamond_2 \cdots \diamond_n I) = \phi(I) \diamond_1 iI \diamond_2 \cdots \diamond_n I + I \diamond_1 \phi(iI) \diamond_2 \cdots \diamond_n I$$

= $-2^n i \phi(I) + 2^{n-1} (\phi(iI)^* + \phi(iI))$
= $-2^n i \phi(I)$.

Hence $\phi(I) = 0$.

Case 5: When $n \ge 5$, $1 \le t_{\mu_2-g} \le n - 2g - 2$ with $1 \le g < [\frac{n}{2}]$. Similarly Case 3, take $A_c = I$ with $1 \le c \le n - 2g + 1$, $n - 2g + 3 \le c \le n + 1$ and $A_{n-2g+2} = iI$, we have that $\phi(iI)^* + \phi(iI) = 0$. Take $A_c = I$ with $1 \le c \le n - 2g - 1$, $n - 2g + 1 \le c \le n + 1$ and $A_{n-2g} = iI$, then there exists $\beta > 0$ such that

$$0 = \phi(I \diamond_1 I \diamond_2 \cdots iI \diamond_{n-2g} \cdots \diamond_n I)$$

$$= \sum_{h=1}^{n-2g-1} I \diamond_1 \cdots I \diamond_{h-1} \phi(I) \diamond_h I \diamond_{h+1} \cdots \diamond_{n-2g-1} iI \diamond_{n-2g} \cdots I \diamond_n I$$

$$+ I \diamond_1 \cdots \diamond_{n-2g-1} \phi(iI) \diamond_{n-2g} \cdots I \diamond_n I$$

$$= \beta \phi(I) \diamond_{n-2g-1} iI \diamond_{n-2g} \cdots \diamond_n I + 2^{n-1} (\phi(iI)^* + \phi(iI))$$

$$= -2^{2g+2} \beta i \phi(I).$$

Hence $\phi(I) = 0$.

Case 6: When $n \ge 4$, $t_{\mu_2-g-1} = n-2g-1$ and $t_{\mu_2-g} = n-2g$ with $1 \le g < [\frac{n}{2}]$. On the one hand, take $A_c = I$ with $1 \le c \le n-2g+1$, $n-2g+3 \le c \le n+1$ and $A_{n-2g+2} = iI$, it follows from Theorem 2.1 that there exists $\gamma_1 \ge 0$ such that

$$0 = \phi(I \diamond_1 I \diamond_2 \cdots \diamond_{n-2g+1} iI \diamond_{n-2g+2} \cdots \diamond_n I)$$

$$= \sum_{h=1}^{n-2g-1} I \diamond_1 \cdots \diamond_{h-1} \phi(I) \diamond_h \cdots \diamond_n I + I \diamond_1 \cdots \diamond_{n-2g-1} \phi(I) \diamond_{n-2g} \cdots \diamond_n I$$

$$+ I \diamond_1 \cdots \diamond_{n-2g} \phi(I) \diamond_{n-2g+1} \cdots \diamond_n I + I \diamond_1 \cdots \diamond_{n-2g+1} \phi(iI) \diamond_{n-2g+2} \cdots \diamond_n I$$

$$= \gamma_1 \phi(I) \diamond_{n-2g-1} I \diamond_{n-2g} I \diamond_{n-2g+1} iI \diamond_{n-2g+2} \cdots \diamond_n I - 2^{n+1} i\phi(I)$$

$$+ 2^{n-1} (\phi(iI)^* + \phi(iI)).$$

Thus $(2^{2g+2}\gamma_1 + 2^{n+1})i\phi(I) = 2^{n-1}(\phi(iI)^* + \phi(iI))$. On the other hand, take $A_c = I$ with $1 \le c \le n - 2g - 1$, $n - 2g + 1 \le c \le n + 1$ and $A_{n-2g} = iI$, it follows from Theorem 2.1 that there exists $\gamma_2 \ge 0$ such that

$$0 = \phi(I \diamond_1 I \diamond_2 \cdots \diamond_{n-2g-1} iI \diamond_{n-2g} \cdots \diamond_n I)$$

$$= \sum_{h=1}^{n-2g-1} I \diamond_1 \cdots \diamond_{h-1} \phi(I) \diamond_h \cdots \diamond_n I + I \diamond_1 \cdots \diamond_{n-2g-1} \phi(iI) \diamond_{n-2g} \cdots \diamond_n I$$

$$= \gamma_2 \phi(I) \diamond_{n-2g-1} iI \diamond_{n-2g} I \diamond_{n-2g+1} \cdots \diamond_n I + 2^{n-1} (\phi(iI)^* + \phi(iI)).$$

Thus $2^{2g+2}\gamma_2 i\phi(I) + 2^{n-1}(\phi(iI)^* + \phi(iI)) = 0$. Hence $\phi(I) = 0$.

Case 7: When $n \ge 2$ with n is even and $g = \frac{n}{2}$. Take $A_1 = A \in \mathcal{A}_{sa}$ and $A_c = I$ with $2 \le c \le n+1$, it follows from $(A \bullet \phi(I))^* = A \bullet \phi(I)$ and $(A \circ \phi(I))^* = -(A \circ \phi(I))$ that

$$2^{n}\phi(A) = \phi(A \diamond_{1} I \diamond_{2} \cdots I \diamond_{n} I) = 2^{n-1}(\phi(A)^{*} + \phi(A)) + 2^{n-1}g(A\phi(I)^{*} + \phi(I)A) + 2^{n-1}(A\phi(I) + \phi(I)A).$$

Thus

$$\phi(A) = \phi(A)^* + g(\phi(I)A - A\phi(I)) + A\phi(I) + \phi(I)A.$$

On the other hand,

$$\phi(A)^* = \phi(A) + g(\phi(I)A - A\phi(I)) - A\phi(I) - \phi(I)A.$$

We can get that $\phi(I)A = A\phi(I)$ for all $A \in \mathcal{A}_{sa}$. Hence $\phi(I) \in \mathcal{Z}(\mathcal{A})$. The proof is completed.

Proof of Theorem 3.1. Let $\diamond_s = \bullet$ and $\diamond_h = \circ$ with $1 \le h \le s-1$. If $\phi(I) = 0$, Let $A_c = I$ with $1 \le c \le s-1$, $s+2 \le c \le n+1$, it follows from Theorem 2.1 that

$$2^{n-1}\phi(A_s \diamond_s A_{s+1}) = \phi(I \diamond_1 I \diamond_2 \cdots \diamond_{s-1} A_s \diamond_s A_{s+1} \diamond_{s+1} \cdots \diamond_n I)$$
$$= 2^{n-1}(\phi(A_s) \diamond_s A_{s+1} + A_s \diamond_s \phi(A_{s+1}))$$

for any A_s , $A_{s+1} \in \mathcal{A}$. Thus

$$\phi(A_s \diamond_s A_{s+1}) = \phi(A_s) \diamond_s A_{s+1} + A_s \diamond_s \phi(A_{s+1}).$$

It follows from [25, Main Theorem] that ϕ is an additive *-derivation.

If n is even and $\diamond_{2u-1} = \bullet$, $\diamond_{2u} = \circ$ with $1 \le u \le \frac{n}{2}$. Define a map $\delta : \mathcal{A} \to \mathcal{A}$ by $\delta(A) = \phi(A) - \phi(I)A$. It follows from Lemma 3.2 that δ is an additive map and satisfies

$$\delta(A_1 \diamond_1 A_2 \diamond_2 \cdots \diamond_n A_{n+1}) = \sum_{h=1}^{n+1} A_1 \diamond_1 \cdots \diamond_{h-1} \delta(A_h) \diamond_h \cdots \diamond_n A_{n+1}$$

for any $A_1, A_2, \dots, A_{n+1} \in \mathcal{A}$ and $\delta(I) = 0$. It follows from the above conclusion that

$$\delta(A \diamond_s B) = \delta(A) \diamond_s B + A \diamond_s \delta(B)$$

for any $A, B \in \mathcal{A}$. It follows from [25, Main Theorem] that δ is an additive *-derivation. Hence, there exists an element $\lambda \in \mathcal{Z}_S(\mathcal{A})$ such that

$$\phi(A) = \delta(A) + i\lambda A$$

for any $A \in \mathcal{A}$, where δ is an additive *-derivation. The proof is completed.

As a consequences of Theorem 3.1, we have the following corollaries.

Corollary 3.1. Let \mathcal{M} be a factor von Neumann algebra with dim $\mathcal{M} > 1$, and let $\phi : \mathcal{M} \to \mathcal{M}$ be a nonlinear mixed bi-skew Jordan-type derivation, that is, ϕ satisfies

$$\phi(A_1 \diamond_1 A_2 \diamond_2 \cdots \diamond_n A_{n+1}) = \sum_{h=1}^{n+1} A_1 \diamond_1 \cdots \diamond_{h-2} A_{h-1} \diamond_{h-1} \phi(A_h) \diamond_h A_{h+1} \diamond_{h+1} \cdots \diamond_n A_{n+1}$$

for any $A_1, A_2, \dots, A_{n+1} \in \mathcal{M}$ with $n \ge 2$. If n is even and $\diamond_{2u-1} = \bullet, \diamond_{2u} = \circ$ with $1 \le u \le \frac{n}{2}$, then there exists an number $\lambda \in \mathbb{R}$ such that $\phi(A) = \delta(A) + i\lambda A$, where δ is an additive *-derivation. Otherwise, ϕ is an additive *-derivation.

Corollary 3.2. Let \mathcal{A} be a standard operator algebra on an infinite-dimensional complex Hilbert space \mathcal{H} containing the identity operator I, which \mathcal{A} is closed under the adjoint operation. Assume that $\phi: \mathcal{A} \to \mathcal{A}$ is a nonlinear mixed bi-skew Jordan-type derivation. It is show that if n is even and $\diamond_{2u-1} = \bullet$, $\diamond_{2u} = \circ$ with $1 \le u \le \frac{n}{2}$, then there exist $T, S \in \mathcal{B}(\mathcal{H})$ satisfying $T^* + T = 0$, $T - S \in \mathbb{R}$ such that $\phi(A) = AT - SA$. Otherwise, there exists $Y \in \mathcal{B}(\mathcal{H})$ such that $\phi(A) = AY - YA$ with $Y^* + Y = 0$.

References

- [1] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229–234.
- [2] P. Šemrl, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165.
- [3] P. Šemrl, Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-518.
- [4] D. Zhao, C. Li, Y. Zhao, Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras, Periodica Mathematica Hungarica. 86 (2023), 578–586.
- [5] M. Wang, G. Ji, A characterization of *-isomorphism on factor von Neumann algebras, Acta Math. Sinica, Chin. Ser. 58 (2015), 71–78.
- [6] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), 27–31.
- [7] T. K. Lee, T. L. Wong, Y. Zhou, The structure of Jordan *-derivations of prime rings, Linear and Multilinear Algebra. 63 (2015), 411–422.
- [8] C. Li, F. Lu, *Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras*, Complex Analysis and Operator Theory. **11** (2017), 109–117.
- [9] C. Li, F. Lu, X. Fang, Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339–2345.
- [10] A. Taghavi, F. Kolivand, E. Tavakoli, A note on strong (skew) η-Lie products preserving maps on some algebras, Linear and Multilinear Algebra. 67 (2019), 886–895.
- [11] A. Taghavi, H. Rohi, V. Darvish, Nonlinear *-Jordan derivations on von Neumann algebras, Linear and Multilinear Algebra. 64 (2016), 426–439.
- [12] V. Darvish, M. Nouri, M. Razeghi, Nonlinear bi-skew Jordan derivations on *-algebra, Filomat. 36 (2022), 3231-3239.
- [13] F. Zhao, C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Math. Slovaca. 1 (2018), 163–170.
- [14] A. N. Khan, H. Alhazmi, Multiplicative bi-skew Jordan triple derivations on prime *-algebra, Georgian Math. J. 30 (2023), 389–396.
- [15] C. Li, Y. Zhao, F. Zhao, Nonlinear *-Jordan-type derivations on *-algebras, Rocky Moutain Journal of Mathematics. 51 (2021), 601–612.
- [16] M. Ashraf, M. S. Akhter, M. A. Ansari, Nonlinear generalized bi-skew Jordan n-derivations on *-algebras , Bull. Malays. Math. Sci. Soc. 47 (2024).
- [17] L. Abedini, A. Taghavi, Nonlinear maps preserving the mixed product A B ∘ C on von Neumann algebras, Rocky Moutain Journal of Mathematics. 53 (2023), 671–678.
- [18] C. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on factor von Neumann algebras, Filomat. 36 (2022), 2637–2644.
- [19] C. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product [A B, C], on von Neumann algebras, Filomat. 35 (2021), 2775–2781.

- [20] Y. Zhao, C. Li, Q. Chen, Nonlinear maps preserving mixed product on factors, Bulletin of the Iranian Mathematical Society. 47 (2021), 1325–1335.
- [21] Y. Pang, D. Zhang, D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras, Bulletin of the Iranian Mathematical Society. 47 (2021), 1325–1335.
- [22] N. Rehman, J. Nisar, M. Nazim, A note on nonlinear mixed Jordan triple derivation on *-algebras, Communications in Algebra. 51 (2023), 1334–1343.
- [23] T. Ning, J. Zhang, Nonlinear mixed ξ-Jordan triple derivable maps on factor von Neumann algebras, Acta Math Sci Chinese Series. **64** (2020), 319–328.
- [24] B. Ferreira, F. Wei, Mixed *-Jordan-type derivations on *-algebras, Journal of Algebra and Its Applications. 22 (2023).
- [25] M. A. Siddeeque, A. H. Shikeh, Nonlinear bi-skew Jordan derivations in prime *-rings, Journal of Algebra and Its Applications. 53 (2023), 671–678.
- [26] X. Qi, Z. Guo, T. Zhang, Characterizing Jordan n-derivations of unital rings containing idempotents, Bulletin of the Iranian Mathematical Society. 46 (2020), 1639–1658.