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Slant helices on Riemannian manifolds
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Abstract. The notion of a slant helix in Euclidean space was defined by Izumiya and Takeuchi [5], and
many authors have studied such curves in Euclidean spaces. The aim of this paper is to introduce the slant
helix notion on Riemannian manifolds. The necessary conditions for a curve on a Riemannian manifold to
be a slant helix are obtained in terms of differential equations. In addition, certain conditions were found
for the slant helix along an immersion to be a slant helix in the ambient space. Moreover, a criterion is given
for the slant helix along an immersion to be a circle in the ambient space (or vice versa).

1. Introduction

Although curves are the most basic geometrical structures of geometry, studies on curves on a Rieman-
nian manifold are limited compared to the theory of submanifolds. In this direction, the first attempt was
made by Nomizu and Yano [14]. They studied circles in Riemannian manifolds and gave a characterization
for a curve on a Riemannian manifold to be a circle by differential equation

VEX+KX =0 (1)

where V is the Levi-Civita connection of the Riemannian manifold, k is a constant and X is tangent vector
field of the curve [14]. They also used this notion to characterize extrinsic spheres. Indeed, they showed
that a submanifold of a Riemann manifold is an extrinsic sphere if and only if a circle in the submanifold
is a circle in the ambient Riemannian manifold. T. Ikawa studied ordinary helix on Riemannian manifolds
and stated that any curve is an ordinary helix on a Riemannian manifold if and only if

VX +FVxX =0

where Fis a constant and X is the tangent vector field of the curve. He also obtained certain characterizations
of submanifold by using the notion of helix [3]. Ikawa also studied such curves in an indefinite-Riemannian
manifold [4]. Ekmekgi generalized results of Ikawa to the case of a general helix in indefinite-Riemannian
manifold [2]. Izumiya and Takeuchi have defined slant helices and conical geodesic curves in Euclidean
3-space. Those notions are generalizations of cylindrical helices. Kula et al.[9] (see also [10]) obtained
characterizations of space curves to be slant helices by considering certain differential equations. The
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geometry of slant helices has been also studied in semi-Riemannian geometry, [1], [12], [20]. It is seen in the
literature that it is a very useful method to obtain information about the map and manifolds themselves,
by examining the behavior of a curve along a map (isometric immersion, Riemannian submersion or
Riemannian map), [6-8, 13, 16-19].

The main purpose of this paper is to define the concept of a slant helix on a Riemannian manifold and
to examine its basic properties. To this end, in section 2, the basic notions related to the scope of this paper
are presented. In the third section, a definition of the concept of slant helix on the Riemann manifold is
presented. This definition agrees with the slant helix notion given in Euclidean spaces. In this section,
a characterization is also given for a given curve on the manifold to be a slant helix. In addition, the
characterization of the submanifold is obtained under the condition that the curve on a given submanifold
is transformed to the ambient manifold as a slant helix. In section 4, the transformation of the circle and the
slant helix into each other along an immersion is considered. The non-existence theorem is found if a circle
is transformed into a slant helix. If a slant helix is transformed into a circle along an isometric immersion,
it is shown that the immersion is totally geodesic.

2. Preliminaries

Let (M, {,)) be a Riemannian manifold and M an n— dimensional submanifold of M. Assume that V is the
Levi-civita connection in M and V is the Levi-civita connection in M. Let x(M)(resp.x(M)) be the Lie algebra
of vector fields on M(resp.M) and x*(M) the set of all vector fields normal to M [21]. The Gauss-Weingarten
formulas are given by

vXY = VXY + B(X/ Y)/ X/ Ye X(M)/ (2)
VxN = —AxX+ViN, N e x> (M), 3)

where V* is the connection in the normal bundle and B is the second fundamental form of M[21]. Ay is
called the shape operator and satisfies the relation

(ANX,Y) = (B(X,Y),N). (4)
We denote the covariant derivatives for the second fundamental form B as follows:

(VxB)(Y, Z) = VxB(Y,Z) = B(VxY,Z) - B(Y,VxZ), 5)

Vw(VzB)(X,Y) = Vi((VzB)(X, ) - (Vv,zB)(X, Y) - (VZB)(VwX, Y) - (VZB)(X, ViyY). 6)
The covariant differentiation of Ay is given by
(VxANY = VxANY — AyinY — AyVx Y. 7)

M is called a totally geodesic submanifold if its second fundamental form vanishes. The mean curvature
vector field H is defined

1 1 v
H=-TrB= Zl:h(e,-,ei).

If ViH = 0, for any vector X € T,(M), then H is called parallel. If the second fundamental form is
B(X,Y) = (X, Y)H, 8)

then M is called a totally umbilical submanifold. If the vector field B(X, X) has the same length for any
unit vector X in T,,(M), then M is called to be isotropic at p. If M is isotropic at any point on M, then M is
called isotropic. The submanifold M is isotropic at p if and only if it satisfies (B(X, X), B(X,Y)) = 0 for any
orthonormal vectors X and Y. Furthermore if B satisfies B(X, Y) = 0 for any orthonormal vectors X and Y
atp € M, then M is umbilical at p [3, 15].
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Let c be immersed unit speed curve in a n-dimensional Riemannian manifold. We denote the unit
tangent vector field, the unit normal vector field, and the binormal vector field of the curve by X, Y and Z,
respectively. 7 = (VxZ,Y) is the torsion of the curve. The curve has also curvatures k; > 0,ky, k3, k4, ..., kn—1
and Frenet frame Ny = X, N1 = Y, N, = Z,N3, Ny, ..N,,_1. Then, the Frenet equations are given by

VxN; = =kiN;_1 + kis1Niy1, 0<i<n-1.
In this case, c is called a Frenet curve of order n [11].

Definition 2.1. [14] A regular Frenet curve ¢ = c(s) parameterized by arc length s with ki # 0 is called a circle of
order 2 if there is a unit vector field Y along ¢ and positive constant k such that

VxX = kY, VxY =—-kX, )

where the unit vector field X is the tangent vector field of the circle. The number 1 is called the radius of the circle.

3. Slant helices on Riemannian Manifold

Let c(s) be a regular Frenet curve on a Riemannian manifold. We denote the tangent vector field ¢’(s) by
X. Unless otherwise stated, a unit speed curve ¢ will be considered in this paper.

Definition 3.1. Let c(s) be a Frenet curve and denote the tangent vector field of c(s) by X. A regular Frenet curve
¢ = c(s) parameterized by arc length s with ky # 0 is called a slant helix if there are unit vector fields Y, Z along c
such that

VXX = k1Y,
VxY = —k1X + kzZ, (10)
VxZ = -kY,
w(e) . . .
and (k§+k§)% is non-zero constant. The number ky and ky are called curvature and torsion of the slant helix, respectively.
TEAAY
We note that if (:i#z% = 0, then it follows that (k—j), =0, thus Z—j is constant which gives general helices in
172

Riemannian manifold.
We first give necessary criteria for a slant helix curve on a Riemannian manifold.

Theorem 3.2. Let c(s) be a Frenet curve with curvatures ki, ky # 0 on a Riemannian manifold M (dimM=3). If c(s)
is a slant helix, then the unit tangent vector field X and the unit vector field Y of the curve satisfy
k) 3k (kY :
VOxX = 2K VxY + VY + (= - 5= |2 | (In(d +13)) | VxX. (11)
ky 2k \ky
Proof. We assume that ¢ = ¢(s) is a slant helix with curvatures ki, ky # 0. The second and third derivatives
are obtained as

ViX = Vx(kY)=-KEX+kY +kkZ,
and
3 / 2 ki,
VX = 2K VxY +KkVEY + vax (12)

by virtue of (10). Since ¢ = ¢(s) is a slant helix, we get
ky ! ’ ’
i (E) _ Kok — ki

(k% + k§)3/2 B (k% + kg)%

= constant.
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Taking the derivative of both sides and arranging the outcome, it follows that
1/2
(ks — koky?) (2 + ) — (ki = ka3 (K2 + 1) 2k + 2kaky)
- =
(k2 +2)

Hence we obtain
kl/ kl/ 3 k k ’ ,
1 2 1 2 2
A2 _2M(2]) N . 1
e Zkz(kl) (In(; + 1)) (13)
Substituting the last equation in the equation (12), we have (11). O

Let M be a Riemannian manifold and M a submanifold of M. Then, the curvatures of a curve ¢ on the
submanifold M will be denoted by ki, k», and the curvatures of the curve y, which is the counterpart of the
¢ on M, will be denoted as ki, k,. We give the following proposition which shows that M is an isotropic
submanifold under certain conditions.

Proposition 3.3. Let M (dim M >3) be a connected submanifold of a Riemannian manifold M and c be Frenet curve.
For each pair (u,v) of orthonormal tangent vectors, there is a slant helix ¢ in M which is not a general helix and that
is a slant helix in M satisfying the following:

i) ¢'(0) = u, (Vie')(0) = ka(0)o,
ll) 6k1(0) * k_l(O),kl,k_l > O,kz,k-z #0

where ky, ky and ky, ko are curvatures of ¢ in M and that in M, respectively. Then, submanifold M is isotropic space
in M.

Proof. Now, we assume that a slant helix with curvatures k; > 0 and k; # 0 in M is a slant helix in M. From
the equation (11), we have the following equation

V¥X = 2K VxY +k VY + KVxX (14)
where K = k—z - %k—l (—2) (l (k2 + kz)) Since the curve c is a slant helix in M, it follows that
V3X =2k VxY +k V3Y + K VxX

where K = kkz—z 22 ( j) (ln(kl +ky )) From (2) and (3), we obtain

ViX = VX +B(X,VAX) +3Vx(B(X, VxX)) - Vx(ApxxX) — BX, ApxX) + Vx((VxB)(X, X)). (15)

Using Weingarten formula and (5), then we have

3Vx(B(X,VxX)) = =3ApxvyoX+ 3(FVVXB)(X, VxX) + 3B(VxX, VxX) + 3B(X, V4 X). (16)
Also, we have
V(VxBXX) = ~AgpuoX + VEBIX X) + (Vy,xB)(X, X)
+(VXB)(VXX, X) + (VXB)(X, VxX). (17)

Putting (16) and (17) in (15), we derive
V3X = V3X+4B(X,ViX) - 5Apx vy X + 5(VxB)(X, VxX) + 3B(VxX, VxX) — (VxA)pxx0X

~Apx 0 VxX = BX, Apx 0 X) = 245 50X + (VEB)(X, X) + (Vy,xB)(X, X). (18)
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Substituting (14) in (18), we arrive at

V3X = 2K VxY +kVyY + KVxX +4B(X, V3 X) — 5Apx vy X
+5(VxB)(X, VxX) + 3B(VxX, VxX) — (VxA)pxx)X
—Apxx) VxX = B(X, Apx.x)X) = 2A G, pyx X

+(V2B)(X, X) + (Vv,xB)(X, X). (19)
Since the curve c is a slant helix in M, it follows that
V3X =2k VxY +k V3Y + K VxX.
Using (2) and (3), we get
ViX = 2k'VxY +2ki'B(X,Y) + k1 V&Y + 2k B(X, VxY) — k1 Apixn X
+K1(VxB)(X, Y) + k1B(VxX, Y) + KVxX + KB(X, X).
Substituting the last equation in (19), we obtain

0 = 2kiVXY + k1V§(Y + KVxX + 4B(X, ViX) - SAB(X,VXX)X
+5(VxB)(X, VxX) + 3B(VxX, VxX) — (VxA)pxxX — Apxx)VxX
_B(X/ AB(X,X)X) - 2A(§XB)(X,X)X + (ViB)(X/ X) + (VVXXB)(X/ X)
—2ki'VxY = 2ki'B(X, Y) — k1 VXY = 2k B(X, VxY) + k1 Apxn X
I (F&XB)(X, Y) - kiB(VxX,Y) — KVxX - KB(X, X). (20)
Using (10) and taking tangential part of (20), we have
0 = (—kl(k% + k%) + Kky — Kkl + k_l(k% + k%))Y + (—3kik1 + 2k_1,k1 + k_lki)X
+(2kik2 + klké - k_lké - 2k_1'k2)Z - 5k1AB(X,y)X - (VXA)B(X,)()X
_klAB(X,X)Y - 2A(§XB)(X,X)X + klAB(X,y)X. (21)

Changing Y into -Y in (21) and subtracting each other, it follows that
(—k1 (k7 +K3) + Kky = Kiey + Ky (k] +K3))Y = 5kiApxn X + k1Apx Y — kiApxnX.
Taking inner product with the unit vector field X, we have
5k1{Apx X, X) + ki{Apxx Y, X) — ki{Apx X, X) = 0.
Using (4) in the above equation, we obtain (6k; — k_1)<B (X, X),B(X,Y)) = 0. For 6k; # k1, we get
(B(X,X),B(X,Y)) =0. (22)
Then [15, Lemma 1] implies that submanifold M is isotropic space. [

In the sequel, we are going to obtain a characterization of Riemannian submanifolds by imposing a
geometric condition in terms of slant helices.

Theorem 3.4. Let M (dim M 23) be a connected submanifold of a Riemannian manifold M and c be Frenet curve
which is not a general helix. If, for 6ky # ki and ki’ # 0, a slant helix with curvatures ky > 0 and ky # 0 in M is a
slant helix with curvatures ky > 0 and ky # 0 in M, then M is a totally geodesic submanifold in M.
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Proof. We suppose that ¢ = c(s) is a slant helix curve with curvatures k; and k; # 0. Then, we have (20). If
we take the normal part of (20), we obtain

0 = 4B(X,V3X) +5(VxB)(X, VxX) + 3B(VxX, VxX) — B(X, Apx.x)X)
+(VAB)(X, X) + (Vy,xB)(X, X) — 2k'B(X, Y) — 2k1B(X, VxY)
—ki(VxB)(X,Y) — K1B(VxX,Y) — KB(X, X)

and

0 = KB(X X)-KB(XY)-kkB(X Z)+5kVyB(X, Y) — 2kiB(Y, Y)
~B(X, Apxx0X) + (VAB)(X, X) + k1 VEB(X, X) — 2k B(Vy X, X)
—2k'B(X,Y) + 2k1k1 B(X, X) — 2k1k,B(X, Z) — k1 (VxB)(X, Y)
—kik1B(Y, Y) — KB(X, X). (23)

by virtue of (10). Changing Z into —Z in (23) and subtracting each other, we have
sz(X, Z)(k1 + 2](_1) =0.

For, k, # 0 and ky,k; > 0, then B(X, Z) = 0. Since B(X, Z) = 0 for orthonormal vector fields X and Z, then [14,
Lemma] implies that M is umbilical in M. Since M is umbilical, the equation (23) converts to

0 = KB(X,X)—-2k2B(Y,Y) - B(X, Agx,X) + (VAB)(X, X) + ky VEB(X, X) + 2k1k; B(X, X)
—k(VxB)(X,Y) — K1k B(Y, Y) — RB(X, X). (24)
Since M is umbilical, we have
(VxB)(X, Y) = VyB(X,Y) - B(VxX,Y) - B(X, VxY) = 0.
Then, the equation (24) converts to
0 = KB(X, X)-2k2B(Y,Y) - B(X, AgxxX) + (ViB)(X, X)
+k1VyB(X, X) + 2kik1B(X, X) — kiki B(Y, Y) — KB(X, X). (25)
Changing Y into —Y in (25) and subtracting each other, we arrive at
ViB(X,X)=VyH =0 (26)
which means that the mean curvature vector field is parallel. Then it follows that

(VxB)(X, X)

VEB(X, X) - B(VxX, X) — B(X, VxX)
—k1B(Y, X) - k1B(X,Y) = 0. 27)

From (6), we get

Vx(VxB)(X,X) = Vx((VxB)(X, X)) = (VyxB)(X, X) = (VxB)(VxX, X) - (VxB)(X, VxX)
= —VéXXB(X, X) + B(vaxx, X) + B(X, vaxx)
~V£B(VxX, X) + B(VX, X) + B(VxX, VxX)
~V%B(X, VxX) + B(X, V%X) + B(VxX, VxX)
= Vi B(X, X) + B(Vi,yX, X) + B(X, Vi, X)
—VyB(kiY, X) + B-EEX + K, Y + kikoZ, X) + B(ki Y, k1Y)
~VB(X, k1Y) + B(X, -I2X + kY + kik2Z) + B(kp Y, k1 Y)
(VZB)(X,X) = —kiViB(X,X)+kiB(VyX,X) + kiB(X, Vy X)
—2k1VxB(Y, X) — 2K2B(X, X) + 2K, B(X, Y) + 2kikaB(X, Z) + 2k3B(Y, Y).
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Since M is umbilical in M, we have B(VyX, X) = 0. Also using (26), we get
(V2B)(X, X) = —2k2B(X, X) + 2K2B(Y, Y) = 0. (28)

Considering (26), (27) and (28), normal part becomes
0 = KB(X X)-2kB(Y,Y) - B(X, ApxxX) + 2kikiB(X, X) — kik1B(Y, Y) — KB(X, X).
From (4) and (8), we conclude that
(—k3 = |IHI? + kik; — K)H = 0. (29)
On the other hand, by direct computations and using (10), we have
—(VxA)pxxX = =Vx(Apxx)X + kiApxx) Y.
Using this expansion in (21), we obtain
0 = (~ki(l +K2) + Kky — Kky + ki (2 + K2)Y + (=3K k1 + 21 kq + k1K) X
+(2K)ka + kikly — kiky — 2k1'K2)Z — 5ki Ao X — Vi (Apx)) X
—2A& pxxX * k1Agx v X.
The umbilical M, parallel H and (27) imply that
0 = (~ki(k2 +K2) + Kky — Kky + k1 (k2 + K2)Y + (=3K Ky + 2k1 Ky + k1K) X
+(2Ki ko + kik, — K1k — 2k1'K2)Z — Vx(Apx ) X (30)
Taking inner product both sides of (30) with Y, we obtain

(—k1 (K +13) + Kkt — Kk + k1(Kf + k3)) — (Vx(Apx.X), Y) = 0. (31)

Using (4), we can write
(ApxxX,Y) = (B(X, X), B(X,Y)) = 0.
By differentiating the last equation, we have
(Vx(ApxxX), Y) + (B(Apx )X, X), Y) + (Apx )X, —k1i X + ko Z) = 0.
For X, Y € x(M), B(Apx.x)X, X) € x(M*) and (B(ApxxX, X),Y) = 0 gives
(Vx(Apx0X), Y) = k| HII*.
Then, (31) converts to
—ki1 (k2 + K3) + Kky — Kky + K12 + K3) = kal|HIP. (32)
Taking inner product both sides of (30) with the vector X and arranging outcome, we have
-, 3k kik;

=5 o (33)

Similarly taking inner product both sides of (30) with the vector Z, we arrive at
2k} ka + ik, — kiky — 2k 'kp = 0.
Using (33) in the above equation, we obtain
3k, kik,
A
2 2k
ki(kikl — kjko) = ki (kikl — kiko).

Zkikz + klk’z - k_lké - 2(
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Since Frenet curve c is not general helix, k1k} # kiks, it is seen that
k=K. (34)

Substituting (34) in (32), we obtain K — K = ||H||*. Substituting the last equation in (29), we get KH = 0. Since
frenet curve c is slant helix, we conclude ];—11 = K If ki # 0, we obtain K # 0. Then H = 0. Thus M is a totally
geodesic submanifold in M. [

4. Circles and Slant helices in Riemannian Manifolds

In this section, it is shown that there is no isometric immersion that carries a circle in Riemannian
manifold M to the slant helix in another Riemannian manifold M. But when a slant helix in Riemannian
manifold M is a circle in another Riemannian manifold M along isometric immersion, the submanifold M
is a totally geodesic submanifold.

Theorem 4.1. Let M (dim M23) be a connected submanifold of a Riemannian manifold M and c be Frenet curve.
Provided that 6k, # ki and ky is non-constant, there is no immersion that carries a circle with curvature ky > 0in M
to the slant helix with curvatures ky > 0 and ky # 0 in M.

Proof. We assume that a circle with curvature k; # 0 in M is a slant helix in M. From the equation (1), we
have the following equation

ViX = -KBY. (35)
Since the curve c is a slant helix in M, it follows that
V3X =2k VxY +k VZY + K VxX

where K = kkz_2 - %% (’;—j)/ (ln(k_l2 + k_zz))l. From (2) and (3), third derivative is
V3X = VX +4B(X,V3X) - 5Apxv0X + 5(VxB)(X, VxX)
+3B(VxX, VxX) — (VxA)pxx)X — Apx,x)VxX — B(X, Apx,xX)

—2A G, mx0X + VXBYX X) + (Vy,xB)(X, X).

Substituting (35) in the above equation, we obtain

V3X = —IBVxX+4B(X, ViX) — 5Apx vy X + 5(VxB)(X, VxX) + 3B(VxX, VxX) — (VxA)pxxX

—Apxx)VxX = BX, Apx0X) = 245 550X + (VXB)(X, X) + (Vo,xB)(X, X). (36)

Since the curve c is a slant helix in M, it follows that
VX = 2k'VxY +2k'B(X,Y) + k1 V2xY + 2k B(X, VxY) — k1 Apx X
+K1(VxB)(X, Y) + k1B(VxX, Y) + KVxX + KB(X, X)
Substituting the last equation in (36), we obtain
0 = —KVxX+4B(X, V3X) - 5ApxvyoX +5(VxB)(X, VxX)
+3B(VxX, VxX) — (VxA)pxx)X — Apx.x)VxX — B(X, Apx,x)X)
“2A g, peoX + (VXB)(X, X) + (Vy,xB)(X, X)
—2ki'VxY = 2ki'B(X, Y) — k1 V2xY — 2k B(X, VxY) + k1 Apx ) X
—k(VxB)(X, Y) — K1B(VxX, Y) — KVxX — RB(X, X). (37)
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Using (10) and taking the tangent part of (37), we have

(—ki - Kkl + k&k%)y + Zk_l’k1X - 5k1A3(X,y)X - (VXA)B(X,X)X - klAB(X,X)Y —2A X+ k_lAB(X,y)X =0. (38)

(VXB)(X,X)
Changing Y into -Y in (38) and subtracting each other, it follows that
(—k‘;j - Kk1 + k_lk%)Y = 5k1A3(X,y)X + klAB(X,X)Y - k_lAB(X,y)X.
Taking the inner product with the unit vector field X, we have
5k1(Apx X, X) + ki{Apx.x Y, X) — ki{ApxnX, X) = 0.
Using (4) in the above equation, we obtain (6k; — k1)(B(X, X), B(X, Y)) = 0. For 6k; # ki, we get
(B(X, X), B(X,Y)) = 0. (39)
Then submanifold M is isotropic space. Taking the normal part of (37), we obtain
0 = KBX X)+5kV xB(X,Y) - 2k5B(Y, Y) - B(X, Apx,)X)
+(VZB)(X, X) + ky VEB(X, X) — 2k, B(Vy X, X)
—2ky'B(X, Y) + 2k1kiB(X, X) — k1(VxB)(X, Y) — k1ky B(Y, Y) — KB(X, X) (40)
by virtue of (9). Considering
(VAZB)(X,X) = VH(VxB)(X, X)) - (Vv,xB)(X, X) = (VxB)(VxX, X) - (VxB)(X, VxX),
(40) convert to
0 = KB(X X)+5kVxB(X,Y) - 2kB(Y,Y) — B(X, Apxxx)X)
+Vx((VxB)(X, X)) = (Vy,xB)(X, X) = 2(VxB)(VxX, X)
+k1VEB(X, X) — 2k1B(VyX, X) — 2k1 B(X, Y) + 2k1k1 B(X, X)
—k1(VxB)(X, Y) ~ kikiB(Y, Y) = KB(X, X). (41)

Changing X into -X in (41) and subtracting each other, we have
—4k'B(X,Y) =0 = k'B(X,Y) = 0.

Provided that k; is non-constant, B(X, Y) = 0. Taking into account (39) and B(X, Y) = 0, then M is umbilical
in M. Since M is umbilical, the equation (40) converts to

0 = KBXX)-28B(Y,Y) - B(X, ApxxX) + (VXB)(X, X)
+k1VEB(X, X) + 2kiki B(X, X) — kikiB(Y, Y) — KB(X, X). (42)

Changing Y into —Y in (42) and subtracting each other, we arrive at

VEB(X, X) = VEH = 0

which means that the mean curvature vector field is parallel. Then it follows that (ng)(X, X) = 0 and
(VAB)(X, X) = 0. Then, the normal part becomes

KGB(X, X) — 2k5B(Y, Y) — B(X, Apx,x0X) + 2kikiB(X, X) — kikiB(Y, Y) — KB(X, X) = 0.

From (4) and (8), we conclude that
(—i3 = IHI* + k1ky — K)H = 0.
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The umbilical M, parallel H and (7) imply that, (38) arrive at
(—k3 — Rky + ki)Y + 26,k X — Vx(Apx )X = 0. 43
Taking inner product both sides of (43) with X, we obtain
2k k1 = (Vx(Apx ) X), X) = 0. (44)
Using (4), we can write
(Apxx) X, X) = (B(X, X), B(X, X))

and by differentiating the last equation, we have (Vx(Apx x)X), X) = 0. Then, (44) converts to 2k'ky = 0.
In the last equation, it is either k; = 0 or k' = 0. If ky = 0, the curve in the manifold cannot be a circle. If
k' = 0, M cannot be umbilical. Thus, there is a contradiction and the proof is completed. [

Theorem 4.2. Let M (dim M=3) be a connected submanifold of a Riemannian manifold M and c be Frenet curve. If
a slant helix for ky # 0 and ko # 0 in M is a circle with curvatures ky > 0 in M, then ky and ky are constants. As a
result, the submanifold M is a totally geodesic in M.

Proof. We assume that a slant helix in M is a circle in M. From the equation (11), we have the following
equation

V¥X = 2K VxY +k V%Y + KVxX (45)
K

7 ’ ’ -
where K = T %% (%) (ln(k% + k%)) . Since the curve c is a circle in M, it follows that

V3X = ki "VxX. (46)
Using (2), (3), (45) and (46), we obtain
0 = 2ki'VxY +kVAY + KVxX + 4B(X, V% X) — 5Apx vy X
+5(VxB)(X, VxX) + 3B(VxX, VxX) — (VxA)pxxX (47)
—ApxxVxX = B(X, Apx 0 X) = 245 5yxx0X + (F%(B)(X, X)
+(VyxB)(X, X) + ki VxX + ki *B(X, X).
Using (10) and taking the tangent part of (47), we have
0 = =3ki'kiX+ (—ki(k] + k3) + Kky + I k)Y + 2k ky + kik})Z — 5k1Apix,v) X
—(VxA)px X —kiAsxx)Y = 24, pyx X (48)
Changing Y into —Y in the last equation and subtracting each other, it follows that

(—k1 (k% + k%) + Kk1 + k_lzkl)Y = 5k1AB(X/y)X + klAB(X,X)Y-
Taking the inner product with the unit vector field X, we have

5ki{Apx X, X) + ki{Apxx)Y, X) = 0.
Using (4) in the above equation, we obtain 6k;(B(X, X), B(X,Y)) = 0. For k; # 0, we get

(B(X, X), B(X,Y)) = 0. (49)
Then submanifold M is isotropic space. Taking the normal part of (47), we obtain

0 = KB(X X)-KB(XY)-kkB(X Z)+5kVyB(X,Y) — 2k3B(Y, Y)

—B(X, Apx x)X) + (5@8)(& X) + ki VyB(X, X) — 2k B(Vy X, X) + k_lzB(X, X). (50)
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Changing Z into —Z in (50) and subtracting each other, we have —2k1k;B(X, Z) = 0. For, k; # 0 and k, # 0,
then B(X, Z) = 0. Taking into account (49) and B(X, Z) = 0, then M is umbilical in M. Since M is umbilical,
the equation (50) converts to

K2B(X, X) — 2K2B(Y, Y) — B(X, Apx.0X) + (VAB)(X, X) + ki VEB(X, X) + ki B(X, X) = 0. (51)
Changing Y into —Y in (51) andsubtracting each other, we arrive at
VyB(X,X) =VyH =0

which means that the mean curvature vector field is parallel. Then it follows that (FﬁXB)(X, X) = 0 and
(VAB)(X, X) = 0. Then, the normal part becomes

I2B(X, X) — 2K2B(Y,Y) — B(X, Apx,xX) + k1 B(X, X) = 0.
From (4) and (8), we conclude that

(= = IHIP + k*)H = 0.
The umbilical M, parallel H and (7) imply that

—3k1’k1X + (—kl(k% + k%) + Kk1 + k_12k1)Y + (Zkllkz + klk,z)Z - VX(AB(X,X))X =0. (52)

Taking inner product both sides of (52) with X, we obtain
—3k1"k1 — (Vx(Apx,x)X, X) = 0. (53)

Using (4), we can write (Apxx)X, X) = (B(X, X), B(X, X)) and by differentiating the last equation, we have
(Vx(ApxxX), X) = 0. Then, (53) converts to —3k;'k; = 0. Thus, k; is constant. Taking inner product both
sides of (52) with the vector Y and arranging outcome, we have

B -K+K+k = |H| (54)

Similarly taking inner product both sides of (52) with the vector Z, we arrive at
Zkikz + klk,z =0.

Since k; is constant, k; is constant. Thus, K is zero. Using (54) in (52), we obtain k%H = 0. Since k, # 0, we
have H = 0. Thus M is a totally geodesic submanifold in M. [
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