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Abstract. In this paper, we first define new generalization for Gaussian polynomials {GW,(x)},»0 and then
we obtain the Binet’s formula to find the n" general term of generalized Gaussian polynomials {GW,,(x)},s0.
After that, the ordinary generating functions and the explicit formulas of generalized Gaussian polyno-
mials and (p, g)-Fibonacci-like numbers are obtained. Considering the sequence of generalized Gaussian
polynomials, we give Binet’s formulas, explicit formulas and ordinary generating functions of Gaussian
Pell and Gaussian Pell Lucas polynomials, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polyno-
mials, Gaussian Fibonacci and Gaussian Lucas polynomials. Also, we present and prove certain ordinary
generating functions for the products of (p, )-Fibonacci-like numbers with these Gaussian polynomials and
the products of (p, g)-Fibonacci-like numbers with Gaussian Fibonacci numbers, Gaussian Lucas numbers,

Gaussian Jacobsthal numbers, Gaussian Jacobsthal Lucas numbers, Gaussian Pell numbers and Gaussian
Pell Lucas numbers.

1. Introduction and preliminaries

In mathematics, orthogonal polynomials consist of polynomials such that any two different polynomials
in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal
polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre
polynomials, the Jacobi polynomials together with their special cases the Gegenbauer polynomials, the
Chebyshev polynomials, and the Legendre polynomials, cf. [11, 12]. Recent works including the symmetric
properties of some known special polynomials, e.g., Bernoulli polynomials, Euler polynomials, Genocchi
polynomials and others, have been extensively investigated. For details (see [3, 24]).

The theory of derivatives and integrals of arbitrary real or complex order that is well know as fractional
calculus came to the fore in the past decades. The paramount importance of this topic lied in the fact that
its definite and prevalent applications were extended to describe several phenomena in different fields of
applied science and engineering.

Fractional calculus is characterized by the presence of several different fractional defnitions. All of
them include integral operators with different regularity properties. Among the well-known definitions
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that are widely employed in the context of scientific research and modelings, we distinguish the follow ing
Riemann-Liouville’s, Caputo’s, Griinwald-Letnikov’s, Hadamard definitions, ect.

Many problems are modelled by FDEs [16, 21]. Obtaining exact solutions for FDEs is not an easy task.
Therefore, it is crucial to use numerical and analytical methods to attain approximate solutions for these
equations. Spectral meth ods are among the most significant methods that are applied to solve FDEs since
they enable to attain global solutions that are characterized by quick con vergence. For example, Multi-term
fractional differential equations have been investigated in [2] using the collocation approach based on using
GFPs. In [6, 7], the tau algorithm, which is based on using GFPs, has been used to evaluate a coupled
system of Caputo fractional differential equations and solving homo geneous boundary value problem of
fractional B-T differential equation. The author also in [38] has introduced new operational matrices of
fractional deriva tives of Fermat and generalized Fibonacci polynomials to treat some types of fractional
differential equation.

Hussain et al. [20] introduced a family of the Daftardar-Jeffery polynomials are incorporated in the
homotopy of the optimal homotopy asymptotic method (OHAM) for solving the generalized Hirota-
Satsuma coupled system of Korteweg-de Vries equations. In 2012, Chu et al. [14] defined the second
dual form of the Hamy symmetric function H,(x, r), the purpose of this travail is to prove that H;;(x, r) is
Schur concave, and Schur multiplicatively and harmonic convex in R}, and presented some applications
in inequalities. Chu et al. [15], by using the symmetric functions concept, they presented results about
that both F,(x, r) and ¢,(x, ) are Schur multiplicative and harmonic convexities of the complete symmetric
function.

There has been much work done in the study of bifurcation and chaos in some well-known generating
functions; however, the bifurcation and chaotic behavior of generating functions associated with Chebyshev
polynomials have not been thoroughly investigated. In fact, there are many distinct families of polynomials
known as Chebyshev polynomials which can be applied in approximation theory, quadrature rules, etc.
[12,13]. The complex representation of these polynomials allows the derivation of many identities involving
special generating functions of exponential, bilinear, and mixed type [10, 11]. It should be noted that
most of the developed chaotic functions have been applied to generate pseudo-random noise generators
(PRNG). Accordingly, chaos maps were implemented using both digital and analog electronics. Digital
implementations consist of approximating the chaotic response of a system by solving ordinary differential
equations [23]. In 2021, Louzzani et.al [23] looked for a novel chaos based generating function of the
Chebyshev polynomials and its applications in image encryption.

For p and q positive real numbers, the (p, q) -Fibonacci-like numbers {S; ; },>0 can be defined as:

Span = PSpagn-1+qSpgn-2, forn > 2,

with the initial conditions S, ;0 =2 and S, ;1 = 2p (see [35] ). Special cases of (p, q)-Fibonacci-like numbers
are k -Fibonacci-like numbers {Si1 4},50 = {Sknluso = {2, 2k, 2k + 2,2k + 4k, 2k* + 6k* + 2,2k° + 8k + 6k, .. .}
and Fibonacci-like numbers {S111},50 = {Sulus0 = {2,2,4,6,10,16,26, ...} (for more information of these
numbers see the papers [26, 34]). The well-known Binet’s formula for (p, )-Fibonacci-like numbers is given

by

tn+1 _ tn+1
Span =2 : =,
w th—t
where
PP Y PP Y
H=——andt) = ——,
2 2
are the roots of characteristic equation 2 — pt — q = 0. Then, we have: t; +t, = p, ith = —gand t; —t; =

VP2 +44.
In literature, there have been so many studies of the sequences of Gaussian numbers. A Gaussian
number z is a complex number whose real and imaginary parts are both integers, i.e., z =a+ib,a, b € Z.
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The set of these numbers is denoted by Z[i]. Gaussian numbers were investigated in 1832 by Gauss. In
1963, Horadam [19] examined Fibonacci numbers on the complex plane and established some interesting
properties about them. Then, Jordan in [22] studied on Gaussian Fibonacci and Gaussian Lucas numbers.
In 2013, the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas numbers are defined and studied by Asci
and Gurel in [4]. Next, Halici and Oz [18] introduced Gaussian Pell and Gaussian Pell Lucas numbers.
In the same work, authors (Halici and Oz) gave ordinary generating function, Binet’s formula and some
important identities involving the Gaussian Pell and Gaussian Pell Lucas numbers. In the Table 1, we give
the recurrence relations and ordinary generating functions of these Gaussian numbers.

Table 1: Recurrence relations and generating functions of some Gaussian numbers.

Gaussian numbers Recurrence relation Ordinary generating function g(z)
. . . GFy=1i, GF; =1 i+(1-i)z
Gaussian Fibonacci GF, GE, = GFy1 + GF,yp, 11> 2 E——
. GLy=2-i,GL1=1+2i 2-i+@Bi-1)z
Gaussian Lucas GL,, { GL, = GLy1 +GL,», n>2 T
= — = ] 2 -1
Gaussian Jacobsthal GJ, Go G] 1=1 LZ)ZZ
G]n—G],,1+2G],, 2, n2>2 2-2z—-4z
Gaussian Jacobsthal Lucas Gj, Clo=2-3 G] =142 4-itGi-2)z 22) =
G],,—G]n1+ZG]n o, N >2 2-2z-4z
. GPy =i, GP; =1 i+(1-2i)z
Gaussian Pell GP,, GPn = 0GPy 1+ GPyy 132 T2
. GQop=2-2i, GQ1=2+2i 2-2i+(6i—2)z
Gaussian Pell Lucas GQy, { GOy = 2GQy 1 + COpa, 122 7

In [5], the authors defined the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials. They
proved generating function, Binet’s formula and explicit formula of these polynomials, and studied some
properties of them by using the matrix methods. After that, Yadav presented the generalizations of Gaussian
Jacobsthal and Gaussian Jacobsthal Lucas polynomials in [36]. In 2018, Halici and Oz introduced the
Gaussian Pell polynomials [17]. The year after, Yagmur in [37] defined the Gaussian Pell Lucas polynomials
and proved some properties of them.

In the rest, we introduce certain definitions and results of the symmetric functions. (For more details,
please see [9, 29, 31, 32]).

Definition 1.1. [25] For any natural numbers k and n, the complete homogeneous symmetric function of degree k in

n variables ay,ay, . . ., ay, is defined by:
he(ay,az,...,a,) = Z aja;y ...ay, withiy, i, ..., i, > 0.
i1 +ip+...+1,=k

Remark 1.2. Set hy (a1, az,...,a,) = 1, by usual convention. For k < 0, we sethy (a1, az, . ..

7 aﬂ) = 0

Definition 1.3. [1, 33] Let A and P be any two alphabets. We define S,(A — P) by the following form:

Fgg(l pz)

_pe

Zs (A=-P2" =, 1)
aeA

with the condition S,(A — P) =0 for n < 0.
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Equation (1) can be rewritten in the following form:

i Su(A-P)" = (i Su(A)z" | X [i sn(—P)z"],
n=0 n=0 n=0

where

Su(A=P) =) Su i(=P)S|(A).
j=0

Definition 1.4. [28] Let n be positive integer and A = {ay,ay} an alphabet. Then, the n' symmetric function
Su(ar + ap) is defined by:
n+l _ 61"+1
- 4 2

Su(d) = Sylar +ay) = L2
with

So(A) = Solm+a)=1,

51(A)

S2A) = Sym +ap) =a? +aay + a3,

Si(ay +az) = a; +ay,

The structure of this paper is arranged in the following way: The next section is devoted to defining
the generalized Gaussian polynomials sequence. In particular, Gaussian Jacobsthal polynomials, Gaussian
Jacobsthal Lucas polynomials, Gaussian Pell polynomials, Gaussian Pell Lucas polynomials, Gaussian
Fibonacci polynomials and Gaussian Lucas polynomials are defined. In the rest of section 2, we give
the Binet’s formula for generalized Gaussian polynomials, and we present the generating functions of
generalized Gaussian polynomials and (p, g)-Fibonacci-like numbers. In section 3, we calculate certain novel
ordinary generating functions of the products for (p, q)-Fibonacci-like numbers with Gaussian numbers.
By utilizing the symmetric functions, the new generating functions of the products of (p, q) -Fibonacci-like
numbers with Gaussian polynomials are presented in section 4.

Notation: In the rest of this paper, the (p,q) -Fibonacci-like numbers, k-Fibonacci-like numbers and
Fibonacci-like numbers will be denoted by 1, ;.1, I » and I, instead of Sy, Sk,» and S,, respectively, because
the symmetric function is denoted by S, (A) .

2. Main results

Now, we introduce the generalized Gaussian polynomials sequence and we obtain the Binet’s formula
of them. Also, we give the ordinary generating functions and explicit formulas of generalized Gaussian
polynomials and (p, g)-Fibonacci-like numbers.

2.1. The generalized Gaussian polynomials
The new generalization of Gaussian polynomials is given in the following definition.

Definition 2.1. The generalized Gaussian polynomials sequence {GW,, (x)},,s¢ is given by the following recurrence
relation:

GW, (x) =(ax+b)GW,_1 (x) + (cx +d) GW,,» (x), n > 2, (2)

with GWy (x) = Bx + a, GW; (x) = Ax + yand {a,b,c,d,a, B, A, y} € C.
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The following corollary gives some special cases of the Definition 2.1.
Corollary 2.2. Particular cases of generalized Gaussian polynomials {GW,, (x)},,5¢ are:

e Casel: If wetakea=d=8=1=0,b=y=1,c=2and a = £, then we get the Gaussian Jacobsthal
polynomials, known as:

{ GJo(x) = £,Gli(x) =1
GJu(x) = Glu1(x) + 2xGJu(x), n > 2 7

or
{(Gln(yso =14, 1, 1+ xi, 2x+ 1 +ix, dx+1+ix2x+1),...}.

o Case 2: If wetakea=d==0b=y=1c=2,a=2- é and A = 2i, then we get the Gaussian
Jacobsthal Lucas polynomials, known as:
Gjo(x) =2 - £,Gji(x) = 1 + 2ix
Gjn(x) = Gjp-1(x) + 2xGjp2(x), n 22 7

or
{Gjn(x)}nzoz{Z—é, 142xi, dx+1+ix, 6x+1+xi(dx+1), 8x2+8x+1+xi(6x+1),...}.

o Case 3: If wetakeb=c==A1=0,d =y =1,a =2and a = i, then we get the Gaussian Pell
polynomials, known as:

GPy(x) =i,GP1(x) =1
GP,(x) = 2xGP,_1(x) + GP,,»(x), n > 2 ’

or
{GP ()} s0 = {i, 1, 2x +1, 4x% + 1+ 2ix, 8x° + 4x + i(4x2 + 1), o

o Case4: If wetakeb=c=0,d=1,a=a=A=2,=-2iand y = 2i, then we get the Gaussian Pell
Lucas polynomials, known as:

GQo (x) =2 —2xi,GQ1 (x) =2x +2i
GQu(x) = 2xGQy-1(x) + GQu2(x), n 22 7

or
(GQu ()} = 12 = 2ix, 20 +2i, 402 + 2 +2xi, 8% + 6 +2i (202 + 1), 16x* + 1637 +2 + 2ix (432 +3), ...

e Case5: If wetakeb=c=f=A1=0,a =1 anda =d =y = 1, then we get the Gaussian Fibonacci
polynomials, known as:

GFO (X) = i, GF1 (X) =1
GF,(x) = xGF,_1(x) + GF,,2(x), n =2 ’

or
(GFy (so =i, 1, x+i, 2+ 1+ix, ¥ +20+i(x® +1),..).
o Case6: If wetakeb=c=0,d=a=A=1,a =2, =—iand y = 2i, then we get the Gaussian Lucas

polynomials, known as:

GLy(x) =2—xi,GLy (x) = x + 2i
GL,(x) = xGL,-1(x) + GL,—5(x), n>2 ’

or
{GL, (0)},50 = {2 —ix, x +2i, x> + 2+ xi, x3+3x+i(x2+2), x4+4x2+2+ix(x2+3),...}.
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Recurrence relationship (2) involve the characteristic equation:
2 —(ax +b)t—(cx+d) =0,

which has two characteristic roots:

ax + b + Va2x2 + 2abx + b2 + 4dcx + 4d ax + b — Va2x2 + 2abx + b2 + 4dcx + 4d
1= > and t, = 2 ’

characteristic roots verify the properties:

t1+th=ax+b, tith = —(cx+d) and t; — £, = Va2x2 + 2abx + b2 + 4ex + 4d.
The next theorem gives the Binet’s formula for generalized Gaussian polynomials.

Theorem 2.3. The n'" term of the generalized Gaussian polynomials is given by:

At — Bt!

Y= 3=

, (3)
with A=y +Ax—(a+px)tryand B =y + Ax — (a + px) t1.

Proof. From the theory of difference equation we know the general term of generalized Gaussian polyno-
mials can be expressed in the following form:

GW, (X) = Clt;] + Czt;,

where C; and C; are the coefficients. Plugging the general solution in the initial conditions {GW (x) , GW; (x)}
gives the system:

C1+C2=ﬁx+0¢
C1t1+C2t2:/\x+)/ )

By these equalities:

Ci = y+/\x—(a+ﬁx)tz A

1= h—t ~ h-f
C y+)\x—(a+ﬁx)t1 B
2 = —_-—— —_—

b=t Thh
Therefore, we get:
At — Bt}
GW, (%) = ———
1 =1
This completes the proof. [

The special cases of the Binet’s formula for generalized Gaussian polynomials are listed in the Table 2.
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Table 2: Binet’s formulas for some Gaussian polynomials

a|b|cl|d o B | ¥ | A | Roots (t; and tp) Binet’s formula (GW,, (x))
; +\VBrtl B (ht-ht
o120 & | o [1]0]| #y=ledet Gl (x) = ;—5(2;_;2)
01 /2/0]2=4] 0 |1 |2i| hp=22 | Gj(x)=t+8-5(bt+ht))
210l0(1] i 0 | 1|0 |ha=xxVx2+1| GP,()= 1 z(tzt" “t")
200fof1] 2 |-2i|2i|2[tpo=xxV2+1]GQ,(x) =t +t5—i(t + 1,1t}
1lofof1] i |0 [1|0]| py=xuisd GF, (x) = i —i( 2 “*")
1]0]0[1| 2 | =i |2i|1] tp=223 | GLE=+8-i(ut+nut)

2.2. The ordinary generating functions and explicit formulas of generalized Gaussian polynomials and (p,q)-
Fibonacci-like numbers

The following proposition is one of the key tools of the proof of our main results. It has been proved in
[12].

Proposition 2.4. Given an alphabet A = {a1, —ay}, then we have:

1

Sy -m])z" = . 4
X Sulen + e = s @)
The Eq. (5) is a special case of Proposition 2.4.
i Su-1ar + [-m)2" = - 5)
o 1 T S )z - ma?
Now, we will give the generating function for the generalized Gaussian polynomials.
Choosing a1 and a, such that alal_a:z: :C;:J:_-;b and substituting in (4) and (5), we obtain:
is (a1 + [~a])2" = ! (6)
o e 2 T Cax+b)z— (cx +d) 22
i Sua(@ + [-m))2" = = %
o I 2T C(ax+ bz — (cx +d) 22
respectively.

Multiplying the equation (6) by (« + fx) and adding it to the equation obtained by (7) multiplied by
()/ —ba+(A—aa-bf)x— aﬁxz), then we obtain:

7

o (a + Bx) S,(a1 + [-a2]) ; a+ﬁx+(y ba + (A —aa - bﬁ)x—aﬁx)
Z‘( +(V—b““‘(/\_m—bﬁ)X—ﬂﬁxz)Sn—l(ﬂl+[ az]) ) 1—(ax+b)z—(cx +d) 22

and we have the following theorem.
Theorem 2.5. For n € IN, the new ordinary generating function of generalized Gaussian polynomials is given by:

0 } a+ﬁx+()/—ba+(/\—aa—bﬁ)x—aﬁx2>z
;‘)GW" wz" = 1—(ax+b)z— (cx +d) 22 ’ ®)
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with
GW,, (x) = (a + Bx) Su(a1 + [-a2]) + ()/ —ba+ (A —aa—-bp)x - aﬁxz) Su-1(a + [-a2]).

Proof. Let g(x, z) be the ordinary generating function for the sequence of generalized Gaussian polynomials,
then:

g(x,z) = Z GW,, (x)z".
n=0
By using the initial values GWj (x) and GW; (x), we obtain:

g(x,z) = GWp (x) + GW1 (x)z + Z GW, (x)z"

n=2

=GWy(x) + GW; (x)z + Z ((ax + b)) GW,,_1 (x) + (cx + d) GW,,_» (x)) 2"
n=2

=GWy(x) +GW;(x)z+ (ax+ D)z Z GW,, (x) 2" + (cx + d) 2* Z GW, (x)z"
n=1 n=0
= GWy (x) + (GW1 (x) — (ax + b)) GWy (x)) z
+ (ax +b)z Z GW, (x) 2" + (cx + d) 2* Z GW,, (x)z"
n=0 n=0

=a+px+ (7/ —ba+ (A —aa- bﬁ)x—aﬁxz)z + ((ax+ b)z + (cx + d)zz)g(x,z).
Hence, we obtain:
(1 —(ax+b)z - (cx+d)zz)g(x,z) =a+px+ (j/ —ba+ (A —aa- bﬁ)x—aﬁxz)z.

Therefore:

oz+,8x+()/—ba+()\—aa—bﬁ)x—aﬁx2)z

— Wn n =
g(x,2) é GWa (x) 2 1-(ax+b)z — (cx +d) z2
Thus, this completes the proof. [

e Byputtinga=d=p=A=0b=y=1c=2anda = % in the relationship (8), we can state the
following corollary.

Corollary 2.6. For n € N, the ordinary generating function of Gaussian Jacobsthal polynomials is given by:

(e8] . 2 _ B
n=0

with
i i
Gl (x) = 5Sulas + a2 + (1 _ E)sn_l(a1 + [~as)).

e Byputtinga=d=$=0,b=y=1,c=2,a=2-4and A = 2i in the relationship (8), we can state the
following corollary.
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Corollary 2.7. For n € IN, the ordinary generating function of Gaussian Jacobsthal Lucas polynomials is given by:

= 4—i+((Ax+1)i—2)z
n __
;G]n ()2 = 2 — 2z — 4xz2 ’ (19

with
Gjn (%) = (2 - %)s,,(a1 + [ao]) + ((2x + %)i— 1)5,1_1(011 + [~aa)).

e Byputtingb=c=p=A41=0,d =y =1,a=2and a =i in the relationship (8), we can state the
following corollary.

Corollary 2.8. For n € IN, the ordinary generating function of Gaussian Pell polynomials is given by:

Z GP, (x)Z" = M, with GP,, (x) = iS,(a1 + [-a2]) + (1 — 2ix) S,,—1 (a1 + [—a2]). 11
o 1-2xz—-z

e Byputtingb=c=0,d=1,a=a=A =2, =-2iand y = 2i in the relationship (8), we can state the
following corollary.
Corollary 2.9. For n € IN, the ordinary generating function of Gaussian Pell Lucas polynomials is given by:
2 - 2ix + (i (2 + 42%) - 2x) 2

1—2xz— 22

) GQu 2" = , (12)
n=0

with
GQu (x) = (2= 2ix) Sy + [-aa]) + (i (2 + 42%) = 2x) S, 1 (@1 + [-az)).

e Byputtingb =c=5=A1=0,a =i anda =d = y = 1, in the relationship (8), we can state the
following corollary.

Corollary 2.10. For n € IN, the ordinary generating function of Gaussian Fibonacci polynomials is given by:

(o9 . 1 _ .
Y GF, (2 = LZZ (13)
e 1—-xz—-2z

with
GF, (x) = iSy(a1 + [-a2]) + (1 —ix) Sp-1(a1 + [-a2)).

e Byputtingb=c=0,d=a=A=1,a=2,8=—iand y = 2i, in the relationship (8), we can state the
following corollary.

Corollary 2.11. For n € IN, the ordinary generating function of Gaussian Lucas polynomials is given by:

—ix+(i(x2+2)—x)z

1—xz—22

© 2
Z GL,(x)z" = , (14)
n=0

with

GLy () = (2= ix) Sy + [-aa]) + (i (2 + 2) = x) Sy (@1 + [-az)).
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Now, we will give the generating function for (p, q) -Fibonacci-like numbers.

By the substitution { m=m=p g, (4) and (5) we obtain:

apday =g
E"" Sulay + [ a])z”——1
n\#1 —U2 = .
— 1-pz—qz?

Multiplying the equation (15) by (2), we obtain:

2

25u(a + [-a2])2" = ——,
; 1-pz—gqz?

and we have the following theorem.

8196

(15)

Theorem 2.12. For n € N, the new ordinary generating function of (p, q) -Fibonacci-like numbers is given by:

. 2
ll’/‘%nzn =T 5 with lp,q,n = ZSn(gl + [—612]).
;6 1-pz-¢gz

(16)

Proof. The (p, q)-Fibonacci-like numbers can be considered as the coefficients of the formal power series:

(e8]

g(z) = Z LanZ".

n=0

Using the initial condition, we get:

9(z) = ,,q0+l,,qlz+Zle
n=2

[e9]

= lp,q,g + lp,q,lz + Z (plp,q,n—l + qlp,q,n—z) ik
n=2

o (e8]
n 2 n
= lpgo +lpgrz +pz Z Ipanz" +qz Z Ipgnz
n=1 n=0

=lpgo + (Iog1 = Plpqo) 2 + pz i Lyan?" + g2 i Lygn?"
)i
Hence, we obtain:
(1-pz-42%)g(2) =

Therefore:

. 2
9(2) ZZ‘ZM"Z T-pz—g22

Thus, this completes the proof. [

And we deduce the following theorem.
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Theorem 2.13. The explicit formula of (p, q)-Fibonacci-like numbers is:

L3] ,
n—j\ a2
Lyan :22( j] )p 2igi.
=0

Proof. The generating function for (p, g)-Fibonacci-like numbers is:

- 2
g(z) = Z lpgnZ"

:—_ _ 2_
s 1-pz-gz

Then, we get:

o0 o (L] .
LyonZ" = 2 T pr2igh |2,
L =120\ "

Comparing of the coefficients of z”, we deduce:

L] .
n-— ne2i i
lp,q,n=22( j])p g,
=0

Thus, this completes the proof. [

Theorem 2.14. The explicit formula of generalized Gaussian polynomials is given by:

L] ,
GW,, (x) = (o + Bx) Z ( " ]_ J )(ax +0)" Y (cx + d)
=0

L2

+(y—boc+(/\—aoc—bﬁ)x—aﬁx2) ( n—;’—l )(ax+b)"_2j_1(cx+d)j.

7=0

Proof. We have:

a+ﬁx+()/—boz+(/\—aa—bﬁ)x—aﬁx2>z
1—(ax+b)z—(cx+d)z2

i GW, (x)z" =
n=0

The result can be proved by the same method given in the Theorem 4, thus we omit the proof.

The special cases of Eq. (18) are listed in the Table 3.

8197

(17)

(18)
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Table 3: Explicit formulas for some Gaussian polynomials.

a|blcl|d a B |y | A Explicit formula
. Ll n—j-1 S AT
0[1]|2]0 5 0 |1]0 Gl,(x)= Y ( : )(2x)1+i Yy ( ; )21forl
j=0 J =0 ]
i ; ; L] w [ m=] j Lzl a [(n=j=1 Y, i
0Oj1(2|012-51] 0 1|2 G]”(x)zg'o”Tj j (2x) +1i EO e i 2/ x
el (n-j-1 n-2j-1 L2l -2 n-2j-2
200f0f1] i |0 |1]0| cnw=1L 1 Jeor iy 177 e
j= j=
13] _ -] _i_ .
200(o0f1] 2 |=2i|2i|2]|6Q.)= j:o"i—f( ”], J )(2x)”‘21+i Eo n_;ll( " ; 1 )(2x)"‘21‘1
L2l i , L2 iz ,
1lolol1] i | o |1]o0 GF,(x)= 3 (” ] 1)x”‘21‘1+i ¥ (” ] z)x"—2]—2
=0 J j=0 J
13] _ i 1 i ,
1lolol1] 2 | =ilail1| crw=y ") \w2igiy at 77771 w2
=0 " ] =0 " J

3. Ordinary generating functions of the products of (p, 4)-Fibonacci-like numbers with Gaussian num-
bers

This theorem is well-known from [27]. So we give them without proof.

Theorem 3.1. Given two alphabets A = (a1, 4y, a3, ..., ax} and E = {ej, e;}, we have: for all k € N and | € {0,1}.

S—Z(E) - e%_le;_lzz_l EO Sn-1+2 (_A) Sn(E)Zn

Y Si(A) S, ()" = —— - (19)
n=0 (Z Sn (=A) eTZ“)(Z S (=A) eZZ")
n=0 n=0
For A = {a1,a3}, E = {e1, ez} and [ € {0, 1} in the Theorem 3.1 we deduce the following lemmas.
Lemma 3.2. Given two alphabets E = {e1, e;} and A = {ay, a2}, then we have:
0 _ 2
Y S A)Su(B)2" = — ! ke : (20)
n=0 ( Z S,,(—A)e;’z”) ( Z Sn(—A)f?gZ”)
n=0 n=0
Lemma 3.3. Given two alphabets E = {e1, e2} and A = {ay, a2}, then we have:
© _ 2
Y SuA)S,a(E)e = R maen T er): @
n=0

( y Sn(—A)e’fz”) ( y S,,(—A)e;’z”)'
n=0 n=0

In this part, we now derive the new ordinary generating functions of the products of (p, q)-Fibonacci-
like numbers with Gaussian Fibonacci and Gaussian Lucas numbers, Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers, Gaussian Pell and Gaussian Pell Lucas numbers.

We consider the following sets:

A ={ai,—ay} and E = {e1, —e>} .
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By changing a, to (—a;) and e; to (—ez) in Egs. (20) and (21), it becomes
1 — aqapeqe52>

- (1 —me1z)(1 + aze12)(1 + arez)(1 — aze0z)”

Y, Sular +[=aD) Sy (er + [—es]) 2"
n=0

Y no_ (11 — @)z + maz(er — 62)22
ZO Sulm + [-aa)Sualer +[-eal)e" = g Bt

This case consists of three related parts. Firstly, the substitutions:

{al—azzp and{el—ezzl ’
aay =q e1ep =1
in the Egs. (22) and (23), we obtain:

1-gz2

Su(ar +[-a2]) Su (er + [-e2]) 2" = ,
,;3 1—pz—(p* +39)2% - pgz°> + g°z*

pz + gz*

Sn(ar + [-a2]) Sp-1 (e + [—e2]) 2" = .
HZ:;. 1—pz = (p* +39)z% - pqz* + g°z*

Therefore, we state the following theorems.

Theorem 3.4. For n € N, we have:

= . 2i+2p(1—i)z+29 (1 —2i) 2>
Z b GEnz" = 1-pz—(p? +39)22 — pgz® + g2z’

8199

(22)

(23)

(24)

(25)

(26)

which is the novel ordinary generating function of the product of (p, q)-Fibonacci-like numbers with Gaussian Fibonacci

numbers (lp,q,,, GFH).

Proof. Recall that, we have GF,, = iS,(e; + [—e2]) + (1 — i) Syu—1(e1 + [—e2]), (see [30]). Then, according Eq. (16)

we can get:

[1:

lp,q,nGFnZn = Z an(al + [_QZ]) (isn(el + [_62]) + (1 - 1) Sn—l(el + [_62])) Zn
n=0

I
o

n

o)

= ZiZ Sp(ar + [-a2])Su(er + [—ex])z"
n=0

+2(1-1i) Z Su(@ar + [-a2])Su-1(er + [—e2])2",

n=0

by using the relationships (24) and (25), we obtain:

0 ) Zi(l - qzz)
nZS B = a0 - pg +
2(1-1) (pz + qzz)
1—pz = (p* +39)2% — pgz° + g°z*
2i+2p(1—i)z+2g9 (1 — 2i) 2
T1- pz — (p% + 39)z% — pqz® + q2z*

Thus, this completes the proof. [
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Theorem 3.5. Let n € IN, the novel ordinary generating function of (lp,q,nGLn) is as follows:

_2Q2-i)+2pBi—1)z+2q(4i - 3)2

nz;s O = e v e g A 7

Proof. Recall that, we have I, = 25,(a1 + [-a2]) and GL, = (2 -1) Su(e1 + [—e2]) + (31 = 1) Sy—1(e1 + [—e2]),
(see [30]). We prove this result by the same method given in the Theorem 3.4. O

Corollary 3.6. Puttingp = kand q = 1 in the Eqgs. (26) and (27) gives the new ordinary generating functions of the
products of k-Fibonacci-like numbers with Gaussian Fibonacci and Gaussian Lucas numbers as follows:

= 2i+2k(1—1)z+2(1 - 2i) 22
I, ,GF,z" = ,
;k’ : 1—kz— (k> +3)z2 —kz3 + z*

- L 22— +2k(3i— 1)z +2(4i - 3) 22
Zlk'”GL”Z = 2 2 3. 4
— 1—kz—(k*+3)z2 —kz3 +z

By putting k = 1 in the Corollary 3.6, we obtain the Table 4.

Table 4: New ordinary generating functions of the products of Fibonacci-like numbers with Gaussian Fibonacci and Gaussian Lucas

numbers.
Coefficient of z" Ordinary generating function
2i+2(1-i)z+2(1-2i)2?
I,GF, 7 17 Paia
_ B . _ . _ 2
1.GL, 22-9)+2@Bi-1)z+24i-3)z
1—2z—-422 23+ 2
Secondly, the substitutions:
{ul—azzp and{el—ezzl ’
a1ay =q e1ep =2
in the Egs. (22) and (23), we get:
Y (a1 + [-aaDSuler + [l L2 (28)
nld1 +|=a2f)onler +|—€2])2" = ,
= 1—pz— (2p? + 59)z% — 2pqz3 + 4q%z*
ism + [~aD)Su (e + [—ea])2" pz g2 (29)
n(@1 + [ =a2[)5p-1(e1 + |-€2])z" = :
— 1—pz— (2p? + 59)z% — 2pqz3 + 4q%z*

Thus, we derive the following results.

Theorem 3.7. For n € IN, we have:

i+p(2-i)z+q(2-3i)z?

lp,q,nG]nZn = ’ (30)
é 1—pz— (2p? + 59)z% — 2pqz® + 4q%z*

which represents the novel ordinary generating function of the product of (p, q)-Fibonacci-like numbers with Gaussian
Jacobsthal numbers (lp,q,nG]n).
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Proof. By [30] we have GJ, = £Su(e1 + [—e2]) + (1 - %)Sn_l(el + [—e2]). Then, according Eq. (16) we can see
that:

Y hanGl = Y 25,(er + [axD (55,0 + L-ex) + (1= )3, ier + 1-ea)) 2

n=0 n

=0
=i )" Su(ar + [~mDSu(er + [-ea))2"
n=0

o)

+(2-1) Z Su(ar + [~a2])S,-1(e1 + [-ea])z".
n=0

According to the relationships (28) and (29), we obtain:

° ) i (1 - 2q22)
;) hanGlu" = 1—pz - (2p? + 59)z% — 2pqz3 + 4q°z*
(2-1) (pz + qzz)
1—pz — (2p? + 5q)z> — 2pqz3 + 44°2z*
i+p(2-i)z+q(2-3i)z?
T1- pz — (2p? + 59)z2 — 2pqz® + 4q2z*

This completes the proof. [J

Theorem 3.8. For any natural number n, the novel ordinary generating function of (lp,,mG jn) is found as:

- , 4—i+p(5i—-2)z+q(7i —10) 22
Y hyguGind" = P d (31)

et 1—pz— (2p? + 59)z% — 2pqz3 + 4q%2*
Proof. We have I, = 25,(a1 +[~a2]) and Gj, = (2= §) Suler + [—ea]) + (% — 1) S,a(e1 +[—e2]), (see [30]). The
result can be proved by the same method given in the Theorem 3.7. [

Corollary 3.9. Taking p = k and q = 1 in the Egs. (30) and (31) gives the new ordinary generating functions of the
products of k-Fibonacci-like numbers with Gaussian Jacobsthal and Gaussian Jacobsthal Lucas numbers as follows:

- i+kQ—i)z+(2-3i)z?
LGl = ,
; G = T ok By — 2k 1 4

il Gi gl = 4—i+k(5i—2)z+ (7i—10) 2
Ly S T~ 2R + 5)2 — 2k + 42

By putting k = 1 in the Corollary 3.9, we obtain the Table 5.
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Table 5: New ordinary generating functions of the products of Fibonacci-like numbers with Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers.

Coefficient of z" | Ordinary generating function
i+Q2-i)z+(2-30)z22
WG 1—z—722 273 + 474
4—i+(5i—2)z+(7i — 10) 2%
1—z—722 273 + 47*

1,Gijn

Thirdly, the substitutions:

{ al—ag_:p and { 61—62_22 ’
aiay =q e1ep =1

in the Egs. (22) and (23). Then one has:

- 1-gz2
Su(ay + [—a2])Su(er + [—32])Zn = ) (32)
é 1-2pz — (p* + 6q)z> — 2pqz3 + °z*
i“ +[-a)Sua(er + [ea])2" bz 207 (33)
nld1 + [—az2[)on-1(e1 + |—€2])z" = _
= 1—2pz— (P + 69)22 — 2p423 + °2*

Therefore, we state the following theorems.
Theorem 3.10. For n € IN, we have:
2i+2p (1 —2i)z +2q (2 - 5i) z2

L, nGPyz" = , 4
panGPnz 1—2pz — (p? + 69)z2 — 2pgz® + g2z* G4

gk

=
Il
fe=}

which is the novel ordinary generating function of the product of (p, q)-Fibonacci-like numbers with Gaussian Pell
numbers (lp,q,,,GPn).

Proof. By [30], we have GP,, = iS,(e1 + [—e2]) + (1 — 2i) Sy—1(e1 + [—e2]). Then, according Eq. (16) we can see
that:

gk
gk

lygnGPuz" = ) 2S,(ay + [-az]) (iSu(er + [—e2]) + (1 = 20) S;—1(e1 + [—e2])) 2"

=
1l

fe=}
1l

[}

n

- 21'2 Sp(ar + [~a2])Su(er + [-e2])2"
n=0

+2(1-20) ) Sular + [~a])S,1(e1 + [-ea))2"

=0
2i (1 - qzz)
1-2pz — (p? + 6q)z% — 2pqz3 + q*z*
2(1 -2i) (pz + 2922
1o 2pz — (p? + 6q)z% — 2pq23 + g2z

after necessary calculations we get:

= . 2i+2p(1-2i)z+2q(2—5i)z>
ler‘?r”GP”Z = 1=-2 2 2 3 24"
—2pz — (p* + 6q)z> — 2pqz3 + q°z

n=0

Thus, this completes the proof. [
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Theorem 3.11. Let n > 0, we have the novel ordinary generating function of (lp,q,,,GQn) as follows:

= A —i)+4pGi-1)z+4q(7i—3)22
Z lp,q,nGQnZ = P 1 (35)

= 1—2pz — (p? + 6q)z% — 2pq23 + g?z*
Proof. We know that:
lpgn = 25n(a1 + [-a2]) and GQy, = (2 = 2i) Sy(er + [—e2]) + (61 — 2) Sy1(e1 + [—e2]), (see [30]).
The proof is similar to the proof of the Theorem 3.10. [

Corollary 3.12. Tuking p = kand q = 1 in the Egs. (34) and (35) gives the new ordinary generating functions of the
products of k-Fibonacci-like numbers with Gaussian Pell and Gaussian Pell Lucas numbers as follows:

il CP." = 2i + 2k (1 — 2i)z + 2 (2 — 5i) 22
L T gkz — (K2 + 6)22 — 2k23 + 2

— L A - +4kBi-1)z+4(7i-3)2*
Zlk,nGQnZ = 2 2 3 4
e 1—2kz — (k* + 6)z2 — 2kz3 + z

By putting k = 1 in the Corollary 3.12, we obtain the Table 6.

Table 6: New ordinary generating functions of the products of Fibonacci-like numbers with Gaussian Pell and Gaussian Pell Lucas

numbers.
Coefficient of z" Ordinary generating function
2i+2(1-2))z+2(2 =502
P
- )46 T 447 =37
1,GO, 1-9)+4G@i-1)z+4(7i-3)z

1-27-722-0273+74

4. The novel ordinary generating functions of several products

Here, we introduce and prove our theorems. Also we calculate the novel ordinary generating functions
for the products of (p,q)-Fibonacci-like numbers with Gaussian Pell polynomials, Gaussian Pell Lucas
polynomials, Gaussian Jacobsthal polynomials, Gaussian Jacobsthal Lucas polynomials, Gaussian Fibonacci
polynomials and Gaussian Lucas polynomials.

Firstly, let us now consider the following conditions for Egs. (22) and (23):

{al—azzp and{el—ezzl
aay =q e1ep = 2x

Then it yields:
Y5 + D), (1 + [-ex) 2 = < L= 2 , (36)
— —pz — (2x (p? + 29) + 9)z% — 2pgxz3 + 4¢%x2z*
Y S+ [-a2DSus o1 + 222" = : ez — (37)
b —pz— (2x (p? + 29) + 9)z2 — 2pqxz3 + 44°x°z

Therefore, we state the following theorems.
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Theorem 4.1. Let n € IN, the novel ordinary generating function of (l,,,q,nG Tn (x)) is as follows:

- ] 2—1i 2-i(2x +1)) 22
le,q,nG]n(x)z”Z L 21)Z+q( 21(X+ g)z 2,24 (38)
o 1—pz— (2x(p? +2q) + 9)z% — 2pgxz3 + 49°x%z
Proof. By using the relationships (9) and (16), we obtain:
ilCU@ﬁ—i%WH+mM%@ﬁkdﬂﬁ—qsdﬁﬂﬁmp
n=0 e n=0 2™ 277
=i ) Su(@r + [~aD)Sa(er + [-ea)2”
=0
+(2-0) ) Sl + [~mD)Sua(er + [—eal)z"
n=0
i(l - quzz)
1 —pz— (2x(p? +29) + q)z% — 2pqxz3 + 4g>x2z*
(2-1) (pz + qzz)

1 pz — (2x (p? + 29) + 9)z% — 2pqxz3 + 4g7x2z*

B i+pR-0)z+gQ2-iQx+1))z?

1 —pz— (2x (p? +29) + q)z2 — 2pgxz® + 4g2x2z4

This completes the proof. [
Theorem 4.2. For any natural number n, the novel ordinary generating function of (lp,q,,,G Jn (x)) is found as:
- 4—i+p((@x+1)i—2)z+q@(i(6x+1)—8x —2)z?
LyanGin (x) 2" = (39)

;) 1—-pz—2x(p? +29) + 9)z2 — 2pqxz3 + 4¢>xz*

Proof. Since:

. i 1).
bpan = 250(a1 + [=aa]) and G (9 = (2= 3) Suler + [=eaD) + (2 + )= 1) Suma(er + e
We prove this result by the same method given in the Theorem 4.1. O

Corollary 4.3. Puttingp = kand q = 1 in the Eqs. (38) and (39) gives the new ordinary generating functions of the
products of k-Fibonacci-like numbers with Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials as follows:

i+k-1)z+@2-i(2x+1))2?
kz — (2x (k2 +2) + 1)z2 — 2kxz3 + 4x2z4’

Y Gl @2 = 5

n=0

. 4—i+k(@x+1)i-2)z+@G6x+1)-8x—-2)22
Zlk,nG]n (x)z" = ) 2 3 24
— 1—kz — (2x (kK* + 2) + 1)z% — 2kxz3 + 4x%z

By putting k = 1 in the Corollary 4.3, we obtain the Table 7.
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Table 7: New ordinary generating functions of the products of Fibonacci-like numbers with Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas polynomials.

Coefficient of z" Ordinary generating function
i+2-i)z+Q2-iQx+1)2?
1,GJ,
J () 1—z—(6x+ 1)z%2 — 2xz3 + 4x22*
4—i+(@x+1)i-2)z+(@{(6x+1)—8x—2)22
1—z—(6x + 1)z2 — 2xz3 + 4x%z*

[,Gjn (x)

Secondly, let us now consider the following conditions for Egs. (22) and (23):

{al_?zp and{el_?zzx .
a1ay = q e1ep =1

Then it gives:
is @1+ [-as]) Sy (e + [e2]) 2" s (40)
n \d1 —az]) on (€1 —€2 = ’
o 1—2pxz — (49x2 + p? + 29)z* — 2pqxz® + q2z*
S pz + 2qxz*
Su(a1 + [=a2])Su-1(er + [—e2])z" = : (41)
; 1—2pxz — (49x2 + p* + 29)z% — 2pgxz3 + g°z*

Therefore, we state the following theorems.
Theorem 4.4. Let n > 0, we have the novel ordinary generating function of (lp,q,nGPn (x)) as follows:

2i+2p (1 - 2ix)z + 29 (2x — i (422 + 1)) 22
lPr‘?/”GP” (x) 2= 1=-2 2 2 2 3 254" (42)
— 2pxz — (49x% + p? + 29)z> — 2pgxz3 + g°z

gk

Il
[}

n

Proof. By using the relationships (11) and (16), we obtain:

lyqnGPy (x) 2" = Z 25,(a1 + [—a2]) (iSu(er + [—e2]) + (1 — 2ix) Sy-1(ex + [—e2])) 2"
n=0

= 21'2 Su(ar + [-a2])Su(er + [~e2])2"
n=0

gk

=
I
o

+2(1 - 2ix) Z Su(ar + [~a2])Su-1(e1 + [—e2])2"
n=0

2i (1 - qzz)
1 —2pxz — (4gx2 + p? + 29)22 - 2pqxz3 + g2z4
2(1 - 2ix) (pz + quzz)
+
1 - 2pxz — (4qx% + p? + 29)z% — 2pgxz® + ¢?z*
2i+2p (1 - 2ix)z + 29 (2x — i (422 + 1)) 22
T 1 -2pxz — (4922 + p? + 29)22 — 2pqxz3 + g?z*

This completes the proof. [
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Theorem 4.5. For any natural number n, the novel ordinary generating function of (lm,ﬂGQn (x)) is found as:

4(1—ix) +4p (i (1+2x2) - x) z + g (ix (42 + 3) — 22 - 1) 22
1 - 2pxz — (49x% + p? + 29)z> — 2pqxz® + g2z ’

1=

lp,q,nGQn (x) 7" = (43)

I
o

n

Proof. We have:
Ipqn = 2Su(a1 + [-a2]) and GQ, (x) = (2 = 2ix) Sy(er + [—e2]) + (i (2 + 4x?) = 2x) S, 1 (1 + [-e2]).
The result can be proved by the same method given in the Theorem 4.4, thus we omit the proof. [

Corollary 4.6. Puttingp = kand q = 1in the Eqgs. (42) and (43) gives the new ordinary generating functions of the
products of k-Fibonacci-like numbers with Gaussian Pell and Gaussian Pell Lucas polynomials as follows:

°° 2i+2k(1—2ix)z+2(2x—i(4x2+1))z2
L nGP, (x) 2" = ,
;) o (x)2 1 —2kxz — (4x2 + k2 + 2)z2 — 2kxz3 + z*
> z ) 4(1 —ix) + 4k (i(1+20%) = x) z + 4 (ix (422 + 3) - 222 = 1) 22
GQ, = .
; enGQu (x) 2 1 — 2kxz — (4x2 + k2 + 2)z2 — 2kxz3 + 24

By putting k = 1 in the Corollary 4.6, we obtain the Table 8.

Table 8: New ordinary generating functions of the products of Fibonacci-like numbers with Gaussian Pell and Gaussian Pell Lucas
polynomials.

Coefficient of z" Ordinary generating function
2i+2(1 - 2ix)z+2(2x - i (422 + 1)) 22
1,GP
nGPn (x) 1—2xz — (4x2 + 3)z2 — 2x23 + z*
4(1—ix)+4(i(1+2x2) —x)z+4(ix(4x* +3) - 2% - 1) 22
o 11+ 20) )=+ s+ 27 1)

1—2xz — (4x2 + 3)z2 — 2x2% + z*

Thirdly, let us now consider the following conditions for Egs. (22) and (23):

a —ap = e1—e) =X
1 2_ p and 1 2_ )
ama =g e1ep =1

Then it yields:
- 1-gz2
Su(ar + [—a2]) Su (e1 + [-e2]) 2" = , (44)
; 1—pxz — (qx% + p? + 2q)z2 — pqxz® + q*z*
i Sular + [~a2])Suor(e1 + [~e2])2" pe+ e (45)
n\41 —Ud21)on-1\€1 —€2 = .
e 1—pxz — (qx% + p* + 29)z> — pqxz3 + q°z*
Therefore, we state the following theorems.
Theorem 4.7. Let n € IN, the novel ordinary generating function of (lw,nGFn (x)) is as follows:
° 2i+2p (1 —ix)z +2q(x —i(x? + 1)) 22
Y pgnGFy (x) 2" = =il +1) (46)

— 1 —pxz — (qx% + p? + 2q)z> — pqxz3 + q%z*
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Proof. By using the relationships (13) and (16), we obtain:

Z lyanGFy (x) 2" = Z 25, (a1 + [—a2]) (iSu(er + [—e2]) + (1 — ix) Sy-a(er + [—e2])) 2"

n=0 n=0

= 21‘2 Su(ar + [-a2])Sn(er + [—e2])2"
n=0

+2(1-ix) ) Sular + [~a2])Sa(er + [—e2])"
n=0

2i (1 - qzz>
1 —pxz — (gx% + p* + 2q)22 — pqxz® + g°z*
2(1—ix) (pz + qxzz)
1 —pxz — (qx* + p? + 2q)22 — pqxz3 + q*z*
2i+2p(1-ix)z+2q(x—i(x? +1))2?

T1- pxz — (qx% + p? + 2q)z% — pgxz® + ?z*

This completes the proof. [

Theorem 4.8. For any natural number n, the novel ordinary generating function of (IPW,GLH (x)) is found as:

2(2—1'9c)+2p(i(x2 +2)—x)z+2q(ix(x2 +3)—x2 —2)22
1 —pxz — (gx% + p? + 2q)22 — pqxz8 + g2z ’

Y pgnGLy (x) 2" = 47)

n=0
Proof. Since:

Ipan = 2Su(@1 + [-a2]) and GL, (x) = (2 = ix) Su(er + [-ea]) + (i (x* +2) = x) Sya(er + [-e2]).
The proof is similar to the proof of the Theorem 4.7. [

Corollary 4.9. Puttingp = kand q = 1 in the Eqgs. (46) and (47) gives the new ordinary generating functions of the
products of k-Fibonacci-like numbers with Gaussian Fibonacci and Gaussian Lucas polynomials as follows:

°° ) 21'+2k(1—ix)z+2(x—i(xz+1))z2
nzz;)lk’ncpn (x)2" = 1—kxz— (2 + k2 +2)z2 —kxz® + 24’
o ) 2(2—ix)+2k(i(xz+2)—x)z+2(z'x(xz+3)—xz—2)z2
;lk'”GL” ()" = 1—knz— (2 + K2+ 2)2 — kxz + 28 '

By putting k = 1 in the Corollary 4.9, we obtain the Table 9.

Table 9: New ordinary generating functions of the products of Fibonacci-like numbers with Gaussian Fibonacci and Gaussian Lucas
polynomials.

Coefficient of z" | Ordinary generating function

2i+2(1-ix)z+2(x—i(x*+1))22
[,GFy (%) 1-xz—(x2+3)z2—xz3+24
1,GL, (x)

2(2—1'x)+2(1'(x24—2)—x)z+2(ix(xz+3)—x2—2)z2
1-xz—(x2+3)z2—xz3+z4
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5. Conclusion

In this paper, we introduced a new generalization of Gaussian polynomials. We also gave some results
including Binet’s formula, explicit formula and ordinary generating function for generalized Gaussian
polynomials. Considering these results, we gave Binet’s formulas, explicit formulas and ordinary gen-
erating functions of Gaussian Pell, Gaussian Pell Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal Lucas,
Gaussian Fibonacci and Gaussian Lucas polynomials. Moreover, by using the symmetric functions we
have obtained the novel ordinary generating functions for the products of (p,q)-Fibonacci-like numbers
with some Gaussian numbers and polynomials. We have summarized the sections as follows:

- In Section 1, we presented some preliminaries on (p, g)-Fibonacci-like numbers, Gaussian numbers and
symmetric functions.

- In Section 2, we organized this section in two parts, in part 1, we introduced novel generalization of
polynomials which is called generalized Gaussian polynomials and we gave the general solution of them.
In part 2, we have obtained the ordinary generating functions, symmetric functions and explicit formulas
of generalized Gaussian polynomials and (p, g)-Fibonacci-like numbers.

- In Section 3, by considering the Theorem 3.1, we have obtained several ordinary generating functions

suchas: ). 1,3:GJuz", ¥ 1,qnGQuz", ¥ lpguGFuz", ¥ knGjuz", Y. 1,GPyz", ¥ 1,GL,Z", ...etc.

n=0 n=0 n=0 n=0 n=0 n=0
- In Section 4, by making use the symmetric functions and the products of (p, g)-Fibonacci-like numbers
with Gaussian polynomials, we have derived some new theorems and corollaries on ordinary generating

functions.
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