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Kirchhoff-type problem involving the fractional p-Laplacian via Young
measures
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Abstract. In this paper, we study the local existence of weak solutions for a Kirchhoff-type problem
involving the fractional p-Laplacian. Under some conditions on the main functions, we obtain the existence
of weak solutions by using the Galerkin method combined with the theory of Young measures. In addition,
an example is given to illustrate the main results.

1. Introduction

In this paper, suppose that Ω is a bounded open domain of Rn (n ⩾ 2) and T is a real positive number,
we deal with the following initial boundary value problem:

∂u
∂t +M(∥u∥pW0

)(−∆)s
pu = f (x, t,u) in QT = Ω × (0,T),

u = 0 in (Rn
\Ω) × (0,T),

u(x, 0) = u0(x) in Ω,
(1)

where 0 < s < 1 and 2 < p are real numbers, W0 will be defined later, u : Ω × (0,T)→ Rm, m ∈ {0, 1, 2...} is a
vector-valued function and the functions f and M satisfies the following hypothesis:
(H1) f : Ω × (0,T) ×Rm

→ Rm is a Carathéodory function satisfies

| f (x, t, r)| ≤ α0

(
1 + |r|q−1

)
,

Ft(x, t, r) ≥ α1 (−1 − |r|q) ,

for all (x, t, r) ∈ Ω × (0,T) × Rm, with α0, α1 are a positive constants, Ft is the derivative of F and F(x, t, r) =∫ r

0 f (x, t, l)dl.
(H2) M : R+ → R+is a continuous function such that there exist constants m0,m1 with 0 < m0 ≤ m1 and
β ≥ 1 such that m0sβ−1

≤M(s) ≤ m1sβ−1 for all s > 0.
The fractional p-Laplacian operator (−∆)s

pu is defined as follows:

(−∆)s
pu(x, t) = P.V

∫
Rn

|u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))
|x − y|n+ps dy, x ∈ Rn,
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where P.V, which stands for ”in the principal value sense,” is a frequently used abbreviation. For more
information on this operator see [10].

Recently, there has been a lot of interest in the systematic study of problems involving fractional
Laplacian due to their frequency in practical real-world applications, such as continuum mechanics, minimal
surfaces, conversation laws, population dynamics, image processing, finance, and many others, see for
example [4, 10, 17] and the references therein. The interest in studying problems like (1) relies not only
on mathematical purposes but also on their contributions to the modeling of many physical and biological
phenomena, for more details see [11, 21, 26, 27]. In [16], a stationary Kirchhoff variational equation was
first proposed by Fiscella and Valdinoci as a model to study the nonlocal aspect of the tension arising
from nonlocal measurements of the fractional length of the string. Indeed, the stationary problem of (1)
is a fractional version of a model, the so-called stationary Kirchhoff equation, which was introduced by
Kirchhoff in [18] as a model to study elastic string vibrations.

Recently, many authors investigated the existence results for the problem (1), for example, Pan et al. [22]
studied the existence of a global solution by using the Galerkin method and potential well theory. They
assumed the function M to satisfy M(s) = sλ−1, p < q < p∗s, 1 < p < n

s , λ ∈ [1, p∗s
p ) and f (u) = |u|q−1u. Based On

the sub-differential approach, the authors in [24] established the well-posedness of solutions for problem
(1) where f is independent of u. For the interested reader, we refer also to [8].

Concerning the fractional Laplacian, the authors in [21] obtained a nonnegative local weak solution to
the following problem

ut +M
(
[u]2

s

)
(−∆)su = |u|p−2u in Ω ×R+,

u(x, t) = 0 in
(
RN
\Ω

)
×R+,

u(x, 0) = u0(x) in Ω,

(2)

Moreover, by combining the Galerkin method with the potential well theory they proved also an estimate
for the lower and upper bounds of the blow-up time.

When M ≡ 1, problem (1) reduces to the fractional p-Laplacian problem:
ut + (−∆)s

pu = f (x, t,u) in Ω ×R+,
u(x, t) = 0 in

(
RN
\Ω

)
×R+,

u(x, 0) = u0(x) in Ω.
(3)

The problem (3) has been studied by many researchers, for example In [1], the authors have studied the
problem (1) with f depends only on x and t and prove the existence results with suitable regularity if(

f ,u0
)
∈ L1 (ΩT) × L1(Ω) and has a nonnegative entropy solution if f0,u0 are nonnegative. The same author

in [2] proved the asymptotic behavior result of entropy solutions when the right-hand side does not depend
on time, see also [25].

It is worth mentioning that problem (1) can be regard as a fractional version of the initial-boundary
value problem of the following equation:

∂u
∂t −M

(∫
Ω
|Du|pdx

)
div(|Du|p−2Du) = f (x, t,u), (x, t) ∈ Ω × (0,T),

u(x, t) = 0 (x, t) ∈ ∂Ω × (0,T),
u(x, 0) = u0(x) x ∈ Ω.

(4)

In [28] studied the existence of local solutions for problem (4) using the Galerkin method and the properties
of Sobolev space. Based on the theory of Young measures, the existence of weak solutions to (4) was proved
by Balaadich in [7].

Motivated by all of the results above, especially [7], we study the local existence of a weak solution to
Eq. (1) using Galerkin approximation and the theory of Young measures. To the best of our knowledge, this
is the first paper that treats the problem (1) by such a theory. We suggest to the readers to consult [5, 6, 13]
which treats some elliptic and parabolic systems by the Young measures theory.
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This article is organized into four sections:
(2) we give some background information on fractional Sobolev spaces and a review of the Young measures
theory.
(3) Under some assumptions, we obtain the existence of weak solutions using the Galerkin approximation
and Young measures.
(4) is devoted to illustrating the feasibility of the hypotheses with an example.

2. Preliminaries and notations

In this section, we first recall some necessary results which will be used in the next section. Let 1 < p < ∞,
s ∈ (0, 1) and we define p∗s the fractional critical exponent by:

p∗s =
{

∞ if ps ≥ n,
np/(n − ps) if ps < n.

LetΩ ⊂ Rn be an open set, QΩ = (Rn
×Rn) \(CΩ × CΩ), Qτ = Ω × (0, τ) for all τ ∈ (0,T] and CΩ = Rn

\Ω. It
is clear that Ω ×Ω is strictly contained in QΩ. W is a linear space of Lebesgue measurable functions from
Rn to Rm such that the restriction to Ω of any function u in W belongs to Lp(Ω;Rm) and"

QΩ

|u(x) − u(y)|p

|x − y|n+ps dydx < ∞.

The space W is equipped with the norm

∥u∥W = ∥u∥Lp(Ω;Rm) +

("
QΩ

|u(x) − u(y)|p

|x − y|n+ps dydx
) 1

p

.

And the closed linear subspace
W0 = {u ∈W : u = 0 a.e. in CΩ} .

In W0, we may also use the norm

∥u∥W0 =

("
QΩ

|u(x) − u(y)|p

|x − y|n+ps dydx
) 1

p

.

It is known that
(
W0, ∥ · ∥W0

)
is a uniformly convex reflexive Banach space (see [28]). The Poincaré’s

inequality [9] will be used below: there exists Cr > 0 such that

∥ϕ∥Lr(Ω,Rm) ≤ Cr∥ϕ∥W0 for all ϕ ∈W0 and for all r ∈ [1, p∗s]. (5)

In the sequel, let p < n
s and Ci, i = 1, 2, ... be positive constants that vary from line to line, and are indepen-

dent of the terms involved in any limit process.
We note the following functional space Lp(0,T; W0), which is a separable and reflexive Banach space en-
dowed with the norm

∥u∥Lp(0,T;W0) =

(∫ T

0
∥u∥pW0

dt
) 1

p

.

Lemma 2.1. [15] C∞0 (Ω;Rm) is a space of infinitely differentiable functions with compact support on Ω which is
dense in W0.

Lemma 2.2. [14] The following embedding W0 ↪→ Lr (Ω;Rm) is compact for all r ∈ [1, p∗s), and continuous for all
r ∈ [1, p∗s].
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In the following, C0 (Rm) stands for the space of continuous functions on Rm with compact support
with regard to the ∥.∥∞-norm. The space of signed Radon measures with finite mass is notedM (Rm). The
corresponding duality is given by

⟨µ, ρ⟩ =

∫
Rm
ρ(λ)dµ(λ).

Definition 2.3. [6] Let a bounded sequence noted by
{
z j

}
j≥1

in L∞ (Ω;Rm). Then there exists a subsequence {zk} ⊂
{
z j

}
and a Borel probability measure µx on Rm for almost every x ∈ Ω, such that for a.e. ρ ∈ C (Rm) we have ρ (zk) ⇀∗ ρ̄
weakly in L∞(Ω), where ρ̄(x) =

〈
µx, ρ

〉
=

∫
Rm ρ(λ)dµx(λ) for a.e. x ∈ Ω.

Lemma 2.4. [19] LetΩ ⊂ Rn be Lebesgue measurable (not necessarily bounded) and z j fromΩ toRm, with j ∈N, be
a sequence of Lebesgue measurable functions. Then there exist a subsequence zk and a family

{
µx

}
x∈Ω of non-negative

Radon measures on Rm, such that

i)
∥∥∥µx

∥∥∥
M(Rm) :=

∫
Rm dµx(λ) ≤ 1 for almost x ∈ Ω.

ii) ρ (zk) ⇀∗ ρ̄ weakly in L∞(Ω) for all C0 (Rm), where ρ̄ =
〈
µx, ρ

〉
.

iii) If for all M > 0

lim
N→∞

sup
k∈N
| {x ∈ Ω ∩ BM(0) : |zk(x)| ≥ N} | = 0, (6)

then
∥∥∥µx

∥∥∥ = 1 for a.e. x ∈ Ω, and for any measurable Ω′ ⊂ Ω we have ρ (zk) ⇀ ρ̄ =
〈
µx, ρ

〉
weakly in L1 (Ω′)

for continuous function ρ provided the sequence ρ (zk) is weakly precompact in L1 (Ω′).

3. Local existence of weak solutions

In this section, we will define a weak solution to the problem (1) and prove the main results. We start
with the following definition:

Definition 3.1. A function u ∈ Lp(0,T; W0)∩C(0,T; L2(Ω,Rm)) is called a weak solution of (1), if ∂u
∂t ∈ L2(QT;Rm)

and ∫
QT

∂u
∂t
ϕdxdt +

∫ T

0
M(∥u∥pW0

)⟨u, ϕ⟩W0 dt =
∫

QT

f (x, t,u)ϕdxdt,

holds for all ϕ ∈ C1(0,T; C∞0 (Ω)). Where

⟨u, ϕ⟩W0 :=
"

QΩ

|u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))
|x − y|n+ps (ϕ(x, t) − ϕ(y, t))dxdy.

Theorem 3.2. If u0 ∈ W0, 2 < q < (2+p)p∗s−2p
p∗s

< p∗s and suppose that (H1) − (H2) are satisfied, then there exists a
constant T0 > 0 such that problem (1) has at least one weak solution as T < T0.

Proof. The proof is divided into three assertions:
Assertion 1: Galerkin approximation

Similar to that in [28], we take a sequence
{
w j

}
j≥1
⊂ C∞0 (Ω;Rm), such that C∞0 (Ω;Rm) ⊂

⋃
k≥1 Uk

C1(Ω̄)
,

where
{
w j

}
j≥1

is an orthonormal basis in L2 (Ω;Rm) and Uk = span {w1, . . . ,wk}.

Lemma 3.3. For the function u0 ∈W0, there exists a subsequence ξk ∈ Uk such that ξk → u0 in W0 as k→∞.
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Proof. Since u0 ∈ W0, we can find a sequence vk in C∞0 (Ω;Rm) such that vk → u0 in W0. Since {vk} ⊂

C∞0 (Ω;Rm) ⊂
⋃

N≥1 UN
C1(Ω̄;Rm)

, there exists a sequence
{
vi

k

}
⊂

⋃
N≥1 UN such that vi

k → vk in C1 (
Ω̄;Rm)

as i

tends to∞. For 1
2k , there exists ik ≥ 1 such that

∥∥∥vik
k − vk

∥∥∥
C1(Ω̄)

≤
1
2k . Therefore∥∥∥vik

k − u0

∥∥∥
W0
≤ C1

∥∥∥vik
k − vk

∥∥∥
C1(Ω̄)

+ ∥vk − u0∥W0
.

Hence vik
k → u0 in W0 as k tends to ∞. We denote uk = vik

k , since uk ∈
⋃

N≥1 UN, there exists UNk such that
uk ∈ UNk , without loss of generality, we assume that UN1 ⊂ UN2 as N1 ≤ N2. We suppose that N1 > 1 and
define ξk as follows:

ξk(x) = 0 k = 1, . . . ,N1 − 1,
ξk(x) = u1 k = N1, . . . ,N2 − 1,
ξk(x) = u2 k = N2, . . . ,N3 − 1,
... ...

we obtain the desired sequence {ξk} and ξk → u0 in W0 as k tends to∞.

We define the function Rk : [0,T) ×Rk
→ Rk where k is fixed:

(R(t, ς))i =M

∥ k∑
j=1

(ς(t)) j w j(x)∥pW0

 ⟨ k∑
j=1

(
ς j(t)

)
j
w j(x),wi⟩W0

for ς ∈ Rk and i = 1, . . . , k. The function R(t, ς) is continuous in t and ς.
Now, we shall construct the approximating solutions for (1) as follows:

uk(x, t) =
k∑

j=1

(
b j(t)

)
j
w j(x),

where unknown functions (b(t)) j are determined by the following system of ODE{
b′(t) + Rk(t, b(t)) = Sk(t, b(t)), 0 < t < T,
b(0) = ψk(0), (7)

where

(Sk(t, b))i =

∫
Ω

f (x, t,
k∑

j=1

b jw j)widx,

(
ψk(0)

)
i =

∫
Ω

ξk(x)widx

and
ξk(x)→ u0 in W0 as k→∞where ξk(x) ∈ Uk.

We multiply Equation (7) by b(t), we get

b′b + Rk(t, b)b = Sk(t, b)b. (8)

(H2) implies that

Rk(t, b)b =M

∥ k∑
j=1

(
b j(t)

)
j
w j(x)∥pW0

 ⟨ k∑
j=1

(
b j(t)

)
j
w j,

k∑
i=1

(bi(t))i wi⟩W0

⩾ m0

∥ k∑
j=1

(
b j(t)

)
j
w j(x)∥pW0


β
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According to (H1), the following inequality holds

Sk(t, b)b ≤ α0

∫
Ω

∣∣∣∣∣∣∣∣
k∑

j=1

b jw j

∣∣∣∣∣∣∣∣
q

+

∣∣∣∣∣∣∣∣
k∑

j=1

b jw j

∣∣∣∣∣∣∣∣ dx

≤ α0

∫
Ω

∣∣∣∣∣∣∣∣
k∑

j=1

b jw j

∣∣∣∣∣∣∣∣
q

dx + α0C2

∫
Ω

∣∣∣∣∣∣∣∣
k∑

j=1

b jw j

∣∣∣∣∣∣∣∣
2

dx.

(9)

Since 2 < q < p∗s, using the interpolation inequality (see [3, Theorem 2.11]) and (5), we get

∫
Ω

∣∣∣∣∣∣∣∣
k∑

j=1

b jw j

∣∣∣∣∣∣∣∣
q

dx ≤

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
θq

L2(Ω;Rm)

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
(1−θ)q

Lp∗s (Ω;Rm)

≤ Cp∗s

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
θq

L2(Ω;Rm)

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
(1−θ)q

W0

, (10)

where θ ∈ (0, 1) satisfies
1
q
=
θ
2
+

1 − θ
p∗s

.

We observe that

(1 − θ)q =
p∗s(q − 2)

p∗s − 2
< p < p∗s

and

λ :=
pθq

p − (1 − θ)q
=

2p(p∗s − q)
p∗s(p − q + 2) − 2p

> 2.

For any ϵ ∈ (0, 1), the Young inequality implies∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
θq

L2(Ω;Rm)

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
(1−θ)q

W0

≤ ϵ

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
p

W0

+ C(ϵ)

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
λ

L2(Ω;Rm)

. (11)

Then, the inequality (10) is transformed into the following inequality

∫
Ω

∣∣∣∣∣∣∣∣
k∑

j=1

b jw j

∣∣∣∣∣∣∣∣
q

dx ≤ Cp∗sϵ

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
p

W0

+ C(ϵ)

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
λ

L2(Ω;Rm)

. (12)

Plugging inequalities (9), (10) and (12) into (8), we deduce that

1
2

d|b(t)|2

dt
+m0

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
p

W0

≤ Cp∗sα0ϵ

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
p

W0

+ α0C(ϵ)

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
λ

L2(Ω;Rm)

+ α0

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
2

L2(Ω;Rm)

.

By choosing ϵ = m0
2α0Cp∗s

, we get

1
2

d|b(t)|2

dt
+

m0

2

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
p

W0

≤ α0C(ϵ)

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
λ

L2(Ω;Rm)

+ α0

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
2

L2(Ω;Rm)

, (13)

It follows that

d|b(t)|2

dt
≤ 2C3


∥∥∥∥∥∥∥∥

k∑
j=1

b jw j

∥∥∥∥∥∥∥∥
λ

L2(Ω;Rm))

+

∥∥∥∥∥∥∥∥
k∑

j=1

b jw j

∥∥∥∥∥∥∥∥
2

L2(Ω;Rm))

 . (14)
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Denote z(t) = |b(t)|2, then

dz(t)
dt
≤ 2C3

(
z(t)

λ
2 + z(t)

)
. (15)

Integrating (15) from 0 to t, and using that

z(0) = |b(0)|2 =
∫
Ω

ξ2
k(x)dx ≤ C4,

we can conclude that

z(t) ≤ exp(2C3t)
(
C1− α2

4 − exp(C3(α − 2)t)
) 2

2−α
, as t <

ln(C1− α2
4 )

C3(α − 2)
.

For 0 < T < T0 =
ln(C

1− α2
4 )

C3(α−2) , we obtain that |b(t)| ≤ C(T) ∀t ∈ [0,T] , where

C(T) = exp(2C3T)
(
C1− α2

4 − exp(C3(α − 2)T)
) 2

2−α
.

Putting

Jk = max
(t,b)∈[0,T]×B(b(0),2C(T))

|Sk − Rk(t, b)| and βk = min
{

T,
2C(T)
Jk

}
,

where B(b(0), 2C(T)) is the ball of center b(0) and radius 2C(T). By [12, Peano theorem], we know that
problem (7) has a C1 solution on [0, βk]. We put l1 = βk and b (l1) be an initial value, then we can repeat
the above process and get C1 solution on [l1, l2] with l2 = l1 + βk, which means the existence of an interval
[li−1, li−2] ⊂ [0,T], such that (7) has a solution on [li−1, li−2] where li = li−1 + βk, i = 1, . . . ,N − 1, lN = T.
Therefore, we get a solution bk(t) ∈ C1([0,T]). As a result, we get the desired Galerkin approximation
solution.
Assertion 2: A priori estimates

By (7), we have∫
Ω

∂uk

∂t
widx +M

(
||uk||

p
W0

)
⟨uk,wi⟩W0 =

∫
Ω

f (x, t,uk) widx, (16)

where 1 ≤ i ≤ k and t ∈ [0,T] (T < T0).
Multiplying (16) by (b(t))i

(
resp. by d

dt (b(t))i

)
and summing with respect to i from 1 to k, we arrive at

(integrating with respect to t from 0 to τ (τ ∈ (0,T]) )∫
Qτ

∂uk

∂t
ukdxdt +

∫ τ

0
M

(
||uk||

p
W0

)
∥uk∥W0 dt =

∫
Qτ

f (x, t,uk) ukdxdt, (17)

∫
Ω

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2 dx +M
(
||uk||

p
W0

)
⟨uk,

∂uk

∂t
⟩W0 =

∫
Ω

f (x, t,uk)
∂uk

∂t
dx. (18)

According to (13) and β ≥ 1, we have

1
2

d
dt

∫
Ω

uk(x, t)2dx +
m0

2

(
||uk||

p
W0

)
≤ C5

(∫
Ω

|uk|
2 dx

) λ
2

+

∫
Ω

|uk|
2 dx

 ,
similar to the estimation of b(t), we have∫

Ω

|uk(x, t)|2 dx ≤ C(T), ∀t ∈ [0,T] (T < T0). (19)
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Moreover

∥uk∥Lp(0,T;W0) ≤ C6. (20)

Also, we get

∥uk∥L∞(0,T;L2(Ω;Rm)) ≤ C7. (21)

By virtue of (18) and (H1), it yields∫
Ω

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2 dx +
m0

p

(
||uk||

p
W0

)β−1 d
dt
∥uk∥

p
W0
−

d
dt

∫
Ω

F (x, t,uk) dx ≤ −
∫
Ω

Ft (x, t,uk) dx

≤ α1

∫
Ω

|uk|
q dx + α1.

(22)

From the fact

m0

p

(
||uk||

p
W0

)β−1 d
dt
∥uk∥

p
W0
=

m0

pβ
d
dt

(
∥uk∥

p
W0

)β
, (23)

plugging (23) into (22) and since β ⩾ 1, we deduce∫
Ω

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2 dx+
d
dt

(
m0

pβ
∥uk∥

p
W0
−

∫
Ω

F (x, t,uk) dx
)
≤ α1

(∫
Ω

|uk|
qdx + 1

)
. (24)

By using the same technique in (11) and using (19) to the term in the right-hand side in (24), we get∫
Ω

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2dx +
d
dt

(
m0

pβ
∥uk∥

p
W0
−

∫
Ω

F (x, t,uk) dx
)

≤ α1ϵCp∗s∥uk(x, t)∥pW0
+ α1C(ϵ)

(∫
Ω

|uk|
2dx

) λ
2

+ α1

≤ C8

(
∥uk(x, t)∥pW0

+ 1
)
.

(25)

Integrating (25) with respect to t from 0 to τ (τ ∈ (0,T]) and using the strong convergence of uk(x, 0)→ u0(x)
in W0, we get∫

Qτ

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2 dxdt +
m0

pβ
∥uk(x, τ)∥pW0

≤ C9

(∫ τ

0
∥uk(x, t)∥pW0

dt + 1
)
+

∫
Ω

F (x, τ,uk) dx. (26)

By assumption (H1) and interpolation inequality using in (11), we get∫
Ω

F (x, τ,uk) dx ≤ α1ϵCp∗s∥uk(x, τ)∥pW0
+ α1C(ϵ)

(∫
Ω

|uk|
2dx

) λ
2

. (27)

Plugging (27) in (26), we arrive at∫
Qτ

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2 dxdt+
m0

pβ
∥uk(x, τ)∥pW0

≤ C9

(∫ τ

0
∥uk(x, t)∥pW0

dt + 1
)
+ α1ϵCp∗s∥uk(x, τ)∥pW0

+ α1C(ϵ)
(∫
Ω

|uk|
2dx

) λ
2

.

By choosing ϵ = m0
2α1pCp∗s

, we get

∫
Qτ

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2 dxdt+
m0

2pβ
∥uk(x, τ)∥pW0

≤ C10

(∫ τ

0
∥uk(x, t)∥pW0

dt + 1
)
.
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The Gronwall inequality implies that
∫ τ

0
∥uk(x, t)∥pW0

dt ≤ C11 for each τ ∈ [0,T]. Therefore

∫
Qτ

∣∣∣∣∣∂uk

∂t

∣∣∣∣∣2 dxdt +
m0

2pβ
∥uk∥

p
W0
≤ C12, (28)

We finally get∥∥∥∥∥∂uk

∂t

∥∥∥∥∥
L2(QT)

+ ∥uk∥L∞(0,T;W0) ≤ C13. (29)

The assumption (H1) imply that∥∥∥ f (x, t,uk)
∥∥∥

Lq′ (QT)
≤ C14. (30)

Assertion 3 : Passage to the limit
By virtue of (20), (21), (29), and (30), there exists a subsequence of (uk) (still denoted by (uk)) such that

uk ⇀ u in Lp (0,T; W0) ,
uk ⇀∗ u in L∞

(
0,T; L2 (Ω;Rm)

)
∩ L∞(0,T; W0),

∂uk
∂t ⇀

∂u
∂t in L2 (QT;Rm)

f (x, t,uk) ⇀ χ in Lq′ (QT,Rm).

(31)

[20, Theorem 5.1] and (31) implies that uk → u in Lp(0,T,L2(Ω;Rm)) and a.e. on QT (for a subsequence), and
[20, Lemma 1.3] implies that f (x, t,u) = χ. We can conclude from the continuity in (H1),

f (x, t,uk) uk → f (x, t,u)u a.e. in QT.

Using the Vitali Theorem, we get

lim
k→∞

∫
QT

f (x, t,uk) ukdxdt =
∫

QT

f (x, t,u)udxdt.

By
∫
Ω

uk(x,T)2dx ≤ C15, there exist a subsequence (still labelled by k ) of (uk(x,T)) and a function û in

L2 (Ω;Rm) such that uk(x,T) ⇀ û in L2 (Ω;Rm). Then, for any b(t) ∈ C1([0,T]) and ϕ ∈ C∞0 (Ω), such that∫
QT

∂uk

∂t
bϕdxdt =

∫
Ω

uk(x,T)b(T)ϕdx −
∫
Ω

uk(x, 0)b(0)ϕdx −
∫

QT

uk
∂b
∂t
ϕdxdt.

Tending k to∞, we get∫
Ω

(û − u(x,T)) b(T)ϕdx −
∫
Ω

(u0(x) − u(x, 0)) b(0)ϕdx = 0.

We choosing b(T) = 1, b(0) = 0 or b(T) = 0, b(0) = 1, by the density of C∞0 (Ω) in L2(Ω), we have û = u(x,T)
and u0(x) = u(x, 0) and uk(x,T) ⇀ u(x,T) in L2(Ω).
As stated in the introduction, Young measures is the tool we use to prove the existence of a weak solution.
To identify the weak limit, we consider the following lemma:

Lemma 3.4. Suppose that (20) holds. Then, the Young measureµ(x,y,t) generated by uk(x,t)−uk(y,t)

|x−y|
n
p +s ∈ Lp (QΩ × (0,T);Rm)

has the following properties:

1)
∥∥∥µ(x,y,t)

∥∥∥
M(Rm) = 1 for a.e. (x, y, t) ∈ QΩ × (0,T), i.e. µ(x,y,t) is a probability measure.
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2)
〈
µ(x,y,t), id

〉
=

∫
Rm
λdµ(x,y,t)(λ) is the weak L1-limit of uk(x,t)−uk(y,t)

|x−y|
n
p +s .

3)
〈
µ(x,y,t), id

〉
=

u(x,t)−u(y,t)

|x−y|
n
p +s for a.e. (x, y, t) ∈ QΩ × (0,T).

Proof. 1) For simplicity reasons, we consider

vk(x, y, t) =
uk(x, t) − uk(y, t)

|x − y|
n
p+s

∈ Lp (QΩ × (0,T);Rm) . (32)

We know that for any G > 0, (Ω ∩ BG)2
⊆ Ω ×Ω & QΩ, where BG is the ball centered in 0 with radius G. Let

N ∈ R such that
QN ≡

{
(x, y, t) ∈ Ω ∩ BG ×Ω ∩ BG × (0,T) :

∣∣∣vk(x, y, t)
∣∣∣ ≥ N

}
.

Using (20), we get

∥vk∥Lp(QΩ×(0,T);Rm) =

(∫ T

0

"
QΩ

|uk(x, t) − uk(y, t)|p

|x − y|n+ps dxdydt
) 1

p

= ∥uk∥Lp(0,T;W0) ≤ G.

Consequently, there exists C16 ≥ 0 such that

C16 ≥

"
QΩ×(0,T)

∣∣∣vk(x, y, t)
∣∣∣p dxdy ≥

"
QN

∣∣∣vk(x, y, t)
∣∣∣p dxdy ≥ Np

|QN | , (33)

where |QN | is the Lebesgue measure of QN. According to equation (33), the sequence (vk) satisfies the
equation (6). Hence, a Young measure noted by µ(x,y,t) is generated by vk such that

∥∥∥µ(x,y,t)

∥∥∥
M(Rm) = 1 for a.e.

(x, y, t) ∈ QΩ × (0,T).
2) By (20), there exists a subsequence still denoted by (vk) that converges in Lp (QΩ × (0,T);Rm). Since
Lp (QΩ × (0,T);Rm) is reflexive, then vk is weakly convergent in L1 (QΩ × (0,T);Rm). By the third assertion
in Lemma 2.4, we replace the function ρ by the identity function, we then have

vk ⇀
〈
µ(x,y,t), id

〉
=

∫
Rm
λdµ(x,y,t)(λ) weakly in L1 (QΩ × (0,T);Rm) .

3) According to (20), vk is bounded in Lp (QΩ × (0,T);Rm), then there exists a subsequence such that vk ⇀ v
in Lp (QΩ × (0,T);Rm). Owing to the previous arguments, we get from the uniqueness of limits that〈

µ(x,y,t), id
〉
= v(x, y, t) =

u(x, t) − u(y, t)

|x − y|
n
p+s

for a.e. (x, y, t) ∈ QΩ × (0,T).

Now, let {vk} be the sequence given in (32), i.e.

vk(x, y, t) =
uk(x, t) − uk(y, t)

|x − y|
n+ps

p

.

The weak convergence given in Lemma 3.4 shows that:

|vk(x, y, t)|p−2vk(x, y, t) ⇀
∫
Rm
|λ|p−2λdµ(x,y,t)(λ)

= |v(x, y, t)|p−2v(x, y, t)

=
|u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))

|x − y|
n+ps

p′

(34)
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weakly in L1 (QΩ × (0,T);Rm). Since Lp is reflexive and |vk(x, y, t)|p−2vk(x, y, t) is bounded in Lp′ (QΩ ×
(0,T);Rm), the sequence |vk(x, y, t)|p−2vk(x, y, t) converges in Lp′ (QΩ × (0,T);Rm). Hence its weak Lp′ -limit is
also |v(x, y, t)|p−2v(x, y, t). Thus, for any φ ∈ Lp(0,T; W0) we have:

φ(x, t) − φ(y, t)

|x − y|
n+ps

p

∈ Lp (QΩ × (0,T);Rm) .

According to weak limit in (34), we get

lim
k→∞

∫ T

0
⟨uk, φ⟩W0 dt =

∫ T

0
⟨u, φ⟩W0 dt (35)

for every φ ∈ Lp(0,T; W0).
Now, by using [23, proposition 1.3] and the continuity of M, we prove that

{
M(∥uk∥

p
W0

)
}

k
is relatively compact

in L1(0,T). Indeed, by (28) we have M(∥uk∥
p
W0

) ≤ c, for all k and t. This implies that
∫ T

0 M(∥uk∥
p
W0

)dt ≤ cT for
all k. On the other hand, for any ε > 0, there exits δ = ε

c such that for any measurable subset A with |A| < δ,
there holds ∫

A
M(∥uk∥

p
W0

)dt ≤ c|A| < ε

It follows that
{
M

(
∥uk∥

p
W0

)}
k

is relatively compact in L1 (0,T). Therefore, up to a subsequence, M
(
∥uk∥

2
W0

)
converges to some functionΛ(t) ∈ L1 (0,T) for a.e. t ∈ [0,T]. Furthermore, (35) and the Lebesgue dominated
convergence theorem implies that

lim
k→∞

∫ T

0
M

(
||uk||

p
W0

)
⟨uk, ϕ⟩W0 dt =

∫ T

0
Λ(t)⟨u, ϕ⟩W0 dt (36)

for every φ ∈ Lp(0,T; W0).
From (16), for ϕ ∈ C1 (0,T; UN) ,N ≤ k, we have∫

QT

∂uk

∂t
ϕdxdt +

∫ T

0
M

(
||uk||

p
W0

)
⟨uk, ϕ⟩W0 dt =

∫
QT

f (x, t,uk)ϕdxdt.

For k tend to∞, it follows from the above results, that∫
QT

∂u
∂t
ϕdxdt +

∫ T

0
Λ(t)⟨u, ϕ⟩W0 dt =

∫
QT

f (x, t,u)ϕdxdt. (37)

For all C1 (0,T; UN) (N ∈N).
Taking u = ϕ in (37), we get

∥u(x,T)∥22 − ∥u(x, 0)∥22 +
∫ T

0
Λ(t)∥u∥pW0

dt =
∫

QT

f (x, t,u)udxdt. (38)

According to (17), we have

∥uk(x,T)∥22 − ∥uk(x, 0)∥22 +
∫ T

0
M

(
||uk||

p
W0

)
∥uk∥

p
W0

dt =
∫

QT

f (x, t,uk)ukdxdt. (39)
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Then we have

lim
k→∞

∫ T

0
M

(
||uk||

p
W0

)
⟨uk,uk⟩W0 dt

= −∥u(x,T)∥22 + ∥u(x, 0)∥22 −
∫

QT

f (x, t,u)udxdt

=

∫ T

0
Λ(t)⟨u,u⟩W0 dt

= lim
k→∞

∫ T

0
M

(
||uk||

p
W0

)
⟨uk,u⟩W0 dt

Thus, we deduce that

lim
k→∞

∫ T

0
M

(
||uk||

p
W0

)
⟨uk,uk − u⟩W0 dt = 0 (40)

Thus, there exists a subsequence still denoted by {uk} such that for a.e. t ∈ [0,T]

lim
k→∞

M
(
||uk||

p
W0

)
⟨uk,uk − u⟩W0 = 0. (41)

Therefore, we obtain

M
(
||u||pW0

)
= Λ(t) a.e. t ∈ [0,T]. (42)

Inserting (42) in (37), yields∫
QT

∂u
∂t
ϕdxdt +

∫ T

0
M

(
||u||pW0

)
⟨u, ϕ⟩W0 dt =

∫
QT

f (x, t,u)ϕdxdt, (43)

for all ϕ ∈ C1(0,T; C∞0 (Ω)). Then the theorem (3.2) is proved.

4. An example

We consider the following problem
∂u
∂t +M(∥u∥pW0

)(−∆)s
pu = a(x, t)|u|q−2u in QT = Ω × (0,T),

u = 0 in CΩ × (0,T),
u(x, 0) = u0(x) in Ω,

(44)

Comparing with problem (1) where f (x, t,u) = a(x, t)|u|q−2u, F(x, t,u) = a(x,t)
q |u|

q, and Ft(x, t,u) ⩾ C(−|r|q−1). If
2 < q < p∗s, then by theorem 3.2, there exists a constant T0 > 0 such tha the problem (1) has a weak solutions
as T < T0.
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