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Blow up of solutions for a fourth-order reaction-diffusion equation in
variable-exponent Sobolev spaces
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Abstract. This work deals with a fourth order reaction-diffusion equation with variable exponents. Firstly,

we investigate the finite time blow-up of solutions for positive initial energy. Later, we establish by utilizing
a technique differential inequalities an upper limit on the blow-up time.
1. Introduction

1.1. Setting of the problem:

In this paper, we consider the following fourth order reaction-diffusion equation with variable exponents
2t —Az+ ANz + A2z, =219, xeQ, t>0,
z(x,t)zg—i(x,t)zo, x€dQ), t>0, (1)
z(x,0) = 2o (x), x€Q,
here Q is a bounded domain with smooth boundary dQ in R”, (n > 1), and the initial value z; € Wﬁ"ﬂ') (Q),
the exponent g (-) is given measurable function on Q) satisfying
2<q1£q(x)<ga <o, n<4, o)
2<qp<q(x) <<, n=5
here
g1 = essinf g (x) and g, = esssup g (x).
xeQ eQ

©)
For each points z and v in the bounded domain Q with |z — 9| < %, there exists a constant A > 0 so that
the subsequent inequality yields:
1@ - q@)| <

“Inlz-o9|

(4)
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1.2. Literature overview:
Wu et al. [39] considered the following semilinear parabolic equation with variable exponent

up — Au = u7®,

They demonstrated the blow up of solutions. Later, many authors studied the blow up of solutions the
same equation under different conditions [5, 18, 38].
Di et al. [9] has investigated the following problem

21— vAzy — div (|V2]"V72 Vz) = 292, (5)

with Dirichlet boundary condition. The authors obtained both an upper bound and a lower bound for
blow-up. It is clear that when v = 1, m(x) = 2, p(x) = p, the expression (5) becomes the subsequent
pseudo-parabolic equation

zi—Az— Az = |z 2 2. (6)

As for (5), there are many results related to asymptotic behavior [20, 40], the uniqueness and existence
[2, 35] of solutions, blow-up [22, 40] property and other aspects.
Qu et al. [31] examined the subsequent fourth- order parabolic equation

U+ A%u = ub®,

They demonstrated the asymptotic behavior of solutions. Also, Liu [21] proved both the local existence
and blow up of solutions the same equation.
Han [16] investigated the fourth-order parabolic equation

ut+A2u—Vf(Vu) =h(x,tu).

The author showed that global existence and finite-time blow-up of solutions are obtained under different
conditions for the initial data.
Abita [1] consider a semilinear pseudo-parabolic equation

up — Auy — Au = uP®,

The author has demonstrated that nonnegative classical solutions experience finite-time blow-up when
initiated with arbitrary positive energy and appropriate large initial values.

Also, the existence, blow up and decay of solutions was studied by many authors for the equation with
variable exponents, see for instance [3, 4, 6, 7, 11-13, 15, 26-28, 30, 33, 34, 36, 37, 41].

The equation with variable exponents arises in many branches in sciences such as image processing,
electrorheological fluids and nonlinear elasticity theory [8, 10, 32]. The fourth-order equation has its origin
in the canonical model introduced by Petrovsky [24, 25]. This type equiations arises in many branches in
sciences such as acoustics, geophysics, ocean acoustics and optics [14].

This article is organized as follows: In part 2, we present various materials, including notations,
hypotheses, and auxiliary formulas. In part 3, we prove the blow up in finite time T . In part 4, obtained an
upper bound for the blow-up time with utilize the technique of differential inequalities.

2. Preliminaries

This part we give some preliminary facts and definitions about the Lebesgue spaces and Sobolev spaces
with variable exponents (see [10, 29]). Consider a measurable function g : QQ — [1, co] where Q represents
a bounded domain in IR”. The Lebesgue space with a variable exponent 4 (-) is defined as follows:

L1 (Q) = {z :Q > R, zis measurable and p,() (Az) < oo, for some A > 0} ,
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where
pa (2) = f 127 dx.
Q

Also endowed with the Luxemburg-type norm

. Z 19x)
lell oy = inf )\>O:f|ﬂ dr<1b,
Q

L9% (Q) is a Banach space.
The Sobolev space with variable exponent W4 (Q)) is defined as

W) (Q) = {z € LT (Q) : D*z € LW (QQ),, |a] < m}.

Sobolev space with variable exponent is a Banach space with respect to the norm

lellizoy = IR + IV2IE + l1AzI

Lemma 2.1. [10] Suppose that Q be a bounded domain of R", 4 (.) € (1, o) is a measurable function on Q so
min (Il 21 b < pyy @) < max (I, I ),

for any z € L1 (Q).

Lemma 2.2. [10] Assume that Q be a bounded domain of R", q (-) is a measurable function on Q complies with (2)
and (3), so

lzllyy41 < KIIAZIL , for all z € Hj (Q), (7)

here the optimal constant of Sobolev embedding denoted as K depends on g1, and |Q)].

3. Blow up

In this part, we derive an upper bound for the blow-up time concerning the problem (1) under certain
conditions on the variable exponents 4(-) and initial data. Initially, a local existence result is obtained for the
problem (1), laterly through the application of the maximal principle the local existence in time, uniqueness
and regularity of solutions of problem [14].

Theorem 3.1. Assuming zo € H3 (QQ), T = T(zo) > 0 so that the problem defined by equation (1) exhibits a distinct
classical solution that remains nonnegative throughout.

ze L([0, TI; H3 (Q)), z € L2 ([0, T1; H (),

and
(i)Yo € H(z) (Q),te(0,T)

(z¢,0) + (Vz, V) + (Az, Av) + (Az;, Av) = (zq('),v) forallv e H(Z) Q).

(ii) z (x,0) = zo (x) = 0 in Hj (Q) .
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The main results proof depends on the following two lemmas:

Lemma 3.2. [17, 19] (Concavity methods). Suppose that § > 0, let 1 (t) > 0 be weakly twice-differentiable on
(0, ) such that 1 (0) > 0, ¢’ (0) > 0 and

Y OPE -1+ ) 20,
forall t € (0, 00). Then there exists a T > 0 such that
i) =

and

()
U TTOR

Lemma 3.3. The associated energy corresponding to problem (1) denoted as | : H2 (Q) N L10*1(Q) — R, is defined
as follows:

1 , 1 ) 1
==V ZNAzZIP = | ——— |z @l g
J ) =5 IVall* + 5 liaz] fq(x)+1|z| X, ®)
Q
moreoover
I () = = llzIP = Az <0, )

here, the inequality | (t) < J (0) is satisfied

2079+ dx.

= L vzl + LAzl -
10 = 3 IVl + 5 lazf - [ TS
Q

Proof. Multiplying the first equation of (1) by z; and integrating over (), utilizing integrating by parts, we

get
f ZiZydx + f VzVzidx + f AzAzpdx + f AziAzydx = f 210z, dx,
Q Q Q Q Q

“ “ - -z q(x)+1
f dx+ flVld . f|Az| dx+f|Azt| dx dt[ x)+1f|| dx]
dj (t

{it) fzd +f|Azt| dx =0

And obviously, we have equation (9).
Integrating the last inequality over the interval (0, ), we obtain

t
T0=1G0)~ [ gy s (10)
0
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Let Thax denote the maximal existence time of the solution z,
Tmax =sup{T >0:z(,t) existon [0, T]} < co.

Definition 3.4. [23] Suppose that problem (1) is well posed in H} (Q) and that zy € H} (Q). The solution of (1) is
global if Tmax = oo. Blow-up is said to occur for problem (1) if

Tmax < o0 and tllﬁl llz (Ol = oo

Our result regarding blow-up is stated.

Theorem 3.5. No solution exists for problem (1) with initial data satisfying J(zo) > 0, that is

+1
||Zol|f{§(@) > 2(1 + Kz)a (Zi——l)](z())/ (11)

t
can exist for all time if q(.) satisfy (2) and (4). However there exists a T1 < Tax such that lim;_,r, f |z (s)lllziz ds =
0 0

Q)

+oo meaning that the solution z blows up in finite time in the HZ (Q)-norm.
Where « is to be chosen such that
1—1
<o o
and K be the optimal constant of Poincaré inequality, which is
llzll2 < KllAz]l . (12)
Proof. To establish the theorem we initially suppose that z exists on Q X [0, 00) i.e. Tmax = +00 and later

demonstrate that this assumption leads to a contradiction. We choose a function i () of the following form
for0 <t < oo,

W (t) = llzl3 + IVzll3 + llAzl5,

we have

P ()

l1<a

2(z,z:) +2(Vz,Vz;) + 2(Az, Az;)

= =2|[IVzll5 + [|Az]l5 - f 27+ x| (13)
Q

State 1. ] (t) > 0, for every t > 0. By utilizing equations (10) and (13) we get

P (t)

2| IVzl3 + [|AzIf3 - f |27+ g
Q

\%

1 1 1
“2(g1 +1)| 5 19218 + 5 18218 - f 19 g
Q

+ (g1 = DIV + (g1 — D) lIAzIf;
= 2(q+ 1] O + (g1 - 1) IVZl3 + (g1 — 1) 1Az]]3
= 2(q+D@-1JB-2(q+1)a ()

+ (g1 = DIV + (g1 — D) lIAzIf3

\%

t
201+ D] Go)+ 21 +1) [ )y
0

+(q1 = D)IVZI3 + (g1 — 1) l1Az]5. (14)
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Utilizing equation (12), to obtain
P () = Izl + V215 + 1Azll3 < (1+K) [1Az]}. (15)

By substituting equation (15) into equation (14), we have

t
-1
V0> 2+ Da] G + 2+ D) [ My ds s %w). (16)
0
Then
t
-1
IP, (t) - ((fl_i_ Kz))lnb (t) > 2a (‘71 + 1)](20) +2 (‘71 + 1)f||Zt ('/ S)qué(g) ds
0

v

—2a(q1 +1)] (o).

Integrating clearly, we obtain

(1+K2)

(g1 -1)

for every t > 0, we get
=y andn” )=y #).

By substituting equation (17) into equation (16), we find

P =2

(-1, (-1,
) ’ (17)

a(q +1)] (z0) (1 — e | + 1 (0) e ()

(1) > 20 ( +1)f||z (-, 8)Poaer, ds + (ql_l)lp(())—m( +1)] (z0) e%t (18)
U O lo @ AR n 0 :
0

Now, define the auxiliary function ¢ as follows:

e =n* O +e P O)nt)+p,

where ¢ > 0 is chosen to be sufficiently small such that

: 1 (-1
O<es 20 (q1 + 1) (1 + K2 ¢ (0) ((1 +Kz)¢(o)_20‘(q1 + 1)](20)),

and $ > 0 is chosen to be sufficiently large, so that
4¢?B > 2 (0). (19)
Thus
B = (2n®O+TPO)n O, (20)
¢" () = 20O+ )" O +2(7 B (21)
From equation (20), we get
@ ®F = 2n®+epO) o OF
(472 (&) + e7292 (0) + 47 (O ¥ () (' (1))’
(4n* (&) + 47 (O Y () + 48 = 5) (i (1))’
(49 (1) - 5) (n (), (22)
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here 6 = 48 — £72y% (0) > 0, laterly

(@ )+ () =49 ) (1 (1) (23)

Observe that

t
1 ((d
Ef(% ”ZHHS(Q))dS

0

f ((zt (,9),2) + (Az: (-, 5) , Az)) ds
0

1 2 1 2
- E ”Z (t)”HS(Q) - 5 ||ZO||H§(Q) .

Thus

t t
2 () = 20l +2 f f 2 (+,8) 2 (s) dxds + 2 f f Az (-,5) Az (s) dxds.
0 Q 0 Q

Utilizing the Holder and Young’s inequality, along with given that ||zl < K||Az]|, , we obtain

' @ = lzOllpq,
t

IOl + +2 [ [ ()2 () dds
0Q

+2fthzt(-,s) Vz (s) dxds +2fthzt (+,8) Az (s) dxds
00 00

t
Iz DIy +2 [ [ e 9]z (6)l dxds
0Q

IN

+2ftf|Vzt (-, 9)1Vz (s)| dxds +2ftf|Azt (-, 8)| 1Az (s)| dxds
00 00

t oo }
Gl 2( Szl ds] ( A ds]
0 0

1

2

+2(f ||vZ||§ds] ( f ||th<-,s>||%ds] :

0 0

t o :

+2 (f Azl ds) ( [18z ¢, 9)I ds]
0 0

IN

2
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we get
t 2 t 2
o )y = ol ) + 420l f 12113 ds f llz¢ (-, s)I13 ds
0 0
1 1
t 2 t 2
+41zoll% V2|13 ds IVz: (-, s)II3 ds
H2(Q) 2 727112
0 0
1 1
t 2 t 2
2
wilali | [1azi3ds| | [z 1B ds
0 0
t t t t
+4 f 12113 ds f llze (-, s)II3 ds + 4 f V2|3 ds f IVz: (-, 9)I[5 ds
0 0 0 0
t t
4 f IAZIE ds f 1Az ()3 ds,
0 0
that is

1
2

t
' ) < Mol + 40+ K)llzole f 1Az, (-, )5 ds
0

t 3 ¢ 3 ¢ 3
2 2 2
X flIZszS + f”VZszS + fllAZszS
0 0 0
t t t
2 2 2
+4 fllzllzds+f||Vz||2ds+f||Az||2ds
0 0 0

t t t
x f s ()R ds + f V20 (93 ds + f 1Az (9 ds .
0 0 0

Therefore

t
0 O < Naollfp + 267 ollfpg, f 1Az; (, )3 ds
0

t
H 4K e el 1)+ 410 [ 19 b,
0

where we apply the established algebraic inequality

(M? +N2) <2(M+N), for M > 0,N > 0.

8232

(24)
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From (21) and (23), we have
20" 9 ) = 20O+ eV O) " (@O +40 1) @ (®)
2200+ W O) " B @ O + (@' O +5 (¢ (1)
At present, from (18), (22), (24) and (25), we can express
20" (D (H) = (1 +a) (¢’ (1))

= 220+ O) 0" Qe +6 (1 (1) —ale’ (1)

= 2200+ O) 0" e ) +6 (1 (1)) —a e ®) - 8) (1 ()

= 2(2n®) + e O) 0" ()@ (1) —dag ) (7 OF +6 (1 +a) (7 (1))’

t
2(q + l)afHZt (- S)“?{é(@) ds
0

\%

200 () (2 () + ¢ (0)

(1-1)

+ (Sfi}lzzkb ©0)-2(q1 +aJ (zo))e(”Kz)

t
lzollfe oy + 267 llzolffe ey J 1Az () ds
—4ag )] 0 t
+H1+ K ellollg 10+ 400 [l (9l ds

By choosing the values of @ and ¢ considering the given that

-1
el > 1, fm+1>2,¢<0, 1+K?*>1

and

t t
f e (sl ds > f 1Az (9 ds,
0 0

we get

20" () (H) — (1 +a) (¢ (H)

\%

t
lzollfe oy + 267 ol Of 1Az; (., $)|[3 ds
—4ag(t) ;
41+ K) € |zl ) 0 (1) + 411 () Of lz¢ (., )Il3 ds

> 0.

4agp (1) (20 (1) + 79 (0)) [(q1 +1) f llz: (., )II3 ds + 2& (g1 + 1) (1 + K)? ¢ (0)
0

8233

(25)

In this case, we will show that T cannot be infinite; in other words, it is established that no nonnegative

classical weak solution can exist for all time.

From Lemma 3.2, we can conclude that there exists a 0 < #; < +o0 so that ¢ (f) = oo ast — t1, here

200 2pe .
@-1¢ 0  (a—1) lzollp ey D

0<t1<
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At present, by examining the continuity of ¢ with aspect to i, we can deduce that there exists a Ty < f; so
t

that lim;_,, Of ||z (S)”ilﬁ(ﬂ) ds = +oo = lim;,1, sup ||z (t)ll?{g(o) = +o00. Thus, z discontinuing at some finite time

T1 < Tmax, this implies z not exist for every time. In other words z blows up at a time T7, and cannot persist
as finite for every ¢, this leads to the nonexistence conclusion stated in the theorem. Consequently, ¢ blows
up at time T7 in Hg (Q)-norm, which contradicts Tmax = +0. Therefore, for data satisfying equation (11)
any solution has a finite time.

State 2. Suppose that there is t, > 0 so that [(z(fy)) < 0, (z(ty) # 0). Therefore, consider v (x,t) =
z (x,t + ty) as the solution to (1). Consequently, we have ] (v(0)) = ] (z (t,)) < 0. From (10), we get

J(@ () <] ((0)) <0. (26)

At present, we utilize equation (13) to obtain

1d

ia 2
2d U+A

&lg_‘

il (S)HHZ

N~

= —||IVoli5 + [|Av]f; - f POy
Q

1 1 1
= -(n+1) 3 IVoll3 + = ||Av||§ - fUP(X)de

flAvl dx
f|VZJ| dx +

This inequality together with (10) and ] (v (0)) < 0 gives

[\

f |Av)? dx. (27)

~@+ ) @)+ L

1d

2 [EOra00)i > @ DT EO) + @+ 1) [Ty d

{O

t
> w+nfmmﬂ@@w (28)
0

Where g > 0, let’s define

t
P(t) = f ||v(s)||i1§(g)ds+ B.
0
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Now, by utilizing equation (26) and the Poincare inequality in equation (27) we obtain
P72 2@+ D] E) + (@ -1) f Vo () dx + (g1 = 1) f A0 (B dx
Q Q
> (1-1) f |Av (B dx
Q
1 2 2
> m(‘h —1)f(v H+A v(t))dx
Q
n-1

= el O

It can be easily proven by integrating the last inequality from 0 to ¢,
’ ’ ny
P’ () > ¢ (0) e’ (29)
By utilizing the Holder inequality, (28) and as a matter of fact
0]l < N0l and [[Avll; < ([l ,

that is

P () -y (0)

t t t
Y’ (s)ds =2 v; (-,8) v (s) dxds + 2 Av; (-, 8) Av (s) dxds
Jroe=2]] /]
t % t %
2[ f ||v||§ds] [ f ||vt<-,s>||%ds]
0 0
; t }
+2[ f ||Av||§ds] [ f l|Ao; (-,s>||%ds]
0 0
4[ f ||v<s)||§3(g)ds] [ f [CAOB] P ds]
0 0
i Y )
( li ) fllv(S)llég(Q)dS] (Ellv(t)lng@))
0

t 3
d
f“v(s)nzzig(o)ds"‘ﬁ] (E ||U(f)||H§(Q))
0
1

=) wor o 60)

IA

[NE

[SIE

IA

IA

[
—_

2

IA
—_
-

—
+ [ o
—_
~————
[ -

[oe)

X

Thus, (30) implies that

-

q1

1
WO - ¢ O SO0, Q)
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letting i = 21 (31) it follows that

9 Y <0>) vy
(8 2 ) (1 v (t) W () (32)
Obviously, from (29) we obtain lim;_,« ¢’ (t) = +00, thus there is t* > 0 so that for all ¢ > t*
(0

1- &
3 +2u

That t > t*. By taking into account, (32) and (33), we obtain

POV O 9
W@y 8

Hence

pOv 0 -3+ )@ OF 20

Since ¥ (0) > 0 and ¢’ (0) > O thus from Lemma 3.2 as a result, there exists a 0 < T, < +oo so that

lim;,, ¢ (t) = oo, hence lim;,, f [lo(s ds = +o0 = limy,1, sup|lv (t‘)llé,2 = +o0, therefore v (x,t)
0

||H2(Q) Q)

discontinuing at some finite time Tz, v (x, t) not exists for all time, and exists almost everywhere in (0, T,)
here the upper bound of T is specified by,

161 (0) 16p
0<Ts< = ®
<= mp+Dy (q1 +1)llz (to)“ig(g) N

Thus, z(x,t) discontinuing at some finite time T3, implies that z (x, t) does not exist for every time, and
cannot persist finite for every ¢, in this result in the nonexistence result stated in the theorem therefore the
interval of existence for z is bounded, that contrary Tmax = +00. This concludes the proof. [

4. Upper bound of blow up time

In this part, we investigate the blow-up outcomes and approximate the upper bound of blow-up time.
From (7) and (8), it is clear that

J@) > % f IVz(x,t)lzder% f |AzZ (x, t)* dx

1
_ q2+ L]1+1
" ma (2117 1

> fle(x O dx + = flAz(x H? dx
- max (K ) (K i)
1, G+l g+l i+l gi41) _
> 2)/ _q1+1maX(Klz yq+,Kll y‘“)—g(y) Yy >0, (34)
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1

2

here y = ( [1Az (x, 1)} dx] = ||Az]l, .
Q
Assume that Kj,y1, 70, J1 be positive constants such that

_m+l

* e 11\,
Ki =max (LK), y1=K """, y0=Azll, J1 = (§ e 1)7/1/ (35)

the subsequent outcome has been established.

Theorem 4.1. Suppose that zy € H3 () N L1+ (Q) so that 0 < ] (0) < Jiand K7 > [|Azoll, > 71
2

- 2
(ql—l)(l_(%)’h )+
hold. Under the given assumptions, the solution of problem (1) will blow-up in finite time T. Additionally, the upper
estimate for the blow-up time T is given by T

_ llzollr2(ca)
r= ) \91+1 o\t ! (36)
T A (R PP
here y1, Ky and ], are given in (35), and y, to be given in (38).
Lemma 4.2. Assume that h : [0, +00) — R be defined by
1, 1 n+1_ g +1
h(V) - Zy 111 + 1K1 7/ 4 (37)

then h exhibits the subsequent properties:
i) h is increasing for 0 <y < y1 and decreasing for y > y1,
i) im h(y) = —c0and h(y1) = |1,

y—+o0

where y1 and |1 are given in (35).

Proof. Assuming that K; > 1and g1 > 1, one can observe that h(y) = g(y), for 0 < y < K;!, here g is defined
in (34). Also, h(y) is differentiable and continuous in [0, +).

W()=y[a-K"ynt), 0y <K

Laterly (i) subsequent. Since g; —1 > 0, we obtain lirp h(y) = —oco. A simple calculation leads to i1 (y1) = Ji.
')/*) (o)
Then (ii) holds valid. O

Lemma 4.3. Given the assumptions of Theorem 4.1, there is a positive constant y, > y1 so that

lAz]l; = y2, t 20, (38)
1
g(x)+1 Qi+l g+l
prF— fz(x,t) dx > —lh JrlK1 Vo (39)
Q
and

_1
2 ( I IONEN
= > (q1+1)(——— >1, (40)
71 2

here y1, Ky and ] are given in (35).
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Proof. Since J (0) < W]l < |1, it subsequent from Lemma 4.2 that there is a positive constant
(n-1)(1- i +2

y2 > 1, so that J(0) = h()2). By equation (34), we get 1 (yo) = g(y0) < J(0) = h(y2), it subsequent from

Lemma 4.2 (i) that yo > y», so (38) fulfills for t = 0. At the present we demonstrate (38) by contrast. Assume

that ||Az (#*)|l, < y2 for certain * > 0. Due to the continuity of [|Az (-, #)||, and y» > Y1, we can choose #* so
that y, > [|Az (#)ll, > y1, then it subsequent from (34) and (37) that

J(0) = h(y2) <h(lAz (E)ll2) < J(F),

which contrast to Lemma 3.3. Thus, equation (38) follows.

By (2) and (8), we get
1wy s 1 |Vz|? dx + E fIAZI2 dx -] (0)
q() +1 T2 2
0 Q Q
> A-h(2) = — KL “n
= 3 2 7 +1°1 2 7
and (39) subsequent.

Since J (0) < J1, by a simple calculation allows us to verify
1 JON"™
weofi 1O
[ 2 n

then the second inequality in (40) satisfied, and we just need to specify the first inequality. Denote a = y—f,

then o > 1 by the fact that y, > 1. So, the result is derived from the fact that J (0) = 1 (y2), K1 > 1 and (35)
that

JO) = h(y2)
= h(ay)
1T 1 onl ooy ae
- yi‘az (5 B g + 1K7 Han 177 1)
1 1
— 2.2 L n-1
ez rere)

this means that

1 < ((q1+1)(%—$]]ql
1
1 0 o
o)
< aqa, 1
thus, (40) holds.

Assume that
HH=J1-J@) fort>0, (42)

we present the following lemma. [
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Lemma 4.4. Given the assumptions of Theorem 4.1, the functional H(t) defined in equation (42) exhibits the subse-
quent estimates:

1
gx)+1

0<H(@O)<H()< f 2104y, > 0. (43)
Q

Proof. Lemma 3.3 indicates that H(f) is a nondecreasing function with respect to t. Hence
H(#)>H@O)=/1-J0)>0, t=0. (44)

Combining (8), (35), (38) and y, > y1, we get

1 1
_ e (9 E — _ = 2
H{(t) fq(x)+1z dx h 2j‘lAzl dx (45)
Q Q
11 Y ._15
(2 q(x)+1)y1 271 <0

Equation (43) can be deduced from equations (44) and (45).
According to the three lemmas mentioned above, the proof of Theorem 4.1 is presented as follows:
Proof of Theorem 4.1: We establish the function

1 1
Y(t) =< 22dx + = | |Az]*dx. (46)

Q

Subsequently, based on the definitions of J(t) and H(t), the derivative of 1 (f) fulfills

f zz:dx + f AzAzdx

Q Q
f z (zq(") +Az— N2z - A2zt) dx + f AzAzydx

Q Q
= —flelde—flAzlzdx+fz‘7(x)+ldx
Q Q

Q

1
_ _ q(x)+1 g(x)+1
{ 2] (t) 2fq(x)+1z dx +fz dx
Q

Q

—2(i—H(t) + (1 - ql%) f 2100 gy
Q

P (t)

\%

v

-1
—2J1 + 2H () + Ziﬁ f 210+ gy (47)
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By (35) and (39), we see
Com =1 -0n g =1 g
2 = q1+1K1 _q1+1K¢17 1
1+1
q—1(y\"" ;
- Gl e
q1+1
)4! 1
< _ s e (9 E |
< 1)(Vz) fq(x)+1Z o
Q
<

q1+1
q1 ; 1 (E) fzq(x)+1dx'
q Y2 9

Then it results from Lemma 4.4, (47) and (48) it is evident that

Y = A f 219+ gy + 2H (£)

Q
Mq(xm _q1+1f 2
> q(x)+lz dx > A | IVz|~dx
Q Q
+1
_q12 /\flAZlde+2H(t)
Q
= @),

here

/\:ql—l 1 Hﬂ1+1 o
q1+1 V2 ’

Subsequently, through direct computation and references to equations (1), (9), (42), we obtain

+ 2H' (t)

') = Aqp+1) {fz“’(x)ztdx—szVztdx—fAzAztdx

Q Q Q

(A(q +1)+2) f (1zef” + 1Az ) dx.
Q

Applying Schwarz’s inequality, we observe

v ) = w[ f (|z|2+|Az|2)dx.]

Q
X (|zt|2+|Azt|2)dx.]
/
2
(/\(q1+1)+2)[ ]
> — zzidx + | AzAzidx
=]

A +1)+2)

- SRS wor

8240

(48)

(49)

(50)

(51)
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By (49), (51), and the assumption 0 < ] (0) <
0, that ¢ (t) > 0 for all > 0. Thus, we get

(A(q1i1)+2) J1 we know because ¢ (0) = 2J1=(A (g1 + 1) +2) ] (0) >

A1 +1)+2)

PO ()= T

v e,
expressing this as

@’ () S A+ +2)y’ ()

> . 52
0 2 0 )
Integrating (52) from 0 to t and using (49), we get
"(t 0
(A (l;ll)ﬂgﬁ)) 2 (A (q(]p+1()+3) : (53)
yor ) v (0)
Integrating inequality (53) from 0 to ¢, observing that
1 1 A(gr+1 0
Aq1+1) < A(qq+1) - (qlz ) ,\(qileg +)2 t. (54)
= v 0 P (0)

Assume that
20
A +1) @ (0)
later i (£) blows up at time T* in H} (Q)- norm. Thus, z finite time T < T*, that is to say, z blows up at a time
T < co. The inequality above implies that T < T < T, where T, is concluded by (36). O

0<T"
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