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Families of higher order q-Euler numbers and polynomials
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Abstract. In this paper, we define new type q-Euler numbers and polynomials with the help of p-adic
q-integrals. Using the techniques of p-adic integral, the method of generating functions, and combinatorial
techniques, some interesting sums and relations between them are calculated.

1. Introduction

The q-calculus plays an important role in number theory, combinatorics and other branches of mathe-
matics. It was first examined by Euler [4]. There are still important works related to q-calculus.

Let p be an odd prime number. Zp,Qp,Cp denote the ring of p-adic integers, the field of p-adic rational
numbers and the completion of the algebraic closure ofQp, respectively. The p-adic norm | . |p is normalized

by | p |p= 1
p . Let q be an indeterminate in Cp such that | 1 − q |p< p

−1
p−1 . The q-extension (or q-analogue) of

number x, denoted as [x]q, is

[x]q =
1 − qx

1 − q
.

It is clear that limq→1[x]q = x. Let d be a fixed integer and

X = Xd = lim
←−−

N

(Z/dpNZ), X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpNZp = {x ∈ X | x ≡ a (mod dpN)},

where a ∈ Z lies in 0 ≤ a < dpN. Let UD(Zp) be the space of uniformly differentiable function on Zp. For
f ∈ UD(Zp), the p-adic q-integral was defined by

Iq( f ) =
∫
Zp

f (x)dµq(x) =
∫

X
f (x)dµq(x) = lim

N→∞

1
[dpN]q

dpN
−1∑

x=0

f (x)qx
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for | 1 − q |p< 1 (see [6, 13, 21, 22, 24, 25, 27–29]).
In [13], Kim gave the integral equations related to the p-adic q-integral. For example, for n ∈N,∫

Zp

xndµq(x) =
q − 1
log q

Bn,q,

where Bn,q are q-Bernoulli numbers.
In [21], Kim defined the generalized q-Bernoulli numbers Bm,χ(q) as

Bm,χ(q) =
∫

X
χ(x)[x]mdµq(x) = lim

N→∞

dpN
−1∑

x=0

[x]mχ(x)
qx

dpN .

The author showed Carlitz’s q-Bernoulli numbers as an integral by the q-analogue µq of the ordinary p-adic
invariant measure.

In [9, 10], bosonic integral was considered from a more physical point of view to the bosonic limit q→ 1
as follows:

I1( f ) = lim
q→1

Iq( f ) =
∫
Zp

f (x)dµ1(x) = lim
N→∞

1
pN

pN
−1∑

x=0

f (x).

Furthermore, it can be considered the fermionic integral in contrast to the conventional ”bosonic” . That is

I−1( f ) =
∫
Zp

f (x)dµ−1(x).

From here, it can be seen that

I−1( f1) + I−1( f ) = 2 f (0),

where f1(x) = f (x + 1). Moreover,

I−1( fn) + (−1)n−1I−1( f ) = 2
n−1∑
x=0

(−1)n−1−x f (x),

where fn(x) = f (x + n) and n ∈ Z+ [8, 11]. For | 1 − q |p< 1, it can be considered fermionic p-adic q-integral
on Zp which is the q-extension of I−1( f ) as follows:

I−q( f ) =
∫
Zp

f (x)dµ−q(x) = lim
N→∞

1
[dpN]−q

pN
−1∑

x=0

f (x)(−q)x.

From here, Kim et al. [9, 31] examined that

qI−q( f1) + I−q( f ) = [2]q f (0). (1)

As known, the higher order Euler polynomials are defined by the generating function to be( 2
et + 1

)r

ext =

∞∑
n=0

Er
n(x)

tn

n!

for positive integer r. When x = 0, Er
n = Er

n(0) are called Euler numbers of order r. In particular, when r = 1,
En(x) = E1

n(x) are called the Euler polynomials. Also, in the case of x = 0 and r = 1, En = E1
n(0) are called
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Euler numbers (see [8, 11, 15, 19, 23, 35, 42]). There are famous scientists working on Euler numbers and
polynomials in several parts of mathematics. For example, in analysis, in statistics, in numerical analysis,
in combinatorics, in number theory, and so on [1, 2, 6, 7, 14, 17, 19, 24, 26, 30, 37, 38].

Recently, different generalizations of Euler numbers are still defined in number theory [23, 26, 28, 36].
In [18, 19], Kim introduced the Euler polynomials of Nörlund type E−r

n (x) as follows:(
et + 1

2

)r

ext =

∞∑
n=0

E−r
n (x)

tn

n!
.

The authors [23, 33] defined the q-Euler numbers as

E0,q = 1, q(qE + 1)n + En,q =

{
[2]q if n = 0,

0 if n , 0, (2)

with the usual convention of replacing En by En,q. These numbers are reduced to En when q = 1. From (2),
it can be also derived

En,q =
[2]q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)l

1 + ql+1
.

In [22], Kim defined the λ-Euler numbers, denoted by En(λ), as∫
Zp

etxλxdµq=−1(x) =
2

λet + 1
=

∞∑
n=0

En(λ)
tn

n!
.

In [25], Kim constructed p-adic q-Euler numbers and polynomials of higher order and defined new
generating functions of multiple q-Euler numbers and polynomials. The author considered the extended
higher order q-Euler numbers by

E(h,k)
m,q =

∫
Zp

...

∫
Zp

[x1 + x2 + ... + xr]m
q qx1(h−1)+x2(h−2)+...+xr(h−r)dµ−q(x1)dµ−q(x2)...dµ−q(xr).

The q-Euler polynomials, denoted as En,q(x), are as follows [5, 12, 23, 31]:

En,q(x) =
∫
Zp

[x + y]n
q dµ−q(y) =

[2]q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)lqxl

1 + ql+1
.

Note that, in the case of x = 0, En,q(0) = En,q.
In [16], Kim showed the systemic study of some families of multiple q−Euler numbers and polynomials.

For n ∈ Z+,

E(r)
n,q(x) = 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)m[m + x]n

q ,

where E(r)
n,q are the q-Euler polynomials of order r ∈N [19, 20].

Kim [20] introduced the modified q-Euler numbers and polynomials. For any non-negative integer n,
the modified q-Euler polynomials εn,q(x) are defined by

εn,q(x) =
∫
Zp

q−y[x + y]n
q dµ−q(y) =

[2]q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)lqxl

1 + ql
.

For x = 0 , εn,q(0) = εn,q are called nth modified q-Euler numbers.
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In [36], Rim and Jeong defined the modified q-Euler polynomials with weight α as follows:

ε̃(α)
n,q(x) =

∫
Zp

q−y[x + y]n
qαdµ−q(y) =

[2]q

(1 − qα)n

n∑
l=0

(
n
l

)
(−1)lqαxl

1 + qαl

for α ∈ Q. For x = 0, ε̃(α)
n,q(0) = ε̃(α)

n,q are called nth modified q-Euler numbers with weight α. Also, these
numbers hold

(qαε̃(α)
q + 1)n + ε̃(α)

n,q =

{
[2]q if n = 0,

0 if n , 0,

with the usual convention about replacing (ε̃(α)
q )n by ε̃(α)

n,q.
In [38], Rim et al. gave another type of modified q-Euler polynomials as

ϵ̃n,q(x) =
∫
Zp

q−y(x + [y]q)ndµ−q(y) =
n∑

l=0

l∑
k=0

(
n
l

)(
l
k

)
[2]qxn−l(

1 − q
)l (1 + qk)

,

where ϵ̃n,q(0) = εn,q.

2. Higher Order q-Euler Numbers and Polynomials

In this section, firstly we define the q-Euler polynomials with order r of the second kind denoted as
Er

n,q(x); the modified q-Euler polynomials with weightα and order r, denoted as ε̃r,(α)
n,q (x); the modified q-Euler

polynomials with weight α and order r of the second kind, denoted as ϵ̃r,(α)
n,q (x). Then using the techniques

of p-adic integral, the method of generating functions, and combinatorial techniques, we will give some
combinatorial identities and sums of these numbers and polynomials. We also obtain some relations related
to them.

Definition 2.1. For non-negative integer n and positive integer r, the q-Euler polynomials with order r are defined
by

Er
n,q(x) =

∫
Zp

· · ·

∫
Zp

[x + x1 + · · · + xr]n
q dµ−q(x1) · · · dµ−q(xr).

For x = 0, Er
n,q(0) = Er

n,q are called the q-Euler numbers with order r.

Definition 2.2. For non-negative integer n, positive integer r, and rational number α, the modified q-Euler polyno-
mials with weight α and order r are defined by

ε̃r,(α)
n,q (x) =

∫
Zp

· · ·

∫
Zp

q−x1−···−xr [x + x1 + · · · + xr]n
qαdµ−q(x1) · · · dµ−q(xr).

In the special case of x = 0, the numbers ε̃r,(α)
n,q (0) = ε̃r,(α)

n,q are called the modified q-Euler numbers with weight α and
order r; for α = 1, ε̃r,(1)

n,q (x) = εr
n,q(x) are called the modified q-Euler polynomials with order r and for x = 0, α = 1,

ε̃r,(1)
n,q (0) = εr

n,q are called the modified q-Euler numbers with order r.

Definition 2.3. For non-negative integer n, positive integer r, and rational number α, the modified q-Euler polyno-
mials with weight α and order r of the second kind are defined by

ϵ̃r,(α)
n,q (x) =

∫
Zp

· · ·

∫
Zp

q−x1−···−xr (x + [x1 + · · · + xr]qα )ndµ−q(x1) · · · dµ−q(xr).

For α = 1, ϵ̃r,(1)
n,q (x) = ϵ̃rn,q(x) is referred to as the modified q-Euler polynomials with order r.
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Lemma 2.4. For real number λ, then∫
Zp

qλydµ−q(y) =
[2]q

1 + qλ+1
. (3)

Proof. For f (y) = qλy in (1), the proof is clear.

Theorem 2.5. For non-negative integer n and positive integer r, then

Er
n,q(x) =

[2]r
q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(1 + ql+1)r
, (4)

εr
n,q(x) =

[2]r
q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(1 + ql)r

and

ϵ̃rn,q(x) = [2]r
q

n∑
l=0

l∑
k=0

(
n
l

)(
l
k

)
xn−l(

1 − q
)l (1 + qk)r

,

where ϵ̃rn,q(0) = ε̃r
n,q.

Proof. We will give the proof of (4). From the definition of q- Euler polynomials with order r and binomial
theorem, we get

Er
n,q(x) =

∫
Zp

· · ·

∫
Zp

[x + x1 + · · · + xr]n
q dµ−q(x1) · · · dµ−q(xr)

=
1

(1 − q)n

∫
Zp

· · ·

∫
Zp

(1 − qx+x1+···+xr )ndµ−q(x1) · · · dµ−q(xr)

=
1

(1 − q)n

∫
Zp

· · ·

∫
Zp

n∑
l=0

(
n
l

)
(−1)lql(x+x1+···+xr)dµ−q(x1) · · · dµ−q(xr)

=

n∑
l=0

(
n
l

)
(−1)l qlx

(1 − q)n

∫
Zp

qlxr · · ·

∫
Zp

qlx2

∫
Zp

qlx1 dµ−q(x1) · · · dµ−q(xr).

With the help of (3), we have

Er
n,q(x) =

n∑
l=0

(
n
l

)
(−1)l qlx

(1 − q)n

[2]q

1 + ql+1

∫
Zp

qlxr · · ·

∫
Zp

qlx2 dµ−q(x2) · · · dµ−q(xr)

=

n∑
l=0

(
n
l

)
(−1)l qlx

(1 − q)n

(
[2]q

1 + ql+1

)2 ∫
Zp

qlxr · · ·

∫
Zp

qlx3 dµ−q(x3) · · · dµ−q(xr)

= · · ·

=
[2]r

q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)lqlx

(1 + ql+1)r
,

as claimed. Other identities can be found in a similar way. So, the proof is complete.
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For example, when x = 0 in Theorem 2.5, it can be seen that

Er
n,q =

[2]r
q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)l

(1 + ql+1)r

and

εr
n,q =

[2]r
q

(1 − q)n

n∑
l=0

(
n
l

)
(−1)l

(1 + ql)r

immediately.

Theorem 2.6. For non-negative integer n and positive integer r, then

ε̃r,(α)
n,q (x) =

[2]r
q(

1 − qα
)n

n∑
l=0

(
n
l

)
(−1)l qαlx

(1 + qαl)r
, (5)

and

ϵ̃r,(α)
n,q (x) = [2]r

q

n∑
l=0

l∑
k=0

(
n
l

)(
l
k

)
xn−l(

1 − qα
)l (1 + qαk)r

where ϵ̃r,(α)
n,q (0) = ε̃r,(α)

n,q .

Proof. These identities can be found similar to way proof of Theorem 2.5.

Theorem 2.7. For non-negative integers n and r > 1, then

ε̃r,(α)
n,q (x + 1) + ε̃r,(α)

n,q (x) = [2]qε̃
r−1,(α)
n,q (x) (6)

and

qEr
n,q(x + 1) + Er

n,q(x) = [2]qEr−1
n,q (x).

Proof. We will prove identity (6). Taking f (x1) = q−x1−x2−···−xr [x + x1 + · · · + xr]n
qα in (1), we write

q
∫
Zp

q−1−x1−x2−···−xr [x + 1 + x1 + · · · + xr]n
qαdµ−q(x1) +

∫
Zp

q−x1−x2−···−xr [x + x1 + · · · + xr]n
qαdµ−q(x1)

= [2]qq−x2−···−xr [x + x2 + · · · + xr]n
qα

and apply p-adic integral of the above equality r − 1 times with respect to x2, · · · , xr, respectively, we have∫
Zp

· · ·

∫
Zp

q−x1−x2−···−xr [x + 1 + x1 + · · · + xr]n
qαdµ−q(x1) · · · dµ−q(xr)

+

∫
Zp

· · ·

∫
Zp

q−x1−x2−···−xr [x + x1 + · · · + xr]n
qαdµ−q(x1) · · · dµ−q(xr)

=[2]q

∫
Zp

· · ·

∫
Zp

q−x2−···−xr [x + x2 + · · · + xr]n
qαdµ−q(x2) · · · dµ−q(xr).

From the definition of the modified q-Euler polynomials with weight α and order r, the identity is obtained.
The proof of other identity is similar to the proof of (6).
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Theorem 2.8. For non-negative integers n and r > 1, then

n∑
k=0

(
n
k

)
xn−kε̃r,(α)

n,q (1) = [2]qϵ̃
r−1,(α)
n,q (x) − ϵ̃r,(α)

n,q (x).

Proof. The proof is similar to the proof of Theorem 2.7.

Theorem 2.9. For non-negative integers n and r ≥ 1, then

qxEr
n,q(x) = εr

n,q(x) − (1 − q)εr
n+1,q(x).

Proof. From definitions of the modified q-Euler polynomials with order r and q-Euler polynomials with
order r, we have

(1 − q)εr
n+1,q(x) =(1 − q)

∫
Zp

· · ·

∫
Zp

q−x1−···−xr [x + x1 + · · · + xr]n+1
q dµ−q(x1) · · · dµ−q(xr)

=

∫
Zp

· · ·

∫
Zp

q−x1−···−xr [x + · · · + xr]n
q
(
1 − qx+x1+···+xr

)
dµ−q(x1) · · · dµ−q(xr)

=

∫
Zp

· · ·

∫
Zp

q−x1−···−xr [x + · · · + xr]n
q dµ−q(x1) · · · dµ−q(xr)

− qx
∫
Zp

· · ·

∫
Zp

[x + x1 + · · · + xr]n
q dµ−q(x1) · · · dµ−q(xr)

=εr
n,q(x) − qxEr

n,q(x),

as claimed.

Theorem 2.10. For non-negative integer n and positive integer r, we have

Er
n,q(x) = [2]r

q

∞∑
m=0

(
m + r − 1

m

)
(−1)mqm[x +m]n

q , (7)

and

ε̃r,(α)
n,q (x) = [2]r

q

∞∑
m=0

(
m + r − 1

m

)
(−1)m[x +m]n

qα . (8)

Proof. We will give proof of (8). From (5) and binomial theorem, we can write

∞∑
n=0

ε̃r,(α)
n,q (x)

tn

n!
=

∞∑
n=0

[2]r
q

(1 − qα)n

n∑
l=0

(
n
l

)
(−1)lqαlx 1(

1 + qαl)r
tn

n!

=

∞∑
n=0

[2]r
q

(1 − qα)n

n∑
l=0

(
n
l

)
(−1)lqαlx

∞∑
m=0

(
m + r − 1

m

)
(−1)mqαlm tn

n!

=[2]r
q

∞∑
n=0

∞∑
m=0

(
m + r − 1

m

)
(−1)m 1

(1 − qα)n

n∑
l=0

(
n
l

)
(−1)lqαl(x+m) tn

n!

=[2]r
q

∞∑
n=0

∞∑
m=0

(
m + r − 1

m

)
(−1)m (1 − qα(x+m))n

(1 − qα)n
tn

n!

=[2]r
q

∞∑
n=0

∞∑
m=0

(
m + r − 1

m

)
(−1)m[x +m]n

qα
tn

n!
.

By equality of two exponential generating functions, we get (8). Similarly, the proof of (7) can be shown.
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Now, we define new type q-Euler polynomials as derive of ε̃r,(α)
n,q (x) and Er

n,q(x). Let exponential generating

functions of these polynomials be denoted as F(r)
q (t, x) and G(r)

q (t, x), respectively. Firstly, we examine

F(r)
q (t, x) =

∞∑
n=0

ε̃r,(α)
n,q (x)

tn

n!
.

By (8), we can write

F(r)
q (t, x) = [2]r

q

∞∑
m=0

(
m + r − 1

m

)
(−1)me[x+m]n

qα t.

Also, from the above equality, we can consider the q-extension of ε̃r,(α)
n,q of Nörlund type, is defined by

F(−r)
q (t, x) =

1
[2]r

q

r∑
m=0

(
r
m

)
e[x+m]n

qα t
=

∞∑
n=0

ε̃−r,(α)
n,q (x)

tn

n!
.

Similarly, we can define the q-extension of Er
n,q(x) of Nörlund type by using (7) as

G(−r)
q (t, x) =

1
[2]r

q

r∑
m=0

(
r
m

)
qme[x+m]n

q t =

∞∑
n=0

E−r
n,q(x)

tn

n!
.

Therefore, we obtain the following corollary:

Corollary 2.11. For non-negative integer n and positive integer r, we have

E−r
n,q(x) =

1
[2]r

q

r∑
m=0

(
r
m

)
qm[x +m]n

q (9)

and

ε̃−r,(α)
n,q (x) =

1
[2]r

q

r∑
m=0

(
r
m

)
[x +m]n

qα . (10)

Proof. Taking r → −r in (7) and (8) and using the generalized binomial theorem, then the identities are
obtained.

Theorem 2.12. For non-negative integer n, then
∞∑

r=0

[2]r
qE−r

n,q(x)
tr

r!
=

1
(1 − q)n

n∑
k=0

(
n
k

)
(−1)kqxke(1+qk+1)t,

and
∞∑

r=0

[2]r
qε̃
−r,(α)
r,q (x)

tr

r!
=

1
(1 − qα)n

n∑
k=0

(
n
k

)
(−1)kqαxke(1+qαk)t. (11)

Proof. We will give proof of (11). From (10) and some combinatorial techniques, we can write
∞∑

r=0

[2]r
qε̃
−r,(α)
r,q (x)

tr

r!
=

∞∑
r=0

r∑
m=0

(
r
m

)
[x +m]n

qα
tr

r!
=

∞∑
r=0

tr

r!

∞∑
r=0

[x + r]n
qα

tr

r!

=et 1
(1 − qα)n

n∑
k=0

(
n
k

)
(−1)kqαxkeqαkt

=
1

(1 − qα)n

n∑
k=0

(
n
k

)
(−1)kqαxke(1+qαk)t,

as claimed. Other identity can be found similar way.
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3. Distribution and Stacks of Zeros of Higher Order Euler Polynomials

In this section, there are some works including interesting phenomenon of ”scattering” of the zeros of
Euler and q-Euler polynomials in complex plane [32, 34, 39–41].

We will show zeros of family of higher order q-Euler polynomials by using MATLAB2021b. We plot
the zeros of the polynomials Er

n,q(x), ε̃r,(α)
n,q (x), and ϵ̃r,(α)

n,q (x) in Figure 1, Figure 2, and Figure 3 for n = 10, 20, 30
and x ∈ C, respectively. Also, stacks of zeros of these polynomials for q = 1/2 and 1 ≤ n ≤ 40 from a 3D
structure are presented in Figure 4. Lastly, we present the distribution of real zeros of them for 1 ≤ n ≤ 20
in Figure 5.

(a) n = 10 (b) n = 20 (c) n = 30
Figure 1: Zeros of E3

n,1/2(x)

(a) n = 10 (b) n = 20 (c) n = 30
Figure 2: Zeros of ε̃3,(3)

n,1/2(x)

(a) n = 10 (b) n = 20 (c) n = 30
Figure 3: Zeros of ϵ̃1,(1)

n,1/2(x)
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(a) Stacks of zeros of E3
n,1/2(x) (b) Stacks of zeros of ε̃3,(3)

n,1/2(x) (c) Stacks of zeros of ϵ̃1,(1)
n,1/2(x)

Figure 4: Stacks of polynomials

(a) Distribution of real zeros E3
n,1/2(x) (b) Distribution of real zeros ε̃3,(3)

n,1/2(x) (c) Distribution of real zeros ϵ̃1,(1)
n,1/2(x)

Figure 5: Distribution of real zeros of polynomials

Table 1 shows numbers of complex and real zeros of Er
n,q(x) for r = 3, q = 1/2, and various values n.

Table 2 shows approximate solutions satisfying the Er
n,q(x) for r = 3, q = 1/2, and various values n. A

highly ordered structure of the complex roots of Er
n,q(x) is observed in Table 1. This numerical study is quite

exciting in combinatorics.
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Table 1: Numbers of complex and real zeros of E3
n,1/2(x).

Degree n Real zeros Complex zeros Degree n Real zeros Complex zeros
1 1 0 21 5 16
2 2 0 22 6 16
3 3 0 23 5 18
4 2 2 24 6 18
5 3 2 25 5 20
6 4 2 26 6 20
7 3 4 27 5 22
8 4 4 28 6 22
9 3 6 29 5 24

10 4 6 30 6 24
11 5 6 31 5 26
12 4 8 32 6 26
13 5 8 33 5 28
14 4 10 34 6 28
15 5 10 35 5 30
16 4 12 36 6 30
17 5 12 37 7 30
18 4 14 38 6 32
19 5 14 39 5 34
20 4 16 40 6 34

Table 2: Approximate solutions of E3
n,1/2(x).

Degree n Values x
1 0.7891032
2 -0.0840745, 1.3291870
3 -0.4605966, 0.2415933, 1.7115022
4 0.5417479, 2.0098701
5 -0.3632635, 0.7957111, 2.2553569
6 -0.6140164, -0.1781407, 1.0135564, 2.4642325
7 0.0056870, 1.2036925, 2.6461660
8 -0.6555541, 0.1699167, 1.3721568, 2.8074013
9 0.3181771, 1.5232866, 2.9522172
10 -0.6086962, 0.4531741, 1.6602661, 3.0836790
11 -0.7014964, -0.5312062, 0.5770020, 1.7854895, 3.2040610
12 -0.4146927, 0.6913118, 1.9007977, 3.3150983
13 -0.7653929, -0.3099667, 0.7974248, 2.0076346, 3.4181460
14 -0.2120978, 0.8964122, 2.1071520, 3.5142826
15 -0.7863637, -0.1203067, 0.9891529, 2.2002835, 3.6043813
16 -0.0338978, 1.0763758, 2.2877954, 3.6891590
17 -0.7911550, 0.0477139, 1.1586914, 2.3703244, 3.7692114
18 0.1250245, 1.2366155, 2.4484056, 3.8450393
19 -0.7800355, 0.1984580, 1.3105878, 2.5224921, 3.9170677
20 0.2683798, 1.3809860, 2.5929716, 3.9856602
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[3] Ö. Duran, S. Koparal, N. Ömür, Applications of degenerate q-Euler and q-Changhee polynomials with weight α, Acta et Commentationes
Universitatis Tartuensis de Mathematica 26(2) (2022), 253–264.

[4] L. Euler, Introductio in analysin in nitorum, Apud Marcum-Michaelem Bousquet & Socios, (1748).
[5] L. C. Jang, T. Kim, H. K. Park, A note on q-Euler and Genocchi numbers, Proceedings of the Japan Academy, Series A, Mathematical

Sciences 77(8) (2001), 139–141.
[6] D. S. Kim, T. Kim, Some p-adic integrals onZp associated with trigonometric functions, Russian Journal of Mathematical Physics 25(3)

(2018), 300–308.
[7] D. S. Kim, T. Kim, J. Kwon, S. H. Lee, S. Park, On λ-linear functionals arising from p-adic integrals on Zp, Advances in Difference

Equations 2021(1) (2021), 479.
[8] T. Kim, A note on p-adic invariant integral in the rings of p-adic integers, Advanced Studies in Contemporary Mathematics 13(1)

(2006), 95–99.
[9] T. Kim, A note on p-adic q-integral on Zp associated with q-Euler numbers, Advanced Studies in Contemporary Mathematics 15

(2007), 133–137.
[10] T. Kim, A note on some formulae for the q-Euler numbers and polynomials, Proceedings of the Jangjeon Mathematical Society 9(2)

(2006), 227–232.
[11] T. Kim, A note on the q-Genocchi numbers and polynomials, Journal of Inequalities and Applications 2007 (2007), 1–8.
[12] T. Kim, A note on q-Volkenborn integration, Proc. Jangjeon Math. Soc 8 (2005), 13–17.
[13] T. Kim, An invariant p-adic q-integral on Zp, Applied Mathematics Letters 21(2) (2008), 105–108.
[14] T. Kim, Analytic continuation of q-Euler numbers and polynomials, Applied Mathematics Letters 21(12) (2008), 1320–1323.
[15] T. Kim, Barnes’ type multiple degenerate Bernoulli and Euler polynomials, Applied Mathematics and Computation 258 (2015), 556–564.
[16] T. Kim, Barnes-type multiple q-zeta functions and q-Euler polynomials, Journal of Physics A: Mathematical and Theoretical 43(25)

(2010), 255201.
[17] T. Kim, New approach to q-Euler polynomials of higher order, Russian Journal of Mathematical Physics 17(2) (2010), 218–225.
[18] T. Kim, Note on the Euler q-zeta functions, Journal of Number Theory 129(7) (2009), 1798–1804.
[19] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Zp, Russian

Journal of Mathematical Physics 16(4) (2009), 484–491.
[20] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp. Math. 16 (2008), 161–170.
[21] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, Journal of Number Theory 76(2) (1999), 320–329.
[22] T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Zp at q = −1., Journal of Mathematical

Analysis and Applications 331(2) (2007), 779–792.
[23] T. Kim, On the q-extension of Euler and Genocchi numbers, Journal of Mathematical Analysis and Applications 326(2) (2007),

1458–1465.
[24] T. Kim, On the von Staudt-Clausen theorem for q-Euler numbers, Russian Journal of Mathematical Physics 20(1) (2013), 33–38.
[25] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, Journal of Nonlinear Mathematical Physics 14(1) (2007),

15–27.
[26] T. Kim, q-generalized Euler numbers and polynomials, Russian Journal of Mathematical Physics 13(3) (2006), 293–298.
[27] T. Kim, q-Volkenborn integration, Russian Journal of Mathematical Physics 9(3) (2002), 288–299.
[28] T. Kim, D. S. Kim, A new approach to fully degenerate Bernoulli numbers and polynomials, Filomat 37(7) (2023), 2269–2278.
[29] T. Kim, D. S. Kim, J. W. Park, Fully degenerate Bernoulli numbers and polynomials, Demonstratio Mathematica 55(1) (2022), 604–614.
[30] T. Kim, K. H. Kim, D. S. Kim, Some identities on degenerate hyperbolic functions arising from p-adic integrals onZp, AIMS Mathematics

8(11) (2023), 25443–25453.
[31] T. Kim, M. S. Kim, L. C. Jang, S. H. Rim, New q-Euler numbers and polynomials associated with p-adic q-integrals, Advanced Studies

in Contemporary Mathematics 15 (2007), 140–153.
[32] T. Kim, C. S. Ryoo, Some identities for Euler and Bernoulli polynomials and their zeros, Axioms 7(3) (2018), 56.
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