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Abstract. In this research, our objective is to formulate a unique identity for Milne-type inequalities
involving for functions of two variables having convexity on co-ordinates over [µ, υ]× [ω,κ]. By employing
this identity, we establish some new inequalities of the Milne-type for co-ordinated convex functions.
Furthermore, the propose identity strengthens the theoretical basis of mathematical inequalities showcasing
its significance in various fields.

1. Introduction and Preliminaries

Convexity is a fundamental mathematical concept originating from ancient Greek philosophy. It gained
significant traction in the late 19th century with the introduction of convex functions by German mathemati-
cian Karl Hermann Amandus Schwarz [1]. Recently, convexity has applications in economics, engineering,
computer science, and mathematics, particularly in optimization problems and inequalities [2, 3]. Extensive
research indicates a strong relationship between convexity theory and integral inequalities, emphasizing
their key functions in differential equations and applied mathematics. This relationship is essential because
of the wide range of applications and significant impact of integral inequalities. The understanding of
mathematical concepts is strengthened by investigating a variety of inequalities, such as Gronwall, Simp-
son’s type, Chebyshev, Jensen, Holder, Milne, and Hermite-Hadamard inequality. It is suggested that those
who are interested in learning more about these inequalities and their applications in real-world scenarios
visit references [4–16].
The subsequent definitions will be extensively employed in this study.

Definition 1.1. [17] A mapping Φ : ∆→ R is convex on the co-ordinates, if the following inequality holds:

Φ(tµ + (1 − t)υ, tω + (1 − t)κ) ≤ tΦ(µ,ω) + (1 − t)Φ(υ,κ)

for all (µ,ω), (υ,κ) ∈ ∆ and t ∈ [0, 1].

A modification for convex functions on co-ordinates, which are also known as co-ordinated convex func-
tions, was introduced by Dragomir [17, 18] as follows:
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Definition 1.2. A function Φ : ∆ ⊂ R2
→ R is convex on the coordinates on ∆. If the partial mappings

Φy : [µ, υ]→ R, Φy(u) = Φ(u, y)

and

Φx : [ω,κ]→ R, Φx(v) = Φ(x, v)

are convex, where defined for all y ∈ [ω,κ] and x ∈ [µ, υ].

A formal definition for the co-ordinated convex functions stated as:

Definition 1.3. [19] A mapping Φ : ∆ → R is said to be co-ordinated convex on ∆, for all (µ, υ), (ω,κ) ∈ ∆ and
t, s ∈ [0, 1], then the following inequality holds:

Φ(tµ + (1 − t)ω, sυ + (1 − s)κ) ≤ tsΦ(µ, υ) + t(1 − s)Φ(µ,κ) + (1 − t)sΦ(ω, υ) + (1 − t)(1 − s)Φ(ω,κ).

If Φ is a co-ordinated concave on ∆ then the above inequality hold in reverse direction.

Theorem 1.4. Suppose that Φ : ∆ ⊂ R2
→ R is convex on the co-ordinates on ∆. Then one has the inequalities:

Φ
(µ + υ

2
,
ω + κ

2

)
≤

1
(υ − µ)(κ − ω)

∫ υ

µ

∫ κ

ω
Φ(x, y)dydx ≤

Φ(µ,ω) + Φ(υ,ω) + Φ(µ,κ) + Φ(υ,κ)
4

.

The inequalities mentioned above are precise.
The Milne-type inequality, a mathematical inequality focusing on estimating integrals, was established in
the early twentieth century by British mathematician Edward Arthur Milne. This inequality, named after
Milne, has acquired importance in mathematical inequalities due to its versatility and broad applications
in optimisation theory, physics, and engineering [20–22].
The explanations provided by Dragomir and Agarwal about the mathematical analysis of errors related to
the trapezoidal formula are highly significant and are covered in [23]. Kirmaci also used convex functions
to define error bounds for the midpoint and trapezoidal formulas [24]. Budak et al. reported results for sev-
eral function classes in [25], which investigates Milne-type inequalities for fractional integrals, presenting
theoretical insights enriched by specific examples and graphical representations. Error bounds for Milne’s
formula in fractional and classical calculus have been obtained by Ali et al. [26], with specific applications
to differentiable convex functions. Bakula and Pecaric have investigated Jensen’s inequality for convex
functions on coordinates within a rectangular plane [27]. Hezenci [28] introduce Hermite-Hadamard type
inequalities for differentiable co-ordinated (s1, s2)-convex functions and provide additional inequalities that
apply to Riemann-Liouville fractional integrals and k-Riemann-Liouville fractional integrals. Özdemir et
al. [29] have identified Hadamard-type inequalities by investigating co-ordinated quasi-convexity. For
extended s-convex functions, Xi et al. [30] gave some Hermite-Hadamard type integral inequalities on the
co-ordinates in a rectangle. By employing Riemann-Liouville fractional integrals, in R2 rectangle plane
Sarikaya [31] present Hermite–Hadamard-type for co-ordinated convex functions, additionally proving an
integral identity for fractional integrals. Erden and Sarikaya have proved novel inequalities of Hermite-
Hadamard and Ostrowski types, tailored for convex functions defined on the co-ordinates within a rectan-
gular region in the plane [32]. Farid et al. established the Fejer-Hadamard inequality for convex functions
on coordinates within a plane’s rectangular region. Additionally, they explore certain mappings associated
with this inequality [33]. Latif and Dragomir [34] have formulated various novel inequalities applicable to
two-variable differentiable coordinated convex and concave functions. These inequalities are particularly
associated with the left side of the Hermite-Hadamard type inequality concerning co-ordinated convex
functions in two variables. Kara et al. [35] have concluded novel additions of the Hermite-Hadamard-Fejér
type inequality for the product of two interval-valued functions with coordinated convexity. By leveraging
properties of exponentially convex m-and (α,m)-convex functions on the co-ordinates Aslan et al. [36] have
reported novel classes of convexity, m-and (α,m)-exponentially convex functions on the co-ordinates.
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Numerous research papers have explored generalizations and new formulations of inequalities, employ-
ing various types of convex functions. Various inequalities and results concerning co-ordinated convex
functions, readers are encouraged to consult [37–47].

This study establishes and discusses a Milne-type inequality for coordinated convex functions. The
main objective of this study, to prove a Milne-type inequality for convex functions on co-ordinates.

Main Results

To establish our main results, we need the following lemma.

Lemma 1.5. Suppose thatΦ : ∆ ⊂ R2
→R be a partial differentiable mapping on ∆ = [µ, υ]× [ω,κ]. If ∂

2Φ
∂t∂s ∈ L(∆),

then the equality holds:

Ω(µ, υ;ω,κ) = (υ − µ)(κ − ω)
∫ 1

0

∫ 1

0
P(x, t)Q(y, s)

∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)dtds

where

Ω(µ, υ;ω,κ) =
4Φ(µ,ω) + 4Φ(υ,ω) + 4Φ(µ,κ) + 4Φ(υ,κ)

9

−
2Φ(µ, ω+κ2 ) + 2Φ(υ, ω+κ2 ) −Φ(µ+υ2 , ω+κ2 ) + 2Φ(µ+υ2 , ω) + 2Φ(µ+υ2 ,κ)

9

−
1

3(υ − µ)

∫ υ

µ

[
2Φ(x, ω) −Φ

(
x,
ω + κ

2

)
+ 2Φ(x,κ)

]
dx

−
1

3(κ − ω)

∫ κ

ω

[
2Φ(µ, y) −Φ

(µ + υ
2

, y
)
+ 2Φ(υ, y)

]
dy

+
1

(υ − µ)(κ − ω)

∫ υ

µ

∫ κ

ω
Φ(x, y)dydx,

P(x, t) =


(t − 2

3 ), for t ∈ [0, 1
2 )

(t − 1
3 ), for t ∈ ( 1

2 , 1]

and

Q(y, s) =


(s − 2

3 ), for s ∈ [0, 1
2 )

(s − 1
3 ), for s ∈ ( 1

2 , 1].

Proof. By definition of P, we can write∫ 1

0

∫ 1

0
P(x, t)Q(y, s)

∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)dtds

=

∫ 1

0
Q(y, s)

∫ 1
2

0

(
t −

2
3

)
∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)dt

+

∫ 1

1
2

(
t −

1
3

)
∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)dt

 ds.

By using integration by parts, we acquire∫ 1

0

∫ 1

0
P(x, t)Q(y, s)

∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)dtds
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=

∫ 1

0
Q(y, s)


[(

1
µ − υ

) (
t −

2
3

)
∂Φ
∂s

(tµ + (1 − t)υ, sc + (1 − s)κ)
] 1

2

0

−
1

µ − υ

∫ 1
2

0

∂Φ
∂s

(tµ + (1 − t)υ, sω + (1 − s)κ)dt

+

[(
1

µ − υ

) (
t −

1
3

)
∂Φ
∂s

(tµ + (1 − t)υ, sω + (1 − s)κ)
]1

1
2

−
1

µ − υ

∫ 1

1
2

∂Φ
∂s

(tµ + (1 − t)υ, sω + (1 − s)κ) dt

 ds

=
1

υ − µ

[
1
6

∫ 1
2

0

(
s −

2
3

)
∂Φ
∂s

(µ + υ
2

, sω + (1 − s)κ
)

ds +
1
6

∫ 1

1
2

(
s −

1
3

)
∂Φ
∂s

(µ + υ
2

, sω + (1 − s)κ
)

ds

−
2
3

∫ 1
2

0

(
s −

2
3

)
∂Φ
∂s

(υ, sω + (1 − s)κ)ds −
2
3

∫ 1

1
2

(
s −

1
3

)
∂Φ
∂s

(υ, sω + (1 − s)κ)ds

+

∫ 1
2

0

∫ 1
2

0

(
s −

2
3

)
∂Φ
∂s

(tµ + (1 − t)υ, sω + (1 − s)κ)dsdt

+

∫ 1
2

0

∫ 1

1
2

(
s −

1
3

)
∂Φ
∂s

(tµ + (1 − t)υ, sω + (1 − s)κ)dsdt

−
2
3

∫ 1
2

0

(
s −

2
3

)
∂Φ
∂s

(µ, sω + (1 − s)κ)ds −
2
3

∫ 1

1
2

(
s −

1
3

)
∂Φ
∂s

(µ, sω + (1 − s)κ)ds

+
1
6

∫ 1
2

0

(
s −

2
3

)
∂Φ
∂s

(µ + υ
2

, sω + (1 − s)κ
)

ds +
1
6

∫ 1

1
2

(
s −

1
3

)
∂Φ
∂s

(µ + υ
2

, sω + (1 − s)κ
)

ds

+

∫ 1
2

0

∫ 1

1
2

(
s −

2
3

)
∂Φ
∂s

(tµ + (1 − t)υ, sω + (1 − s)κ)dsdt

+

∫ 1

1
2

∫ 1

1
2

(
s −

2
3

)
∂Φ
∂s

(tµ + (1 − t)υ, sω + (1 − s)κ)dsdt
]
.

After computing these integral and using the change of the variable x = tµ + (1 − t)υ and y = sω + (1 − s)κ
for (t, s) ∈ [0, 1], then multiplying both sides with (υ − µ)(κ − ω), we have the required result.

Theorem 1.6. Let assume that the conditions of Lemma 1.5 hold. If
∣∣∣ ∂2Φ
∂t∂s

∣∣∣ is co-ordinated convex on ∆, then the
following inequality holds:

|Ω(µ, υ;ω,κ)| ≤
25(υ − µ)(κ − ω)

576

[∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,ω)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,κ)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,ω)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,κ)

∣∣∣∣∣∣
]
.

Proof. By taking the absolute value of Lemma 1.5, then it becomes

|Ω(µ, υ;ω,κ)| ≤ (υ − µ)(κ − ω)
∫ 1

0

∫ 1

0
|p(x, t)q(y, s)|

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣ dtds. (1)

Since
∣∣∣ ∂2Φ
∂t∂s

∣∣∣ is co-ordinated convex , then we have∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣
≤ ts

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,ω)

∣∣∣∣∣∣ + t(1 − s)

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,κ)

∣∣∣∣∣∣ + (1 − t)s

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,ω)

∣∣∣∣∣∣ + (1 − t)(1 − s)

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,κ)

∣∣∣∣∣∣ .
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Utilizing the given fact that, we get∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣ dtds (2)

≤

25
[∣∣∣ ∂2Φ
∂t∂s (µ,ω)

∣∣∣ + ∣∣∣ ∂2Φ
∂t∂s (µ,κ)

∣∣∣ + ∣∣∣ ∂2Φ
∂t∂s (υ,ω)

∣∣∣ + ∣∣∣ ∂2Φ
∂t∂s (υ,κ)

∣∣∣]
576

.

By using (2) in (1), then we attain required inequality.

Theorem 1.7. Let assume that the conditions of Lemma 1.5 is hold. If ∂2Φ
∂t∂s is bounded, i.e,∣∣∣∣∣∣

∣∣∣∣∣∣ ∂2Φ

∂t∂s

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

= sup
(x,y)∈(µ,υ)×(ω,κ)

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(x, y)

∣∣∣∣∣∣ < ∞
for all (t, s) ∈ [0, 1], then the following inequality holds:

|Ω(µ, υ;ω,κ)| ≤
25(υ − µ)(κ − ω)

144

∣∣∣∣∣∣
∣∣∣∣∣∣ ∂2Φ

∂t∂s

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.

Proof. By using the Lemma 1.5 and utilizing the property of modulus, we acquire

|Ω(µ, υ;ω,κ)| ≤ (υ − µ)(κ − ω)
∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣ dtds.

Since
∣∣∣ ∂2Φ
∂t∂s

∣∣∣ is bounded, we have

|Ω(µ, υ;ω,κ)| ≤ (υ − µ)(κ − ω)

∣∣∣∣∣∣
∣∣∣∣∣∣ ∂2Φ

∂t∂s

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|dtds. (3)

After some calculation, we find∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|dtds =

25
144

. (4)

By using (4) in (3), it yields

|Ω(µ, υ;ω,κ)| ≤
25(υ − µ)(κ − ω)

144

∣∣∣∣∣∣
∣∣∣∣∣∣ ∂2Φ

∂t∂s

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.

Therefore, we have concluded the proof.

Theorem 1.8. Let assume that the conditions of Lemma 1.5 hold. If
∣∣∣ ∂2Φ
∂t∂s

∣∣∣q , q > 1 is co-ordinated convex on ∆, then
one has the inequality

|Ω(µ, υ;ω,κ)| ≤
(υ − µ)(κ − ω)

4

(
(4p+1

− 1)2

9p+1(p + 1)2

) 1
p

∣∣∣ ∂2Φ
∂t∂s (µ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (µ,κ)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,κ)

∣∣∣q
4


1
q

,

where 1
p +

1
q = 1.
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Proof. Through the utilization of the familiar Hölder inequality in the context of a double integral, we have

|Ω(µ, υ;ω,κ)|

≤ (υ − µ)(κ − ω)
(∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|pdsdt

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣q dsdt
) 1

q

.

Since
∣∣∣ ∂2Φ
∂t∂s

∣∣∣q is co-ordinated convex function on ∆, then we have

(∫ 1

0

∫ 1

0

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣q dsdt
) 1

q

(5)

≤

(∫ 1

0

∫ 1

0

{
ts

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,ω)

∣∣∣∣∣∣q + t(1 − s)

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,κ)

∣∣∣∣∣∣q
+ (1 − t)s

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,ω)

∣∣∣∣∣∣q + (1 − t)(1 − s)

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,κ)

∣∣∣∣∣∣q
}

dsdt
) 1

q

=


∣∣∣ ∂2Φ
∂t∂s (µ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (µ,κ)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,κ)

∣∣∣q
4


1
q

.

We also have(∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|pdsdt

) 1
p

=

(
(4p+1

− 1)2

4p9p+1(p + 1)2

) 1
p

. (6)

By combining (5) and (6), then we obtained required result.

Theorem 1.9. Let assume that the conditions of Lemma 1.5 hold. If
∣∣∣ ∂2Φ
∂t∂s

∣∣∣q , q ≥ 1 is co-ordinated convex on ∆, then
the following inequality holds:

|Ω(µ, υ;ω,κ)| ≤ (υ − µ)(κ − ω)
( 25

144

)1− 1
q

25
[∣∣∣ ∂2Φ
∂t∂s (µ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (µ,κ)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,κ)

∣∣∣q]
576


1
q

.

Proof. From Lemma 1.5, we can write

|Ω(µ, υ;ω,κ)| ≤ (υ − µ)(κ − ω)
∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣ dtds.

By implementation of the Power Mean inequality tailored for double integrals, we can assert

|Ω(µ, υ;ω,κ)| ≤(υ − µ)(κ − ω)
(∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|dsdt

)1− 1
q

(7)

×

(∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣q dsdt
) 1

q

.

Since
∣∣∣ ∂2Φ
∂t∂s

∣∣∣q is co-ordinated convex on ∆, then we have∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣q
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≤ ts

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,ω)

∣∣∣∣∣∣q + t(1 − s)

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(µ,κ)

∣∣∣∣∣∣q + (1 − t)s

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,ω)

∣∣∣∣∣∣q + (1 − t)(1 − s)

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(υ,κ)

∣∣∣∣∣∣q
and, thus we obtain(∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|

∣∣∣∣∣∣ ∂2Φ

∂t∂s
(tµ + (1 − t)υ, sω + (1 − s)κ)

∣∣∣∣∣∣q dsdt
) 1

q

(8)

≤

25
[∣∣∣ ∂2Φ
∂t∂s (µ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (µ,κ)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,κ)

∣∣∣q]
576


1
q

.

By using the fact that(∫ 1

0

∫ 1

0
|P(x, t)Q(y, s)|dsdt

)1− 1
q

=
( 25

144

)1− 1
q

(9)

Hence, by using (8) and (9) in (7), we get

|Ω(µ, υ;ω,κ)| ≤ (υ − µ)(κ − ω)
( 25

144

)1− 1
q

25
[∣∣∣ ∂2Φ
∂t∂s (µ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (µ,κ)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,ω)

∣∣∣q + ∣∣∣ ∂2Φ
∂t∂s (υ,κ)

∣∣∣q]
576


1
q

.

In consequence, we have completed the proof.

2. Conclusion

Milne-type inequalities are widely recognized in mathematical analysis and optimization theory. In this
investigation, we proposed a novel identity of Milne-type inequalities for functions of two variables, having
convexity on co-ordinates over the domain [µ, υ] × [ω,κ]. Leveraging this identity, we unveiled several
results for Milne-type inequalities. This study is the first to derive Milne-type inequalities specifically for
co-ordinated convex functions. In future research, authors may seek to explore the possibility of extending
our results by investigating alternative classes of convex functions or exploring different types of fractional
integral operators.
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[29] M. E. Özdemir, C. Yildiz, A. O. Akdemir, On some new Hadamard-type inequalities for co-ordinated quasi-convex functions, Hacettepe

Journal of Mathematics and Statistics, 41(5) (2012), 697-707.
[30] B. Y. Xi, J. Hua, F. Qi, Hermite–Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle, Journal of

Applied Analysis, 20(1) (2014), 29-39.
[31] M. Z. Sarikaya, On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms

and Special Functions, 25(2) (2014), 134-147.
[32] S. Erden, M. Z. Sarikaya, On the Hermite-Hadamard’s and Ostrowski’s inequalities for the co-ordinated convex functions, New Trends in

Mathematical Sciences, 5(3) (2017), 33-45.
[33] G. Farid, M. Marwan, A. U. Rehman, Fejer-Hadamard inequlality for convex functions on the co-ordinates in a rectangle from the plane,

International Journal of Analysis and Applications, 10(1) (2016), 40-47.
[34] M. A. Latif, S. S. Dragomir, On some new inequalities for differentiable co-ordinated convex functions, Journal of Inequalities and

Applications, 2012(1), 1-13.
[35] H. Kara, H. Budak, M. A. Ali, M. Z. Sarikaya, Y. M. Chu, Weighted Hermite–Hadamard type inclusions for products of co-ordinated

convex interval-valued functions, Advances in Difference Equations, 2021(1), 1-16.
[36] S. Aslan, A. O. Akdemir, M. A. Dokuyucu, Exponentially m-and (α,m)-Convex Functions on the Coordinates and Related Inequalities,

Turkish Journal of Science, 7(3) (2022), 231-244.
[37] A. Akkurt, M. Z. Sarıkaya, H. Budak, H. Yıldırım, On the Hadamard’s type inequalities for co-ordinated convex functions via fractional

integrals, Journal of King Saud University-Science, 29(3) (2017), 380-387.
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[43] M. E. Özdemir, E. Set, M. Z. Sarikaya, Some new Hadamard type inequalities for co-ordinated m-convex and (α,m)-convex functions,

Hacettepe journal of mathematics and statistics, 40(2) (2011), 219-229.
[44] M. Z. Sarikaya, H. Budak, H. Yaldiz, Some new Ostrowski type inequalities for co-ordinated convex functions, Turkish Journal of

Analysis and Number Theory, 2(5) (2014), 176-182.



A. Shehzadi et al. / Filomat 38:23 (2024), 8295–8303 8303

[45] R. Xiang, F. Chen, On some integral inequalities related to Hermite-Hadamard-Fejér inequalities for co-ordinated convex functions, Chinese
Journal of Mathematics, 2014, 796132.

[46] H. Kalsoom, M. A. Ali, M. Abbas, H. Budak, G. Murtaza, Generalized quantum Montgomery identity and Ostrowski type inequalities
for preinvex functions, TWMS Journal of Pure And Applied Mathematics, 13(1) (2022), 72-90.

[47] M. Z. Sankaya, E. Set, M. E. Ozdemir, S. S. Dragomir, New some Hadamard’s type inequalities for co-ordinated convex functions, Tamsui
Oxford Journal of Information & Mathematical Sciences (TOJIMS), 28(2) (2012).


