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Some properties of pointwise k-slant submanifolds of Kähler manifolds
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Abstract. We study some properties of pointwise k-slant submanifolds of almost Hermitian manifolds with
a special view towards Kähler manifolds. In particular, we characterize the integrability of the component
distributions, treating also the totally geodesic case.

1. Introduction and Preliminaries

Slant and pointwise slant submanifolds, introduced by Chen[3] and Etayo[5] (see also [4]), respectively,
have been intensively investigated in different geometries. Recently, Laţcu [7] defined the more general
notions of k-slant and pointwise k-slant submanifold of an almost product Riemannian, an almost Hermitian,
and an almost contact or paracontact metric manifold, involving the decomposition of the tangent bundle
of a submanifold into a sum of orthogonal slant or pointwise slant distributions. It’s to be mentioned that
Ronsse[8] and Chen[2, 3] considered, in the almost Hermitian case, the orthogonal decomposition of the
tangent space in a point of a submanifold into the direct sum of the eigenspaces corresponding to the square
of the tangential component of the structural tensor field. Accordingly, the submanifold was called[8] a
generic submanifold, or, under some restrictions, a skew CR submanifold.

In this paper, we focus on some properties of pointwise k-slant submanifolds of almost Hermitian
manifolds, with a special view toward the Kähler case. More precisely, we characterize the integrability
of the component distributions, and we obtain some properties of such submanifolds with parallel tensor
fields, discussing also the totally geodesic case.

Let (M̄, 1) be a Riemannian manifold, and let φ be a (1, 1)-tensor field on M̄. We recall that (M̄, φ, 1) is
said to be an almost Hermitian manifold if

φ2 = −I and 1(φ·, φ·) = 1,

which further gives
1(φ·, ·) = −1(·, φ·).

If the structural endomorphism φ satisfies ∇̄φ = 0, where ∇̄ is the Levi-Civita connection of 1, then M̄ is
called a Kähler manifold.
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For a submanifold M of an almost Hermitian manifold (M̄, φ, 1) defined by an injective immersion, we
will denote the induced metric on M also with 1 and by ∇ the Levi-Civita connection on M. The Gauss and
Weingarten equations are:

∇̄XY = ∇XY + h(X,Y) and ∇̄XV = −AVX + ∇⊥XV

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h is the second fundamental form and A is the shape operator,
related by 1(h(X,Y),V) = 1(AVX,Y).

We have the orthogonal decomposition

TM̄ = TM ⊕ T⊥M,

and, for all X ∈ Γ(TM) and V ∈ Γ(T⊥M), we will write:

φX = TX +NX and φV = tV + nV,

where TX, NX and tV, nV stand for the tangent and the normal component of φX and φV, respectively.

2. Pointwise k-slant submanifolds of almost Hermitian manifolds

We recall that a distribution D ⊆ TM is called a pointwise slant distribution if, at each point p ∈ M, the
angle θ(p) between φXp andDp is nonzero and independent of the choice of the tangent vector Xp ∈ Dp\{0}
(but it depends on p ∈M). In this case, the function θ is called the slant function.

Definition 2.1. [7] A submanifold M, defined by an injective immersion, of an almost Hermitian manifold (M̄, φ, 1)
is said to be a pointwise k-slant submanifold of M̄ (k ∈N∗) if there exist some orthogonal smooth regular distributions,
D0,D1, . . . ,Dk, satisfying:

(i) TM = D0 ⊕D1 ⊕ · · · ⊕ Dk;
(ii) T(Di) ⊆ Di for any i ∈ {1, . . . , k};
(iii)D0 is invariant (or even trivial) andDi, i ∈ {1, . . . , k}, are nontrivial, pointwise slant distributions with their

slant functions θi, θi(p) ∈ (0, π2 ] for p ∈ M and i ∈ {1, . . . , k}, which are pointwise distinct (i.e., θi(p) , θ j(p) for all
p ∈M and i , j).

Conventionally, we will denote by θ0 the null angle, i.e., the ”slant” angle of the invariant distribution
D0 (ifD0 is not trivial).

We notice [7] that the condition (ii) from the Definition 2.1 is equivalent to: φ(Di)⊥D j for all i , j,
i, j ∈ {1, . . . , k}.

The slant functions θi are continuous (even smooth, under a certain assumption) [6], and, for all
X ∈ Γ(Di) \ {0} and p ∈ M, the angle θi(p) between φXp and TpM coincides with the angle between
φXp and (Di)p, and it satisfies

cosθi(p) · ∥φXp∥ = ∥TXp∥.

If θi is constant for all i ∈ {1, . . . , k}, then the submanifold M is called a k-slant submanifold [7], so all the
results for pointwise k-slant submanifolds are also valid for k-slant submanifolds.

Now, we will construct an example of a pointwise k-slant submanifold and one of a k-slant submanifold
of a Kähler manifold.

Example 2.2. Let us consider the Kähler manifold
(
R6k, φ, ⟨·, ·⟩

)
, k ≥ 2, with the standard Euclidean metric ⟨·, ·⟩ and

φ given by

φ

(
∂
∂ui

)
= −

∂
∂vi
, φ

(
∂
∂vi

)
=
∂
∂ui
,

where (u1, v1, . . . ,u3k, v3k) are the canonical coordinates inR6k. We consider the submanifold M ofR6k defined by the
immersion

f : {z = (x1, x2, y1, . . . , y2k−1) ∈ R2k+1 : ∥z∥ < 1, x1 > 0, x2 > 0} → R6k,
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f (x1, x2, y1, . . . , y2k−1) :=
(
x1 cos y1, x2 cos y1, x1 sin y1, x2 sin y1, x1, x2, y2,

1
2

y2
2, y2 + y3, y2 − y3, y3,

1
2

y2
3, . . . ,

(k − 1)y2k−2,
1
2

y2
2k−2, y2k−2 + y2k−1, y2k−2 − y2k−1, (k − 1)y2k−1,

1
2

y2
2k−1

)
.

Then, TM is spanned by

X1 = cos y1
∂
∂u1
+ sin y1

∂
∂u2
+
∂
∂u3
,

X2 = cos y1
∂
∂v1
+ sin y1

∂
∂v2
+
∂
∂v3
,

X3 = −x1 sin y1
∂
∂u1
− x2 sin y1

∂
∂v1
+ x1 cos y1

∂
∂u2
+ x2 cos y1

∂
∂v2
,

X2i = (i − 1)
∂
∂u3i−2

+ y2i−2
∂
∂v3i−2

+
∂
∂u3i−1

+
∂
∂v3i−1

,

X2i+1 =
∂
∂u3i−1

−
∂
∂v3i−1

+ (i − 1)
∂
∂u3i

+ y2i−1
∂
∂v3i

for i ∈ {2, 3, . . . , k}. We notice that X1,X2, . . . ,X2k+1 are mutually orthogonal.
Applying φ to the base vector fields of TM, we get

φX1 = − cos y1
∂
∂v1
− sin y1

∂
∂v2
−
∂
∂v3
,

φX2 = cos y1
∂
∂u1
+ sin y1

∂
∂u2
+
∂
∂u3
,

φX3 = −x2 sin y1
∂
∂u1
+ x1 sin y1

∂
∂v1
+ x2 cos y1

∂
∂u2
− x1 cos y1

∂
∂v2
,

φX2i = y2i−2
∂
∂u3i−2

− (i − 1)
∂
∂v3i−2

+
∂
∂u3i−1

−
∂
∂v3i−1

,

φX2i+1 = −
∂
∂u3i−1

−
∂
∂v3i−1

+ y2i−1
∂
∂u3i

− (i − 1)
∂
∂v3i

for i ∈ {2, 3, . . . , k}. We immediately obtainφX1 = −X2 andφX2 = X1; therefore, the distributionD0 = Span{X1,X2}

is an invariant distribution. Also, we have∣∣∣〈φX2i,X2i+1
〉∣∣∣∥∥∥φX2i

∥∥∥ · ∥X2i+1∥
=

∣∣∣〈φX2i+1,X2i
〉∣∣∣∥∥∥φX2i+1

∥∥∥ · ∥X2i∥
=

2√(
2 + (i − 1)2 + y2

2i−2

) (
2 + (i − 1)2 + y2

2i−1

) ;

hence, since X2i and X2i+1 are orthogonal, the distribution Di = Span{X2i,X2i+1}, i ∈ {2, 3, . . . , k}, is a pointwise
slant distribution with the slant function defined by

θi( f (x1, x2, y1, . . . , y2k−1)) = arccos
2√(

2 + (i − 1)2 + y2
2i−2

) (
2 + (i − 1)2 + y2

2i−1

) .
By a direct computation, we find〈

φX3,X1
〉
=

〈
φX3,X2

〉
=

〈
φX3,X3

〉
=

〈
φX3,X2i

〉
=

〈
φX3,X2i+1

〉
= 0

for any i ∈ {2, 3, . . . , k}, and so the distributionD1 = Span{X3} is an anti-invariant distribution.
Therefore, we can conclude that M is a pointwise k-slant submanifold of the Kähler manifold

(
R6k, φ, ⟨·, ·⟩

)
.
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Example 2.3. The submanifold obtained by replacing 1
2 y2

j with y j, j ∈ {2, 3, . . . , 2k − 1}, in the expression of the

immersion from the previous example is a k-slant submanifold of the standard Kähler manifold
(
R6k, φ, ⟨·, ·⟩

)
, with

the slant angles

θi = arccos
2

3 + (i − 1)2

for the slant distributionsDi, i ∈ {2, 3, . . . , k}, respectively, and θ1 =
π
2 forD1.

If M is a pointwise k-slant submanifold of an almost Hermitian manifold (M̄, φ, 1), then we have the
following decompositions [7] of the tangent and normal bundles of M:

TM = ⊕k
i=0Di, T⊥M = ⊕k

i=1N(Di) ⊕H,

where φ(H) = H. Let Pi be the projection from TM onto Di, i ∈ {0, . . . , k}, Qi be the projection from T⊥M
onto N(Di), i ∈ {1, . . . , k}, and Q0 be the projection from T⊥M onto H. Then, any X ∈ Γ(TM) and V ∈ Γ(T⊥M)
can be written as:

X =
k∑

i=0

PiX, V =
k∑

i=0

QiV.

By a direct computation, we immediately obtain (see also [7]) the following

Lemma 2.4. If M is a pointwise k-slant submanifold of an almost Hermitian manifold (M̄, φ, 1), then:

(i) 1(TX,Y) = −1(X,TY), 1(NX,V) = −1(X, tV), 1(nV,W) = −1(V,nW)

for all X,Y ∈ Γ(TM) and V,W ∈ Γ(T⊥M);

(ii) T2 = −

k∑
i=0

cos2 θi · Pi, n2 = −

k∑
i=0

cos2 θi ·Qi;

(iii) 1(TX,TY) =
k∑

i=0

cos2 θi · 1(PiX,PiY), 1(NX,NY) =
k∑

i=1

sin2 θi · 1(PiX,PiY)

for all X,Y ∈ Γ(TM).

3. On the integrability of the component distributions

For a pointwise k-slant submanifold M of an almost Hermitian manifold (M̄, φ, 1), we will denote
TM = ⊕k

i=0Di. Similarly to the almost contact metric case[1], the integrability of the component distributions
Di, i ∈ {0, . . . , k}, can be characterized in the Kähler case as follows.

We recall that a distribution D is called integrable if [X,Y] ∈ Γ(D) for all X,Y ∈ Γ(D), and completely
integrable if ∇XY ∈ Γ(D) for all X,Y ∈ Γ(D).

Theorem 3.1. If M is a pointwise k-slant submanifold of a Kähler manifold (M̄, φ, 1), then:
(i) for i ∈ {0, . . . , k},Di is an integrable distribution if and only if

1(X,∇YZ) = 1(Y,∇XZ)

for all X,Y ∈ Γ(Di) and Z ∈ Γ(D j), j ∈ {0, . . . , k} with j , i;
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(ii)D0 is an integrable distribution if and only if

h(X,TY) = h(TX,Y)

for all X,Y ∈ Γ(D0);
(iii) for i ∈ {0, . . . , k} with θ j(p) , π2 for all p ∈M and j , i, j ∈ {0, . . . , k},Di is an integrable distribution if and

only if
∇XTY − ∇YTX + ANXY − ANYX ∈ Γ(Di)

for all X,Y ∈ Γ(Di).

Proof. We have
∇̄XφY = φ(∇̄XY)

for all X, Y ∈ Γ(TM), and, using Gauss and Weingarten equations, we get

∇XTY + h(X,TY) = T(∇XY) +N(∇XY) + ANYX − ∇⊥XNY + th(X,Y) + nh(X,Y)

=

k∑
i=0

TPi(∇XY) +
k∑

i=1

NPi(∇XY) + ANYX − ∇⊥XNY + th(X,Y) + nh(X,Y).

Identifying the tangent and the normal components in the previous relation, we obtain:

∇XTY =
k∑

i=0

TPi(∇XY) + ANYX + th(X,Y),

h(X,TY) =
k∑

i=1

NPi(∇XY) − ∇⊥XNY + nh(X,Y)

for all X, Y ∈ Γ(TM).
The distribution Di is integrable if and only if 1([X,Y],Z) = 0 for all X,Y ∈ Γ(Di) and Z ∈ Γ(D j),

j ∈ {0, . . . , k}with j , i. Since 1([X,Y],Z) = 1(X,∇YZ) − 1(Y,∇XZ), we get (i).
Let X,Y ∈ Γ(D0). Then, NX = NY = 0, and we obtain

h(X,TY) − h(TX,Y) =
k∑

i=1

NPi[X,Y].

If the distributionD0 is integrable, then [X,Y] ∈ Γ(D0); therefore, Pi[X,Y] = 0 for all i ∈ {1, . . . , k}, hence
the conclusion. Conversely, if h(X,TY) = h(TX,Y) for all X,Y ∈ Γ(D0), then

∑k
i=1 NPi[X,Y] = 0, hence

Pi[X,Y] = 0 for all i ∈ {1, . . . , k}, and we get (ii).
Let X,Y ∈ Γ(Di). Then, we obtain

T[X,Y] = T(∇XY) − T(∇YX) = ∇XTY − ∇YTX + ANXY − ANYX.

If the distributionDi is integrable, then [X,Y] ∈ Γ(Di); therefore, T[X,Y] ∈ Γ(Di), hence the conclusion.
Conversely, if ∇XTY − ∇YTX + ANXY − ANYX ∈ Γ(Di), then T[X,Y] ∈ Γ(Di), and, since θ j(p) , π2 for all

p ∈M and j , i, we get (iii).

In particular, for a totally geodesic submanifold (i.e., for h = 0), we deduce

Corollary 3.2. If M is a totally geodesic pointwise k-slant submanifold of a Kähler manifold (M̄, φ, 1), then:
(i)D0 is an integrable distribution;
(ii) for i ∈ {0, . . . , k} with θ j(p) , π2 for all p ∈ M and j , i, j ∈ {0, . . . , k},Di is an integrable distribution if and

only if
∇XTY − ∇YTX ∈ Γ(Di)

for all X,Y ∈ Γ(Di).



A.M. Blaga, D.R. Laţcu / Filomat 38:23 (2024), 8111–8119 8116

For a submanifold M of an almost Hermitian manifold (M̄, φ, 1) defined by an injective immersion, by
using the Gauss and Weingarten equations, for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), we obtain:

(∇̄Xφ)Y = ∇XTY − T(∇XY) − ANYX − th(X,Y) + ∇⊥XNY −N(∇XY) + h(X,TY) − nh(X,Y),
(∇̄Xφ)V = ∇XtV − t(∇⊥XV) − AnVX + T(AVX) + ∇⊥XnV − n(∇⊥XV) + h(X, tV) +N(AVX).

Denoting:

(∇XT)Y := ∇XTY − T(∇XY), (∇XN)Y := ∇⊥XNY −N(∇XY),
(∇Xt)V := ∇XtV − t(∇⊥XV), (∇Xn)V := ∇⊥XnV − n(∇⊥XV)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), by identifying the tangent and the normal components in the Kähler
case, we get the following

Lemma 3.3. If (M̄, φ, 1) is a Kähler manifold, then, for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), we have:
(i) (∇XT)Y = ANYX + th(X,Y);
(ii) (∇XN)Y = −h(X,TY) + nh(X,Y);
(iii) (∇Xt)V = AnVX − T(AVX);
(iv) (∇Xn)V = −h(X, tV) −N(AVX).
Moreover, if M is totally geodesic, then we get: ∇T = 0, ∇N = 0, ∇t = 0, and ∇n = 0.

We recall that a (1, 1)-tensor field J on M is called parallel if (∇X J)Y = 0 for all X,Y ∈ Γ(TM). We will
characterize the property of T and N to be parallel tensor fields as follows.

Proposition 3.4. If (M̄, φ, 1) is a Kähler manifold, then:
(i) ∇T = 0 is equivalent to: ANYX = ANXY for all X,Y ∈ Γ(TM);
(ii) ∇N = 0 is equivalent to any of the following assertions:

(1) h(TX,Y) = h(X,TY) for all X,Y ∈ Γ(TM);
(2) T(AVX) = −AV(TX) for all X ∈ Γ(TM) and V ∈ Γ(T⊥M);
(3) AnVX = −AV(TX) for all X ∈ Γ(TM) and V ∈ Γ(T⊥M).

Proof. Since T is skew-symmetric, the condition ∇T = 0 is equivalent to: (∇XT)Y = (∇YT)X for all
X,Y ∈ Γ(TM), which, by means of Lemma 3.3 (i), is equivalent to: ANYX = ANXY for all X,Y ∈ Γ(TM),
and we get (i).

We shall prove now:

∇N = 0 =⇒ (1) =⇒ (2) =⇒ ∇N = 0 and ∇N = 0 =⇒ (3) =⇒ (1).

If ∇N = 0, we immediately get (1) from Lemma 3.3 (ii). So,

1(AV(TX),Y) = 1(h(TX,Y),V) = 1(h(X,TY),V) = 1(AVX,TY) = −1(T(AVX),Y)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), and we obtain (2). Further,

1(h(X,TY),V) = 1(AVTY,X) = −1(T(AVY),X) = 1(AVY,TX) = 1(h(TX,Y),V)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M); hence, from Lemma 3.3 (ii), we obtain (∇XN)Y = (∇YN)X for all
X,Y ∈ Γ(TM), which, since N is skew-symmetric, is equivalent to: ∇N = 0.

Also, ∇N = 0 is equivalent to h(X,TY) = nh(X,Y) for all X,Y ∈ Γ(TM); hence,

1(AV(TY),X) = 1(h(X,TY),V) = 1(nh(X,Y),V) = −1(h(X,Y),nV) = −1(AnVY,X)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), and we deduce (3). Further,

1(h(TX,Y),V) = 1(AV(TX),Y) = −1(AnVX,Y) = −1(h(X,Y),nV) = −1(AnVY,X) = 1(AV(TY),X) = 1(h(X,TY),V)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), hence (1).
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Theorem 3.5. Let M be a pointwise k-slant submanifold of a Kähler manifold (M̄, φ, 1). If ∇T = 0, then:
(i)D0 and ⊕k

i=1Di are completely integrable distributions;
(ii) for i ∈ {0, . . . , k} with θ j(p) , π2 for all p ∈ M and j , i, j ∈ {0, . . . , k},Di is an integrable distribution if and

only if, for all X,Y ∈ Γ(Di),
∇XTY − ∇YTX ∈ Γ(Di);

(iii) either M is a (D0,D0)-totally geodesic submanifold of M̄ (i.e., h(X,Y) = 0 for all X,Y ∈ Γ(D0)), or (−1) is
an eigenvalue of n2, and, for X,Y ∈ Γ(D0), any nonzero h(X,Y) is an eigenvector for it.

Proof. For all X ∈ Γ(TM) and Y ∈ Γ(D0), we have

0 = (∇̄Xφ)Y = −N(∇XY) + h(X,TY) − φh(X,Y)

from Gauss and Weingarten equations, which, for all X ∈ Γ(TM) and Y ∈ Γ(D0), implies

k∑
i=1

NPi(∇XY) = h(X,TY) − φh(X,Y).

Since ∇T = 0, we have th(X,Y) = 0 for all X ∈ Γ(TM) and Y ∈ Γ(D0), so

1(φh(X,Y),Z) = −1(h(X,Y), φZ) = −1(h(X,Y),NZ) = 1(th(X,Y),Z) = 0

for all X,Z ∈ Γ(TM) and Y ∈ Γ(D0). On the other hand, for Y ∈ Γ(D0), we have TY ∈ Γ(D0), which gives
1(h(X,TY),NZ) = 0, and we obtain

∥∥∥∥N
( k∑

i=1

Pi(∇XY)
)∥∥∥∥2
= 1

(
h(X,TY),N

( k∑
i=1

Pi(∇XY)
))
− 1

(
φh(X,Y),

k∑
i=1

NPi(∇XY)
)
= 0

for all X ∈ Γ(TM) and Y ∈ Γ(D0). Since

1(NX,NX) =
k∑

i=1

sin2 θi · 1(PiX,PiX)

for all X ∈ Γ(TM), we have ∥∥∥∥N
( k∑

i=1

Pi(∇XY)
)∥∥∥∥2
=

k∑
i=1

sin2 θi ·

∥∥∥∥Pi(∇XY)
∥∥∥∥2
,

and, from the fact that θi is nowhere zero, we obtain Pi(∇XY) = 0 for any i ∈ {1, . . . , k}, which implies
∇XY ∈ Γ(D0) for all X ∈ Γ(TM), Y ∈ Γ(D0); hence, the distributionD0 is completely integrable.

Also, for any X ∈ Γ(TM) and Y ∈ Γ(⊕k
i=1Di), we have ∇XY ∈ Γ(⊕k

i=1Di) since

1(∇XY,Z) = −1(Y,∇XZ) = 0

for all Z ∈ Γ(D0). Therefore, we obtain (i).
If the distributionDi is integrable, then, for all X,Y ∈ Γ(Di), we have T[X,Y] ∈ Γ(Di), which implies

∇XTY − ∇YTX = T(∇XY − ∇YX) ∈ Γ(Di).

Conversely, if ∇XTY − ∇YTX ∈ Γ(Di) for all X,Y ∈ Γ(Di), then

T[X,Y] = ∇XTY − ∇YTX ∈ Γ(Di).

Applying T, we get
∑k

j=0 cos2 θ j · P j[X,Y] ∈ Γ(Di) from Lemma 2.4 (ii), and, taking into account the orthog-
onality of the distributions and the fact that θ j(p) , π2 for all p ∈ M and j ∈ {0, . . . , k} with j , i, we obtain
(ii).
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Now, sinceD0 is completely integrable, from the Kähler condition, we deduce

nh(X,Y) − h(X,TY) = −N(∇XY) = 0

for all X,Y ∈ Γ(D0). Writing this relation for TY instead of Y, we get

n2h(X,Y) = −h(X,Y)

for all X,Y ∈ Γ(D0), and we obtain (iii).

Theorem 3.6. Let M be a pointwise k-slant submanifold of a Kähler manifold (M̄, φ, 1). If ∇N = 0, then:
(i) M is a (D0,Di)-mixed totally geodesic submanifold of M̄ (i.e., h(X,Y) = 0 for all X ∈ Γ(D0) and Y ∈ Γ(Di))

for i ∈ {1, . . . , k};
(ii) for i ∈ {0, . . . , k}, either M is a (Di,Di)-totally geodesic submanifold of M̄, or (− cos2 θi) is an eigenvalue

function of n2, and, for X,Y ∈ Γ(Di), any nonzero h(X,Y) is an eigenvector for it;
(iii) for i ∈ {0, . . . , k}, either h(X,Y) = 0 for any X ∈ Γ(Di) and Y ∈ Γ(TM), or (− cos2 θi) is an eigenvalue

function of T2, and, for X ∈ Γ(Di) and V ∈ Γ(T⊥M), any nonzero AVX is an eigenvector for it.

Proof. Since ∇N = 0, we have h(X,TY) = nh(X,Y) for all X,Y ∈ Γ(TM), which implies

n2h(X,Y) = − cos2 θi · h(X,Y)

for all Y ∈ Γ(Di). For X,Y ∈ Γ(Di), we deduce (ii). For X ∈ Γ(D0) and Y ∈ Γ(Di), we obtain

n2h(X,Y) = n2h(Y,X) = nh(Y,TX) = h(Y,T2X) = −h(Y,X) = −h(X,Y),

and we get
sin2 θi · h(X,Y) = 0,

hence (i).
Applying T to the relation from Proposition 3.4 (ii)(2), we infer

T2(AVX) = AV(T2X)

for all X ∈ Γ(TM) and V ∈ Γ(T⊥M); therefore, for all X ∈ Γ(Di), we have

T2(AVX) = − cos2 θi · AVX,

and we get (iii).

Theorem 3.7. Let M be a connected pointwise k-slant submanifold of an almost Hermitian manifold (M̄, φ, 1). Then:
(i) ∇T2 = 0 if and only if M is a k-slant submanifold, and ∇ restricts toDi (i.e., ∇XY ∈ Γ(Di) for all X ∈ Γ(TM)

and Y ∈ Γ(Di)) for any i ∈ {0, . . . , k};
(ii) for i ∈ {0, . . . , k}, (∇XT2)Y = (∇YT2)X for all X,Y ∈ Γ(Di) if and only ifDi is a slant, integrable distribution.

Furthermore, if T2 is a Codazzi tensor field onDi for all i ∈ {0, . . . , k}, then M is a k-slant submanifold.

Proof. (i) Following the same steps as in [1], we obtain

(∇XT2)Y = −
k∑

i=0

X(cos2 θi)PiY +
∑

0≤i, j≤k

(cos2 θi − cos2 θ j)Pi(∇XP jY)

for all X,Y ∈ Γ(TM). Taking into account the orthogonality of the distributions, the condition ∇T2 = 0 is
equivalent to:

k∑
j=0

(cos2 θi − cos2 θ j)Pi(∇XP jY) − X(cos2 θi)PiY = 0
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for all X,Y ∈ Γ(TM) and any i ∈ {0, . . . , k}. We get

X(cos2 θi)Y = 0

for all X ∈ Γ(TM) and Y ∈ Γ(Di), i ∈ {0, . . . , k}, hence θi is constant for all i ∈ {1, . . . , k} (so M is a k-slant
submanifold). Also, Pi(∇XY) = 0 for all Y ∈ Γ(D j), i , j; hence, ∇ restricts to D j for any j ∈ {0, . . . , k}. The
converse implication follows immediately since ∇XP jY ∈ Γ(D j) for all X,Y ∈ Γ(TM) and any j ∈ {0, . . . , k}.

(ii) On the other hand, for all X,Y ∈ Γ(TM), we get

(∇XT2)Y − (∇YT2)X =
k∑

j=0

P j

(
− X(cos2 θ j)Y + Y(cos2 θ j)X

)
−

k∑
j=0

P j

( k∑
l=0

cos2 θl(∇XPlY − ∇YPlX)
)

+

k∑
j=0

P j

(
cos2 θ j(∇XY − ∇YX)

)
.

In particular, for X,Y ∈ Γ(Di), we obtain

(∇XT2)Y − (∇YT2)X =
(
− X(cos2 θi)Y + Y(cos2 θi)X

)
−

k∑
j=0

P j

(
cos2 θi(∇XY − ∇YX)

)
+

k∑
j=0

P j

(
cos2 θ j(∇XY − ∇YX)

)
,

and we deduce that (∇XT2)Y = (∇YT2)X for all X,Y ∈ Γ(Di) if and only if{
X(cos2 θi)Y − Y(cos2 θi)X = 0
(cos2 θ j − cos2 θi)P j[X,Y] = 0

for all X,Y ∈ Γ(Di) and j , i. The first assertion is equivalent to the fact that θi is a constant, and the second
one, since θi and θ j are pointwise distinct for i , j, is equivalent to the integrability ofDi.

Hence, we recovered in Theorem 3.7 (i) a known result proved by Chen[2].
In particular, from the proof of Theorem 3.7, we deduce

Corollary 3.8. Let M be a k-slant submanifold of an almost Hermitian manifold (M̄, φ, 1). Then:
(i) for i ∈ {0, . . . , k},Di is completely integrable if and only if (∇XT2)Y = 0 for all X,Y ∈ Γ(Di);
(ii) for i ∈ {0, . . . , k},Di is integrable if and only if (∇XT2)Y = (∇YT2)X for all X,Y ∈ Γ(Di).
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