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Some properties of pointwise k-slant submanifolds of Kahler manifolds
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Abstract. We study some properties of pointwise k-slant submanifolds of almost Hermitian manifolds with

a special view towards Kahler manifolds. In particular, we characterize the integrability of the component
distributions, treating also the totally geodesic case.

1. Introduction and Preliminaries

Slant and pointwise slant submanifolds, introduced by Chen[3] and Etayo[5] (see also [4]), respectively,
have been intensively investigated in different geometries. Recently, Latcu[7] defined the more general
notions of k-slant and pointwise k-slant submanifold of an almost product Riemannian, an almost Hermitian,
and an almost contact or paracontact metric manifold, involving the decomposition of the tangent bundle
of a submanifold into a sum of orthogonal slant or pointwise slant distributions. It’s to be mentioned that
Ronsse[8] and Chen[2, 3] considered, in the almost Hermitian case, the orthogonal decomposition of the
tangent space in a point of a submanifold into the direct sum of the eigenspaces corresponding to the square
of the tangential component of the structural tensor field. Accordingly, the submanifold was called [8] a
generic submanifold, or, under some restrictions, a skew CR submanifold.

In this paper, we focus on some properties of pointwise k-slant submanifolds of almost Hermitian
manifolds, with a special view toward the Kdhler case. More precisely, we characterize the integrability

of the component distributions, and we obtain some properties of such submanifolds with parallel tensor
fields, discussing also the totally geodesic case.

Let (M, g) be a Riemannian manifold, and let ¢ be a (1, 1)-tensor field on M. We recall that (M, ¢, g) is
said to be an almost Hermitian manifold if

@*=-I and g(¢-,¢) = g,

which further gives
9(p-,") = —g(, -).

If the structural endomorphism ¢ satisfies Vo = 0, where V is the Levi-Civita connection of g, then M is
called a Kihler manifold.
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For a submanifold M of an almost Hermitian manifold (M, ¢, g) defined by an injective immersion, we
will denote the induced metric on M also with g and by V the Levi-Civita connection on M. The Gauss and
Weingarten equations are:

VXY =VxY + h(X, Y) and VXV =-AyX+ V')L<V

forall X, Y e I(TM) and V € I'(T*M), where h is the second fundamental form and A is the shape operator,
related by g(h(X, Y), V) = g(AvX,Y).
We have the orthogonal decomposition

TM=TMa&T"M,
and, for all X € T(TM) and V € I'(T+M), we will write:
X =TX+NX and @V =tV +nV,

where TX, NX and tV, nV stand for the tangent and the normal component of pX and ¢V, respectively.

2. Pointwise k-slant submanifolds of almost Hermitian manifolds

We recall that a distribution O C TM is called a pointwise slant distribution if, at each point p € M, the
angle 0(p) between ¢X, and D, is nonzero and independent of the choice of the tangent vector X,, € D,\{0}
(but it depends on p € M). In this case, the function 0 is called the slant function.

Definition 2.1. [7] A submanifold M, defined by an injective immersion, of an almost Hermitian manifold (M, ¢, g)
is said to be a pointwise k-slant submanifold of M (k € IN*) if there exist some orthogonal smooth regular distributions,
Do, Dn, ..., Dy, satisfying:

HTM =Dy D1 ®--- & Dy;

(i) T(D;) € D; foranyie{l,...,k};

(iii) Dy is invariant (or even trivial) and D, i € {1, ...k}, are nontrivial, pointwise slant distributions with their
slant functions 0;, 0;(p) € (0, 3] for p € Mand i € {1,...,k}, which are pointwise distinct (i.e., 0;(p) # 0;(p) for all
peEMandi# j).

Conventionally, we will denote by 6y the null angle, i.e., the “slant” angle of the invariant distribution
Dy (if Dy is not trivial).

We notice [7] that the condition (ii) from the Definition 2.1 is equivalent to: ¢(9;)LD; for all i # j,
i,jefl,... kb

The slant functions 6; are continuous (even smooth, under a certain assumption) [6], and, for all
X € T(D) \ {0} and p € M, the angle 0i(p) between ¢X, and T,M coincides with the angle between
pX, and (D;),, and it satisfies

cos 0i(p) - llpXll = ITX,|l.

If 6; is constant for all i € {1,...,k}, then the submanifold M is called a k-slant submanifold [7], so all the

results for pointwise k-slant submanifolds are also valid for k-slant submanifolds.

Now, we will construct an example of a pointwise k-slant submanifold and one of a k-slant submanifold
of a Kghler manifold.

Example 2.2. Let us consider the Kihler manifold (IR6k, o, ~)), k > 2, with the standard Euclidean metric (-, -) and

@ given by
0 D A
P\ow) ™ "0 P\ow:) ™ our’

where (11,01, . .., Usk, V3) are the canonical coordinates in R®. We consider the submanifold M of R defined by the
immersion
filz=@1x, 91, Y1) € RF ozl < 1,30 > 0,20 > 0 > R,
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. : 1, 1,
FOer,x2, Y1, Yakr) = (¥1 €08 Y1, X2 cO8 Y1, X1 Sin Y1, X2 sin Y1, X1, X2, o, SV Y2t Y Y2 = Y3 Y3 5 Vs

1 1
(k= Dyax—2, 3 Yoror Yok-2 + Yok, Yok—a — Yokt (k= D)yok-1, Eyi"‘l)'

Then, TM is spanned by
X1 = cos + sin J
1= Vi5— E Vi5— S 51{3,
X, = cos + sin i
2 = Vi5— 90, Vi5— 90, 3?13’

0
X3 = —x1siny; =— — Xp Sin y; — + X1 COS /1 =—— + X COS 11 =——
Y Juy y Juq y Juy Y vy’

J J J J
Xoi=(@G—-1 + 1o +
2= ) Uzi—2 vz 23U3i—2 duzi-1  Jvzing
J J J
Xoit1 = s oy + (- 1) + Yoi1 g

forie{2,3,... k. Wenotice that X1, Xo, ..., Xok+1 are mutually orthogonal.
Applying @ to the base vector fields of TM, we get

. ) 3

Xy = cosy1a o sr1y1av2 50,

om s 2 L2

(% 2—C05y18 +smyla ™ 31/13,

. 9 9 ) Kl
PpAR3 = JCzsll’lyl8 +X1811’1y18 +X2COS]/18 ™ X1 cosylgvz,

J . d 0 0

PXai = Yaiva duzi_» - 1)9031 " 91131 - 3031
0 0

©Xoiy1 = — - — + Yoii15— —( -15— 9031

forie(2,3,...,k}. Weimmediately obtain pX; = —X, and X, = X, therefore, the distribution Dy = Span{X;, X5}
is an invariant distribution. Also, we have

|<g0X2,',X2,'+1>| _ |<(PX2i+1/X2i>| _ 2 .
x| - 1Xaaall [l Xaian]] - 11Xl \/(2 FE-12402,) (24 (- 12+ ygi_l)’

hence, since Xp; and Xpi1 are orthogonal, the distribution D; = Span{Xy;, Xzi+1}, i € {2,3,..

., k}, is a pointwise
slant distribution with the slant function defined by

2
(2+G-12+12,)(2+G-1)2+ y%l._l)'

0i(f(x1,%2, Y1, .., Y2k-1)) = arccos

By a direct computation, we find

(pX3,X1) = (pX3, X2) = (X3, X3) = (X3, X2i) = (9X3, Xoi+1) =0

forany i€ (2,3,...,k}, and so the distribution Dy = Span{X3} is an anti-invariant distribution.
Therefore, we can conclude that M is a pointwise k-slant submanifold of the Kihler manifold (]R6k, o, -)).
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Example 2.3. The submanifold obtained by replacing %y? with y;, j € {2,3,...,2k — 1}, in the expression of the

immersion from the previous example is a k-slant submanifold of the standard Kihler manifold (]R6k, ,<, -)), with

the slant angles
2

3+ ({—-1)?
for the slant distributions D;, i € {2,3, ...k}, respectively, and 01 = 7 for D.

0; = arccos

If M is a pointwise k-slant submanifold of an almost Hermitian manifold M, e, g), then we have the
following decompositions [7] of the tangent and normal bundles of M:

™ =&, D;, T*M =& N(D)®H

where ¢(H) = H. Let P; be the projection from TM onto D;, i € {0,...,k}, Q; be the projection from T*M
onto N(D;),i € {1,...,k}, and Qp be the projection from T-M onto H. Then, any X € I'(TM) and V € I(T*M)

can be written as: . .
X = ZP,-X, V= ZQiV.
i=0 i=0

By a direct computation, we immediately obtain (see also [7]) the following
Lemma 2.4. If M is a pointwise k-slant submanifold of an almost Hermitian manifold (M, ¢, g), then:

(0) g(TX,Y) = —g(X,TY), g(NX,V)=—g(X,tV), gnV,W)=—g(V,nW)

forall X, Y e T(TM) and V, W € T(T*M);

k k
- Z cos®0; - Py, n* = - Z cos® 0; - Q;
i=0

i=0

k k
(iii) g(TX, TY) = Y cos6; - g(PiX,P;Y), g(NX,NY) =Y sin’0; - g(PiX,P;Y)
i=0 i=1

forall X,Y € I'(TM).

3. On the integrability of the component distributions

For a pointwise k-slant submanifold M of an almost Hermitian manifold (M, ©,9), we will denote
TM = &' D;. Similarly to the almost contact metric case[1], the integrability of the component distributions
D;,i€{0,...,k}, can be characterized in the Kahler case as follows.

We recall that a distribution D is called integrable if [X, Y] € I'(D) for all X, Y € I'(D), and completely
integrable if VxY € I'(D) for all X, Y € I'(D).

Theorem 3.1. If M is a pointwise k-slant submanifold of a Kiihler manifold (M, ¢, g), then:
(i) fori € |{0,...,k}, D; is an integrable distribution if and only if

9(X,VyZ) = g(Y,VxZ)

forall X,Y e T(Dy) and Z € T(D;), j € {0, ..., k} with j # i;
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(ii) Dy is an integrable distribution if and only if
h(X, TY) = h(TX,Y)

forall X,Y € T'(Dy);
(iii) for i € {0, ..., k} with 0,(p) # 5 forallp € Mand j # i, j € {0, ..., k}, D; is an integrable distribution if and
only if
VxTY = VyTX + AnxY — AnyX € F(@z)

forall X,Y € I'(D;).

Proof. We have ) )
VxpY = ¢(VxY)

for all X, Y € I'(TM), and, using Gauss and Weingarten equations, we get

VXTY +h(X, TY) = T(VxY) + N(VxY) + AxyX = VENY + th(X, Y) + nh(X, Y)

k k
= Z TP;(VxY) + Z NP,(VxY) + AxyX — VENY + th(X, Y) + nh(X, Y).

i=0 i=1

Identifying the tangent and the normal components in the previous relation, we obtain:

k
Vi TY = Z TPi(VxY) + AnyX + th(X, Y),
i=0

k
WX, TY) = Z NP/(VxY) - VENY + nh(X, Y)
i=1
forall X, Y € I'(TM).
The distribution D; is integrable if and only if g([X,Y],Z) = 0 for all X,Y € I'(D;) and Z € T(D;),
j€{0,...,k} with j # i. Since g([X, Y], Z) = 9(X, VyZ) — g(Y, VxZ), we get (i).
Let X, Y € I'(Dy). Then, NX = NY = 0, and we obtain

k
WX, TY) — i(TX,Y) = Z NP[X, Y].
i=1
If the distribution D is integrable, then [X, Y] € I'(Dy); therefore, P;[X, Y] = 0 for alli € {1,...,k}, hence
the conclusion. Conversely, if (X, TY) = W(TX,Y) for all X,Y € I'(Dy), then Zle NP;[X,Y] = 0, hence
Pi[X,Y] =0forallie({l,...,k}, and we get (ii).
Let X, Y € T'(D;). Then, we obtain

T[X, Y] = T(ny) - T(VyX) =VxTY — VyTX + AnxY — Any X

If the distribution 9; is integrable, then [X, Y] € I'(D;); therefore, T[X, Y] € I'(D;), hence the conclusion.
Conversely, if VxTY — VyTX + AnxY — AnyX € (D), then T[X, Y] € I'(D;), and, since 0;(p) # 5 for all
p € Mand j # i, we get (iii). [

In particular, for a totally geodesic submanifold (i.e., for k = 0), we deduce

Corollary 3.2. If M is a totally geodesic pointwise k-slant submanifold of a Kiihler manifold (M, ¢, g), then:
(i) Dy is an integrable distribution;
(i) for i € {0, ..., k} with 6,(p) # 5 forallp € Mand j # i, j €{0,...,k}, D; is an integrable distribution if and
only if
VxTY - VyTX e T(D;)

forall X, Y e IT'(Dy).



A.M. Blaga, D.R. Latcu / Filomat 38:23 (2024), 8111-8119 8116

For a submanifold M of an almost Hermitian manifold (M, ¢, g) defined by an injective immersion, by
using the Gauss and Weingarten equations, for any X, Y € I'(TM) and V € I'(T*M), we obtain:
(Vx@)Y = VXTY = T(VxY) — AnyX — th(X, Y) + Vx{NY = N(VxY) + i(X, TY) — nh(X,Y),
(Vx@)V = VxtV — (V5 V) = Ay X + T(AyX) + VxnV — n(V V) + h(X, tV) + N(Ay X).

Denoting;:
(VxT)Y := VXxTY — T(VxY), (VxN)Y := V§NY - N(VxY),
(Vxt)V := VxtV — t(V;V), (Vxn)V = V§nV - n(V§V)

forall X, Y € I'(TM) and V € I'(T*M), by identifying the tangent and the normal components in the Kihler
case, we get the following

Lemma 3.3. If (M, ¢, g) is a Kiihler manifold, then, for all X,Y € T(TM) and V € T(T*+M), we have:
(1) (VxT)Y = ANy X + th(X, Y);
(ii) (VxN)Y = =h(X, TY) + nh(X, Y);
(iii) (Vxt)V = A,wX — T(AvX);
(iv) (Vxn)V = —h(X,tV) = N(AvX).
Moreover, if M is totally geodesic, then we get: VT =0, VN =0, Vt =0, and Vn = 0.

We recall that a (1,1)-tensor field | on M is called parallel if (Vx])Y = 0 for all X,Y € I'(TM). We will
characterize the property of T and N to be parallel tensor fields as follows.

Proposition 3.4. If (M, ¢, g) is a Kiihler manifold, then:
(i) VT = 0 is equivalent to: AnyX = AnxY forall X, Y € T(TM);
(ii) VN = 0 is equivalent to any of the following assertions:
(1) (TX,Y) = h(X, TY) for all X, Y € T(TM);
(2) T(AvX) = —Ay(TX) for all X € T(TM) and V € I(T*M);
(3) ApwX = —Ay(TX) for all X € T(TM) and V € T(T-M).

Proof. Since T is skew-symmetric, the condition VT = 0 is equivalent to: (VxT)Y = (VyT)X for all
X,Y € I(TM), which, by means of Lemma 3.3 (i), is equivalent to: AnyX = AnxY for all X, Y € I'(TM),
and we get (i).

We shall prove now:

VN=0= (1) = (2) = VN=0and VN=0= (3) = (1).
If VN = 0, we immediately get (1) from Lemma 3.3 (ii). So,
gAV(TX),Y) = g((TX,Y), V) = g(h(X, TY), V) = g(AvX, TY) = —g(T(AvX), Y)
forall X, Y e I(TM) and V € T(T*M), and we obtain (2). Further,
gh(X, TY), V) = g(AvTY, X) = —g(T(AvY), X) = g(AvY, TX) = g((TX,Y), V)

for all X,Y € T(TM) and V € T'(T*M); hence, from Lemma 3.3 (ii), we obtain (VxN)Y = (VyN)X for all
X,Y € I'(TM), which, since N is skew-symmetric, is equivalent to: VN = 0.
Also, VN = 0is equivalent to i(X, TY) = nh(X,Y) for all X, Y € I'(TM); hence,

gAV(TY), X) = gh(X, TY), V) = gh(X,Y), V) = —g((X, Y),nV) = —g(Aw Y, X)
forall X,Y € T(TM) and V € I'(T+M), and we deduce (3). Further,
gJTX,Y),V) = g(Av(TX),Y) = —g(AwX,Y) = —g(W(X, Y),nV) = —g(Aw Y, X) = g(Av(TY), X) = g(h(X, TY), V)
forall X,Y € I(TM) and V € T(T*M), hence (1). O
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Theorem 3.5. Let M be a pointwise k-slant submanifold of a Kiihler manifold (M, ¢, g). If VT = 0, then:
(i) Dy and &_ D; are completely integrable distributions;
(i) for i € {0, ..., k} with 6;(p) # 5 forallp € Mand j # i, j €{0,...,k}, D; is an integrable distribution if and
only if, for all X, Y € I'(D),
VxTY = VyTX € T(D;);

(iii) either M is a (Do, Dy)-totally geodesic submanifold of M (i.e., h(X,Y) = 0 for all X, Y € T(Dy)), or (-1) is
an eigenvalue of n?, and, for X, Y € T(Dy), any nonzero h(X, Y) is an eigenvector for it.

Proof. For all X € I'(TM) and Y € I'(Dy), we have
= (Vx@)Y = =N(VxY) + (X, TY) — ph(X,Y)
from Gauss and Weingarten equations, which, for all X € I'(TM) and Y € I'(9Dy), implies
k
Z NP;(VxY) = h(X, TY) — ph(X, Y).
i=1
Since VT = 0, we have th(X,Y) = 0 for all X € I'(TM) and Y € I'(Dy), so
9Ph(X,Y),Z) = —g(W(X,Y), pZ) = —g(h(X,Y),NZ) = g(th(X,Y), Z) = 0

forall X,Z € I'(TM) and Y € I'(9y). On the other hand, for Y € I'(Dy), we have TY € I'(Dy), which gives
g(h(X, TY),NZ) = 0, and we obtain

k k k
HN( Y Pi(VXY))"Z = (e ™V, N( Y Pivx)))) - g(9h(X, Y), Y NPi(VxY)) = 0
i=1 i=1

i=1

for all X e I'(TM) and Y € I'(Dy). Since

g(NX,NX) = Y sin®0; - g(P;X, P;X)

1M~

for all X € I'(TM), we have

”N ZP(VXY) H - Zk"smz ei-‘

i=1

and, from the fact that 6; is nowhere zero, we obtain P;(VxY) = 0 for any i € {1,...,k}, which implies
VxY € T'(Dy) for all X € [(TM), Y € I'(Dy); hence, the distribution Dy is completely integrable.
Also, for any X € I(TM) and Y € ['(@_, D;), we have VxY € ['(@-_ D)) since

g(VxY,Z) = —g(Y,VxZ) =0

for all Z € T(Dy). Therefore, we obtain (i).
If the distribution 9; is integrable, then, for all X, Y € I'(D;), we have T[X, Y] € I'(D;), which implies

VxTY = VyTX = T(VxY — VyX) € T(D)).
Conversely, if VxTY — VyTX € I'(D;) for all X, Y € I'(D;), then
TIX, Y] = VxTY - VyTX € T(D;).

Applying T, we get 21;:0 cos? 0; - Pj[X, Y] € I(D;) from Lemma 2.4 (ii), and, taking into account the orthog-
onality of the distributions and the fact that 0;(p) # 7 forallp € M and j € {0,...,k} with j # i, we obtain
(ii).
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Now, since Dy is completely integrable, from the Kihler condition, we deduce
nh(X,Y)-h(X,TY) = -N(VxY) =0
forall X, Y € I'(Dy). Writing this relation for TY instead of Y, we get
n*h(X,Y) = —h(X,Y)
for all X, Y € I'(9y), and we obtain (iii). O

Theorem 3.6. Let M be a pointwise k-slant submanifold of a Kiihler manifold (M, ¢, g). If VN = 0, then:

(i) M is a (Do, D;)-mixed totally geodesic submanifold of M (i.e., h(X,Y) = 0 for all X € T(Dy) and Y € T(D;))
forie{l,... k);

(it) for i € {0, ...k}, either M is a (D;, D;)-totally geodesic submanifold of M, or (- cos? 0;) is an eigenvalue
function of n?, and, for X, Y € T(D;), any nonzero h(X, Y) is an eigenvector for it;

(iii) for i € {0,...,k}, either W(X,Y) = O for any X € T(D;) and Y € T(TM), or (- cos?® 6;) is an eigenvalue
function of T?, and, for X € T(D;) and V € T(T+M), any nonzero Ay X is an eigenvector for it.

Proof. Since VN = 0, we have h(X, TY) = nh(X,Y) for all X, Y € T(TM), which implies
n?h(X,Y) = —cos? 0; - h(X,Y)
forall Y € T'(D;). For X, Y € I'(D;), we deduce (ii). For X € T'(Dyp) and Y € I'(D;), we obtain
n*h(X,Y) = n?h(Y, X) = nh(Y, TX) = h(Y, T?>X) = -h(Y,X) = -h(X,Y),

and we get
sin? 6; - h(X,Y) =0,

hence (i).
Applying T to the relation from Proposition 3.4 (ii)(2), we infer

T2(AvX) = Ay(T*X)
for all X € I'(TM) and V € I'(T+M); therefore, for all X € I'(D;), we have
T?(AyX) = —cos? 6; - Ay X,
and we get (iii). [

Theorem 3.7. Let M be a connected pointwise k-slant submanifold of an almost Hermitian manifold (M, ¢, g). Then:
(i) VT? = 0 if and only if M is a k-slant submanifold, and V restricts to D; (i.e., VxY € I (D) for all X € T(TM)
and Y e T(Dy)) forany i € {0, ..., k};
(i) fori € {0, ...k}, (VxT?)Y = (VyTH)X for all X, Y € T(D;) if and only if D; is a slant, integrable distribution.
Furthermore, if T? is a Codazzi tensor field on D for all i € {0, ..., k}, then M is a k-slant submanifold.

Proof. (i) Following the same steps as in [1], we obtain
k
(VxT?)Y = — Z X(cos? 0,)P;Y + Z (cos? 6; — cos® 0,)Pi(VxP;Y)
i=0 0<i,j<k

for all X, Y € T(TM). Taking into account the orthogonality of the distributions, the condition VT? = 0 is
equivalent to:

k
Z:(cos2 0; — cos® 0,)Pi(VxP;Y) — X(cos® 6;)P;Y = 0
=
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forall X, Y e [(TM) and any i € {0, ..., k}. We get
X(cos*0;)Y =0

forall X € T(TM) and Y € T'(D)), i € {0,...,k}, hence 0; is constant for all i € {1,...,k} (so M is a k-slant

submanifold). Also, Pi(VxY) = 0 forall Y € I'(D;), i # j; hence, V restricts to D; for any j € {0,...,k}. The

converse implication follows immediately since VxP;Y € I'(D;) for all X, Y € I'(TM) and any j € {0,...,k}.
(ii) On the other hand, for all X, Y € I'(TM), we get

k k k
(VxT2)Y — (VyTHX = Z Py( - X(cos? 0;)Y + Y(cos® 0))X) - Z Py( Z cos? 0)(VxPyY — VyPiX))
=0 j=0 1=0
k
+ Z P/{ cos? 0,(VxY - VyX)).
j=0

In particular, for X, Y € I'(D;), we obtain

k
(VXT2)Y = (VyT?)X = (= X(cos? 0))Y + Y(cos? 0)X) = ) Pj( cos? 0:i(VxY = VyX))
j=0
k
+ Z P/{ cos? 0,(VxY - VyX)),
j=0

and we deduce that (VxT?)Y = (VyT?)X for all X, Y € (D)) if and only if

X(cos? 0,)Y — Y(cos? 0,)X =0
(cos? 0; — cos? 0;)Pi[X, Y] = 0

forall X, Y € I'(D;) and j # i. The first assertion is equivalent to the fact that 0; is a constant, and the second
one, since 0; and 0; are pointwise distinct for i # j, is equivalent to the integrability of D;. O

Hence, we recovered in Theorem 3.7 (i) a known result proved by Chen|2].

In particular, from the proof of Theorem 3.7, we deduce

Corollary 3.8. Let M be a k-slant submanifold of an almost Hermitian manifold (M, ¢, g). Then:
(i) fori € {0, ..., kY, D is completely integrable if and only if (VxT?)Y = 0 for all X, Y € T(D;);
(ii) fori € {0, ..., k}, D; is integrable if and only if (VxT?)Y = (VyT?)X for all X, Y € T(D;).
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