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Abstract. We study the H,-Laguerre-Hahn forms u, that is to say those satisfying a g-quadratic g-difference
equation with polynomial coefficients (@, W, B): Hy(®(x)u) + W(x)u + B(x) (x‘lu(hqu)) = 0, where H, be the
g-derivative operator. We give the definition of the class s of such form and the characterization of its
corresponding orthogonal polynomials sequence {P,},>o by the structure relation. As a consequence, we
establish the system fulfilled by the coefficients of the structure relation, those of the polynomials @, ¥, B
and the recurrence coefficients f,,, 41, 1 = 0 of {P,},5 for the class zero. In addition, we carry out the
complete description of the symmetrical H;-Laguerre-Hahn forms of class s = 0. The limiting cases are also
recovered.

1. Introduction and preliminaries

The concept of the usual Laguerre-Hahn orthogonal polynomials that is to say the D-Laguerre-Hahn
orthogonal polynomials, where D be the derivative operator, were extremely studied by many authors [1, 4,
7-9,23,26]. The D-Laguerre-Hahn set is is invariant under many types of perturbations such that association,
co-dilation, co-recursion ... [2, 5,12, 13, 27, 29]. In particular, D-semiclassical orthogonal polynomials are
D-Laguerre-Hahn [2, 6, 24]. Moreover in [8, 9], the D-Laguerre-Hahn orthogonal polynomials of class zero
were exhaustively described.

In [17], instead of the D operator, the authors used the g-derivative one denoted H, and they established
the basic theory of H,-Laguerre-Hahn orthogonal polynomials. In addition, a few generic examples related
to some standard transformation and perturbation of H,-classical [20, 22] or more generally H,-semiclassical
polynomials [10, 16, 18, 21, 28] were studied in [17]. Recently in [19], the Christoffel transformation and the
Geronimus one of a H;-Laguerre-Hahn form (linear functional) were studied into detail. For other relevant
works in the domain of g-Laguerre-Hahn orthogonal polynomials see [3, 14, 15].

The goal of this contribution is to respond to the following classification problem:” find all H,-Laguerre-
Hahn orthogonal polynomials {P,},>o of class zero,” that is to say that the corresponding form u satisfies
the g-quadratic g-difference equation H,(P(x)u) + W(x)u + B(x) (x‘lu(hqu)) = 0 with @ (monic), deg® <
2, degWV < 1 and degB < 2. Through the so-called structure relation of a H;,-Laguerre-Hahn orthogonal
polynomials, we managed to get the system fulfilled by the coefficients of the structure relation, those of the
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polynomials @, W, B and the recurrence coefficients 8,;, n+1, 1 = 0 of {P,},>0 for the class zero (see section 2).
The system obtained is difficult to solve in general. In section 3, we have tried to solve it in the symmetrical
case (B, =0, n >0, D(x) =1, D(x) = x?, O(x) = x2 + ¢, ¢o # 0) and we provided a complete description of
this symmetrical class as perturbations of symmetrical H,-classical orthogonal polynomials [20, 22] and the
appearance of some new situations. Also, we were able to rediscover the limiting cases D-Laguerre-Hahn
of class zero (¢ — 1) (which indicates the limiting case i.e g tends towards 1) [8, 9].

We denote by P the vector space of the polynomials with coefficients in C and by #’ its dual space. The
action of u € P’ on f € P is denoted as (u, f). In particular, we denote by (u), := (u,x") , n > 0 the moments
of u. For instance, for any form u, any polynomial g and any (4, c) € (C\ {0}) X C, we let Hyu, gu, hau, Du,
(x — ¢)"lu and 6., be the forms defined as usually [24] and [20] for the results related to the operator H,

<Hqu/f> = —<M,qu>, <gu/f> = <u/gf>/ <hA1/l,f> = <M,hAf>,

<D1/l,f> = _<u/fl> ’ <(x_c)_1ulf> ::<u/66f> s <6C/f>::f(c) s
where forall f e Pand g€ C:={z€C, z#0,2" # 1,n 2 1} [20]

f(gx) = f(x)

f(x) = f(o)
(g-Dx '

(Hyf)(x) = , x#0, (Hyf)0) = £(0), (haf)(x) = f(Ax), (Ocf)(x) = ;:C

Let us define

"o
], =, n>0

=1 n=0 ; [-n];:=-q"[n];, n>0.

For 0 < g <1orgq > 1, we may extend the above definition for a complex number z by

The well known formula holds [20]

Hy(f9)(x) = (hy f)x)(Hyg)(x) + g(x)(Hy f)(x), f,9 € P. 1)

It is obvious that when g — 1, we meet again the derivative D.
For f € P and u € ', the product uf is the polynomial [24]

p =, LE=LE,

This allows us to define the Cauchy’s product of two forms:
(uv, f) :=<u,vf), feP.

A form u is said to be regular whenever there is a sequence of monic polynomials {P,},>0, degP, =
n,n > 0 MPS such that (u,P,P,) = 0,n,m > 0,n # m and (u, P>y # 0, n > 0. In this case, {P,},o is
called a monic orthogonal polynomials sequence MOPS and it is characterized by the following three-term
recurrence relation (Favard’s theorem) (TTRR in short) [11, 24]

Po(x) =1, Pi(x) =x-po,

2)
Puio(x) = (x - ,8n+1)Pn+1(x) - Vn+1pn(x), n=>0,
4 P% ( ’Pi+ )
where 8, = % €C, Vus1 = zlu,P%; Cc\ {0}, n>0.
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The shifted MOPS {ﬁn = A‘"(hAPn)}nZO is then orthogonal with respect to u = hyu and satisfies (2)
with [24]
3 :B” _ Vntl

ﬁn = Z s 5/\71+1 - A2 7 n = 0. (3)

Moreover, the form u is said to be normalized if (u)g = 1. In this paper, we suppose that any regular form
will be normalized. When u is regular, {P,},so is a symmetrical MOPS if and only if 3, = 0, n > 0 or
equivalently (#)2,41 =0, n > 0[11, 24].

Given a regular form u and the corresponding MOPS {P,},;>0, we define the associated sequence of the
first kind {P"},:50 of {P,},s0 by [11, 24]

Pyi1(x) = Ppii(8)
-¢

PO = (u, ) = (uOPr1)(x), 12 0.

We will give now some future about the H;-Laguerre-Hahn character.

Definition 1.1. [17] A form u is called H,-Laguerre-Hahn when it is reqular and satisfies the g-quadratic g-difference
equation

Hy(@(x)u) + P(x)u + B(x) (x~"u(lnqu)) = 0, (4)

where ®, WV, B are polynomials, with ® monic. The corresponding orthogonal sequence {P,},>o is called a H,-Laguerre-
Hahn MOPS.

Remark 1.2. 1. When B = 0 and the form u is regular then u is Hy-semiclassical [21].

2. When u satisfies (4), then u = h-u fulfills the g-quadratic q-difference equation [17]

Hy (A~ 98 P D(Ax)ir) + A9 W (Axyir + A~ 48P B(Ax)(x"t(ly10)) = 0. (5)

3. Putt =deg®,p =degV¥, r = degBand d = max(t, r), we define the class of u the nonnegative integer s [17]
s =minmax(p —1,d - 2),

where the minimum is taken over all triplets (®, W, B) satisfying (4). Moreover, the regular form u H,-Laguerre-
Hahn satisfying (4) is of class s = max(p — 1,d — 2) if and only if,

[T{la 9@ + @) + laByo)] +

(1006, W) + 6y © 0.9) + {100 © 0.,B))
ceZo

}>0, ©6)

where Zo is the set of roots of O [17].

Proposition 1.3. [17] Let u be a regular form and {P,},>0 be its MOPS. The following statements are equivalent :
(i) u is a Hy-Laguerre-Hahn form satisfying (4).

(ii) There exist an integer s > 0, two polynomials @ (monic), B witht = deg® <s+2, r=degB <s+2anda
sequence of complex numbers {Ay, )y v0 Such that (the structure relation)

n+d

OE)(HyPust)(X) ~ hy(BPL)®) = Y ApuPo(x), 1>, Aus #0. ?)

V=n-s

Proposition 1.4. [17] Let u be a symmetric Hy-Laguerre-Hahn form of class s satisfying (4) . The following
statements hold

(i) If s is odd, then the polynomials ® and B are odd and \V is even.
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(ii) If s is even, then the polynomials ® and B are even and \V is odd.

Lastly, the following results will be needed in the sequel.
Lemma 1.5. [1] Let {Py}n>0 be a MOPS and M(x, n) , N(x, n) two polynomials such that
M(x,n)Pp41(x) = N(x, n)P,(x), n > 0.
Then, for any index n for which deg N(x,n) < n, we have
N(x,n) =0 and M(x,n) = 0.

Lemma 1.6. [25] Let (by,)us0 with by, # 0, n > 0, (cy)nz0 two sequences of complex numbers and (x,)u»0 the sequence
satisfying the recurrence relation:

Xps1 = bpxp +c¢,, n>0, xo=a€C-{0}.

We have

n n k -1
Xp41 = (H bk){ll + Z( bz) ck}, n>0.
k=0 1=0

k=0

2. The system fulfilled by a H,-Laguerre-Hahn MOPS of class zero

Let {P,;},>0 be a MOPS H,-Laguerre-Hahn of class s = 0 such that its corresponding regular form satisfies
(4). We have for the polynomials @, B and W

D(x) = cox* + c1x + ¢o (monic), B(x) = byx? + bix + by, W(x) = a1x + a, (8)
with
la1| + |b2| + lc2| # 0. )

Furthermore, the MOPS {P, },5¢ fulfills the TTRR (2). Thus, from definition, the MOPS {Pg,l)}nzo fulfills the
TIRR (1) (1)
PO (x)zlr Pl (x):x_,Bl/

(10)
PY (%) = (x = Bus2) PV (x) = yuraPP(x), 120,
By virtue of (2), we get for the structure relation (7)
D) (HyPrs1)(x) = Bgx)P (@) = (Gux + En)Pusa (x) + FuPu(x), 1 2 0. (11)

Indeed, (11) is valid for n = 0 since deg(®—h,B) < 2 and then we may write ®(x)—B(qx) = (G0x+ EO)P1 (x)+Fo.
Applying the operator H, to (2), on account of (1) and next multiplying by ®(x) we get

q)(x)(Han+2)(x) = (qx - ,Bn+l)q)(x)(Han+1)(x) - Vn+1q)(x)(Han)(x) + (D(X)P”+1(X). (12)

Therefore,
on the one hand (P(_ll) :=0),
PC)H,Pri2)(¥) = B@IPL () | = (4 = fue){[PC)(H,Prsr) () = Blgx) Py (@)
= {PE(H,P)(x) = Bgx)PL, (420} + ()P (1)

(11?(2)(% B ﬁn+1){(an + E”)P”“(x) + F”P"(x)}

~Vns{(GuaX + Bt )Pu(x) + £ Foa (8 = Bu)Pa(x) = Pt (1))} + P()Pra (),
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and on the other hand,
O(x)(HygPr+2)(x) — B(qx)P(lll(qx) (ﬁ)(Gon + En+1)Pn+2(x) + Fup1 Py (x)

(j)((x - ﬁn+1)(Gn+1x + En+1) + Fn+1)Pn+1(x) - Vn+1(Gn+1x + En+1)Pn(x)-
Consequently,

M(x, n)Py41(x) = N(x,m)Py(x), n2=0, (13)
where for all n > 0,

Vn+1

M(X, 1’1) = (CZ + an - Gn+1)x2 + {Cl + ,Bn+1(Gn+1 - Gn) + qEn - En+1}x +Cp +ﬁn+1(En+1 - En) + y Fn—l - Fn+1/
n
Vn+1 Vn+1
N(x/ 71) = {Vn+1(Gn—1 - Gn+1) + y Fn—l - an}x + Vn+1(En—1 - En+1) + ﬁn+1Fn - ﬁn y Fn—ll
n n
with constraints yy := 1 and G_; = E_; = F_; := 0. Obviously,
Gus1 —9Gy,—c2=0, n>=0. (14)
By virtue of Lemma 1.5 we have
M(x,n) =0, N(x,n) =0, n=>1,
which leads to
ﬁn+1(Gn+1 - Gn) + qEn - En+1 +c1 = 0/ nz 1/ (15)
Bust(Euct —E) + 2 F = P 469 =0, n>1, (16)
Vn+1
Vn+1 (Gn+1 - Gnfl) - y Foq+ an =0, n>1, (17)
yn+l(En+1 - En—l) + ﬁn 7/;+1 Fn—l - ﬁn+an = 0/ n>1. (18)
For n = 0, equality (13) yields M(x, 0)(x — fo) = N(x,0). Namely,
Go =C — bzqz, (19)
Eo = Bo(c2 — bag?) + c1 — bug, (20)
Fo = ®(Bo) — B(qPo)- (21)
The structure relation (11) for n = 1 gives
(@ + 1)e1 — q%b1 — E1 + qBo(ca — bag?) + gpa(c2 — q(g — 1)b2) = 0, (22)

‘30{C1 — El + ‘81((11 + 1)62 — q3b2)} — (q + 1)60 — ﬁlEl + Fl = yl((q + 1)62 — quz) — ‘31(C1 — qbl) — qbo, (23)
Po(B1E1 — F1 + co) = P1(bo — o) + y1E1. (24)
Lastly, the condition (H,(Pu) + Wu + B(x‘lu(hqu)), x")=0,n>0givesforn =0,1

W(Bo) = ~((1 + q)bapo + br), (25)

D(Bo) — B(aho) = (a1 — c2 + (1 + )by (26)

since (u)o = 1, (u)1 = Bo, ()2 = B3 + 1 and (8).
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Proposition 2.1. Denoting

&g =+ bag(1 —9), (27)
= 2 ns0, (28)
Vn+1
and .
Su=) P n>0. (29)
k=0
The system (14)-(26) become
Gn=con+1];—bog"?, n>0, (30)
Ty = q_”{ro - ng[zn]q}, n>0, (31)
Buer{qéql2n + 11, — ro} — Pulgéel2n — 31 — ro} + 4" (g + Der = ¢ (g — Difo(&g +r0) + b1}, n>1,  (32)
B1(q&q — 10) — Po(—(29 + 1)cz + 2baog” — qro) + (9 + 1)cy — bag® = 0, (33)
)/n+2{qf§q[2n + z]q - 1o} — q27n+1 {ng[zn - 2]q —ro} = —q”+1®(ﬁn+1)+
%;aoq”“ﬁm 7 e - ﬁ((q ~Dro+ 9L+ P)|Bry, n21l, (34
y2{(@+ D& —q 1o} — y1{=(q + De2 + bag® — 1o} = —q®(B1) + (9 — 1){co + alq(br + b2gB1) — Po(c2 — bog®)]}, (35)
Ey = q"&;Sn +a1g "[n +1]; — q(by + b2fo)}, n=0, (36)
F, = q_"(ro - ng[zn]q)ynﬂ, n>0, (37)
ro = D(Bo) — B(qﬁo), (38)
V1
ag = —Po(ro + &4) — by, (39)
a =71y + 5q - (1 + q)bz (40)

Proof. The equalities in (30) and (31) are consequence from (14), (17) and (19) by applying Lemma 1.6. Next,
we obtain (37)-(38) from (21), (28) and (31).
From (22) we have,
Ei — qe1 + big® = qo(ca — bag) = c1 + gBi(c2 — g(g = 1)ba).
Therefore, by (20) the last formula becomes
E,— qu =C + qﬁl(CZ - q(q - 1)b2) (41)

Then, by eliminating E; in (23), and using (22), we get

B1E1 — F1 + (g + 1o = Ba(cr — b1g) + boq — y1((@ + Dz — bag®) + Bolq(brg — c1) + (B1 — gBo)(c2 — bag®)}  (42)

Consequently, by injecting (42) into (24), and replacing Fy, Eg and E; by their expressions from (20)-(21) and
(41), we get,

71B0((2q + 1)e2 = 2624°) + (qBo — 1)Fo + 1((q + De1 = big®) + qy1fica = y1fr1g*(g = Db = 0. (43)
On the other hand, by eliminating E; in (42) and by (22) we obtain

q9(B1) — F1 + y1((q + 1)c2 = bag®) + Fo = (9 — 1){B(gB1) — Polcr — brg + (c2 — bog®)(Bo + P11} (44)
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On account of (27) and (28), the formulas (42)-(44) become (33) and (35).
Now, by virtue of (31), the equations (15)-(18) becomes successively

c1+ qn+1ﬁn+1éq + qEn -E1=0,n20, (45)

ﬁn+1rn - ﬁnrn—l +Ei1—Em1=0,n21 (46)

Therefore, subtracting (46) by (45) gives

ﬁn+1(rn - qn+15q) - ,Bnrn—l —c+Eiq - QEn =0, n>1. (47)
Also, (45) for the order n yields
€+ qnﬁnéq + qEnfl —-E,=0,n>1. (48)
So, (48) + (47) gives
‘Bn-%—l(rn - q”Hléq) - ,Bn(i’n—l - q”éq) + (q + 1)(E”_1 - En) = 0, n>1. (49)

By going to the sum on (49), we obtain
(1+QEn = (1 +q)Eo + Bt (ra — 4" &) = Br(ro = g&p), n = 1. (50)
The operation (1 + q) X (48) and on account of (33) and (50) leads to
Buatlq 1 &g — ru + qBulq" &g + a1} + (g + Dy = q(g — DiPo(Eg +r0) + b}, n > 1.
Then, (31) leads to (32).
(36) is a consequence from Lemma 1.6, (29) and (31).
The operation (48) — g x (43) gives,
c1+ Bu(@rn-1 +q"Eg) — GBus1tn + qEps1 —E, =0, n > 1. (51)
Subtracting (51) by (45) yields
(9 + D(Enar = En) = Brar (@1 &g+ q70) = pulq"Eq + qraca), m > 1. (52)
On account of (32), (52) becomes
(@ + D(Ens1 = En) = Brar(29"1& + (0 = D + (1 + @)er + g1 = 9){Bo(Eq + 10) + ba. (53)

Thanks to (53), the equation (1 + g) X (16) gives (34).
Lastly, (39)-(40) are consequence from (25)-(26) and (38). O

Remark 2.2. 1. When q — 1in (30)-(40), we recover again the system of D-Laguerre-Hahn MOPSs of class zero
[8,91.

2. There are three possibilities for the polynomial O
Ddx)=1, Ox)=x-c,ceC, DPx)=(x—-c)(x—d), cdeC,
but it is a very difficult problem to describe exhaustively the situtations in any case on account of the expressions

in (33)-(34). However, in the next section, we are going to describe the symmetrical case that is to say
pn=0,n>0.



S. Jbeli, L. Khériji / Filomat 38:24 (2024), 8349-8365

3. Description of the symmetrical H,-Laguerre-Hahn MOPSs of class zero

First of all, to describe the symmetrical H;-Laguerre-Hahn forms of class zero we may write for (8)

D(x) = cox* + ¢o (monic), B(x) = box? + by, W(x) = ax, |a1| + |ba] + |ca] # 0,

since Proposition 1.4. and (9). Consequently, three possibilities for the polynomial ® occurred

Ddx)=1, Px)=x%3, D) =x>+co, co#0,

for the symmetrical case. Now, taking for alln > 0, 8, = 0 in (34), (34) becomes

(ro — q&q[2n + 21))yus2 — 4*(ro — g&g[2n = 21)) Y1 = 4" o, n =1

Next, let us suppose
ro —qé&q[2n]; #0, n =0,

On account of Lemma 1.6. and after some calculations, we get for (55),

_ ro—q&q[n+1],
- ro(ro = q(q + DEY {y2 + 4" eo [nly 7t ) o
" (ro — g&q12n15)(ro — q&q 12 + 2],) ©0E

Moreover, (35) gives
(ro b+ @+ 1)c2)y1 + ¢
ro —q(q + 1)&,

Y2 =9

7

with constraint
(ro - b2q3 +(q+ 1)cz)y1 +co # 0.

The injection of (58) into (57) yields

241 ro{(ro — b’ +(q + 1)02))/1 + co} +q7" co [ny (ro — q&qln + 1)
(ro — q&q[2n]g)(ro — g&4[2n + 2],) ’

Vn+2 = (

Also, thanks to (27), the constraints (38) and (40) become successively

co — bo
ro = 7
V1

ay +b2 =C+r1 —bzqz.

Before quoting the different canonical situations, let us proceed to the general transformation

Pu(x) = A"Py(Ax), n >0,

5/\n+1 = A_z Yn+l, N2 0.

Then, the form u = h-1u fulfills the g-quadratic g-difference equation

Hoy(A™ 98 P D(Ax)ir) + A9 PW(Axyir + A~ P B(Ax)(x"i(lg0)) = 0.

n>0.

8356

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

Any so-called canonical situation will be denoted by Vn+1, 4 and recall g € E, except opposite mention.
Moreover, in this case, according to (11), (30), (36)-(37) and (54), the structure relation (11) of the symmetrical
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Hj-Laguerre-Hahn {P,},,>9 of class zero may be written as
(c2x? + c0) (HyPus1)(x) = (%b2x% + bo) PR (qx) =

(caln + 11y = bog™2)xP s () + 7" (r0 — g&g[2n], )yuar Pu(x), n 2 0. (66)

The change x < Ax in (66), after that multiplying the resulting by A™ we get the structure relation
corresponding to the shifted symmetrical H,-Laguerre-Hahn {P,},>¢ of class zero in the following way
(02A%%% + o) (HgPui1)(x) — (P2 A%X% + bo)PY (gx) =

A¥(caln + 11y = bag"? JxPrsa (x) + A% (r0 = 4&g[2n1g )i Pu(x), n 2 0. (67)

3.1. d(x)=1
In this case, c; = 0 and cy = 1. We get for (27), (56) and (60)-(62),
& =bq(1—9q), (68)
10— bog® + br®*? #0, n>0, (69)
ro{l + (ro - b2q3)y1} + g7 [n = 1] (ro — bag? + bg"*?)
Yur =" . on>1, (70)
(ro = bog? + bag?")(ro — bag?® + bag***2)
1-bg
=——, 71
o 7 (71)
and
a + bz =719 — b2q2. (72)

3.1.1. a1 +b, = 0. Necessary b, # 0 from regularity and by (72) we get ry = bog*. Consequently, (70) becomes

bag*(1 — q)y1 + [n],
b2q2n+1 4

Vsl = >1, (73)
since g[n—1]; = [n];—1, n > 1. Choosing A in (63)-(65) such that A?b, = 2 and putting 1 = #, p#0,
then thanks to (71)-(73) we get the following situation

)71=2%,P¢0,

Va1 = g7 21 w, n>1; 1-qp+[nl,#0, n>1, (74)

H, () — 2xu + (2x* +1 - p)(x‘lﬂ(hqft)) =0.

When q — 1in (74), we meet the singular symmetrical D-Laguerre-Hahn of class 0 of Hermite type
[9] (see Table A.1. in the Appendix).
[1+1]

Now, choosing A in (63)-(65) such that A%b, = 2q"~% and putting y1 = e

(71)-(73) we get the following situation

, T € N, then thanks to

—~ ']
V1= "y

_ [n+7+1] -1

V1= —"—, n>1, (75)

— 1] - —
H, () — 24" 2xu + (2q1‘2x2 +1- [;rl_]‘;)l )(x‘lu(hq'@) =0.

In view of (75), we discover the co-dilates of the associated of order 7 of the natural g~ —analogue of
Hermite [22].
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3.1.2. a3+ by #0. Thatis tosay rp # b2q2 since (72). Denoting

7o

= . 76

el (76)
Then, ,
bzq

-1= . 77

p ro — b2q2 ( )

On account of (76)-(77), (70) becomes

2t P o+ ro(p -q(p - 1))y1 +q7"n - 1],7(1 +(p- 1)q”>
ro (1+ (= g2) (1+ (o= D)

Yn+1 =4 , nz 1. (78)

Two cases arise:

3.1.2.1. p = 1. Therefore, b, = 0 and a; = ry # 0 on account of (77) and the item 2.2.1.2. Moreover, the

formula in (78) becomes
2n—1

Yo+l = (7’0)/1 + [n]q—l), n>1. (79)

Choosing A in (63)-(65) such that A? = 2r;'¢™" and putting roy1 = g[t + 1], for0 <g <lorg > 1,
by virtue of (71) and (79) we are led to

- _ 1 [T+1]
Y1 = q’[+ qu
57)1+1 = qn+T [”+T2_+1]17, n Z 1/ (80)

H, (1) + 27 "xu + (1 —glt+ 1]q)(x‘1ﬁ(hqﬂ)) =

When g — 1 in (80), we meet a restricted nonsingular symmetrical D-Laguerre-Hahn of class 0
of Hermite type [9] (see Table A.2. in the Appendix).

3.1.2.2. p # 1. In this case, (78) may be written as
g2 [nlg +gp~royr + (1 — q)(royl +p gt n],[n - 1]q)

"o (o7t + = p g 2)(p ! + (1= p)g?)

sinceq[n—1],=[n]l; -1, n>1, p#0and p # 1.
Choosing A in (63)-(65) such that A% = 2r5'¢g™*"3 and putting roy1 = pg [t + 1], for0 < g < 1
or g > 1, by virtue of (71)-(72), (76)-(77) and (81) we obtain

Vn+1 = , n>1, (81)

T+1 T+1]r1

=pq T# -1,
. C 1 2merel [n+T+1]q+(1—q)(pq’1[7+1]q+p’1q17"+2[Vl]q[‘fl—l]q) 51
Vn+1 = 2 q , =21,
(p—l+(1_p—1)q2n—2)(p—l+(1_p—1)q2n) (82)

H,(u) + 2q‘27‘5(p‘1(1 +q°) — 1)xf[+
(2q—277—5(1 -p- )x +1-— pq_T 2['( +1] )(x‘lu(hq/))

The form u is regular, if and only if,

t#-1, [n+t+1l+0-q)(pg [ +1+p g nlyln - 1)) #0, n 2 1.

When g — 1 in (82), we meet the general situation of the nonsingular symmetrical D-Laguerre-
Hahn of class 0 of Hermite type [9] (see Table A. 2. in the Appendix).
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3.2. d(x) = x?
In this case, c; = 1 and ¢y = 0. We get for (27) and (59)-(62),
ro—bg® +q+1#0. (83)
& =1+byg(1—9), (84)
ro(ro —byg® +q+ 1))/1
" — 2n-1 , n> 1, 85
Y =0 G =gk 2n = 2 — & 2], (%)
ro = —b—o, (86)
V1
a + bz =1+ ro — bng. (87)

with (56) is globally unchanged.
32.1. & =0.Then, b, = q7'(g—1)"" and ry # (7 — 1) thanks to (84) and (83). In addition, (85) yields

yu =@ (1= q=1 1, n21, (88)

Choosing A in (63)-(65) such that A2 = (1 -3t - 1)‘1))/1, putting p = W, with evidently
0
p #0, p # 1, and by virtue of (56), (87), (86) and (88) we get the following situation

71=p,
)7n+1 = qZ”_l, n>1,
89
Hy(x*uw) +q7'1-g)'(1 - p)‘1(1 +q- p)xﬂ— (59)
1- q)‘l(q‘lx2 +p*(1 - p)‘l)(x‘lﬁ(h,ﬂt)) =0.
3.2.2. & # 0. Then, by # g7'(g — 1)! and one may write for (85)
rolro — bag® + g + 1)1 1
Yne1 = g7 ( T ) - —, nxl (90)
7 (121 =21, = g7&; ro )(12n)y — g71&5 7o)
ro(rg—b2q3+q+1))/1
Chosing A in (63)-(65) such that A2 = ———E and putting
q
I 9 ___P
T & 0="21-q-2 ro—bP+q+1  2t+1’ O
with constraints
T# —%, T#-1- g p#0, 14— +@-1)(p " -2t +1) %0, 92)
(83) is then valid, (91) yields
2 2 1-g*>+q(p ' -1DQRTt+1
ro = THg+ by — g +q(p~ ~ D@27 +1) ©3)

1 +q-P+@-D -2+ 1) ? q2<1 +9-¢>+(@-1)(p! —1)(2”[+1))’
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and thanks to (86)-(87), (91)-(93) and (89) we obtain

Yy =——P

V1= T G’

— q2n—1

Vsl = — ,nx1,
([211—2][,+2’[+q+2)([2n]q+2’[+q+2)

1+qQ2t+1)| (g+1)p~1-1
Hq(xzm _ ( )

Xu+ 94
(1~ + -1 -D@ren) &)

L X
1+q7q2+(q71)(p’1 -1)(2t+1)

(q—2(1 — P +q(p = DT+ D] - ﬁ)(x—la(hqm) =0.

When g — 1 in (94), we meet the general situation of the nonsingular symmetrical D-Laguerre-Hahn
of class 0 of Bessel type [9] (see Table B. 1. in the Appendix).

3.3. Dx)=x2+cy, g £ 0
In this case, (60) becomes

ro{(ro —bg®+q+ 1))/1 + co} + g e [n - 1], (r0 — g&4[nl,)

o1 = g2 , n>1. 95
Vst =1 (o~ 4&,12n — 210 — qE;120T) )
Also, we get for (27), (59) and (62),
& =1+byg(1-9g), (96)
(ro - b2q3 +q+ 1)7/1 +co #0, (97)
m+ 1 +q)b=1+r, (98)
and (61) remains unchanged.
331. & =0
Then b, = g7 }(q — 1)! by (96). In addition, the constraint (97) yields
(o—@-1D")1+co#0. (99)
By virtue of (99), we get for (95),
q2n71
==l -@-D" 1+ +q b -1}, nx1. (100)

It is possible to take rp = (g — 1)~} # 0 since g € E, then (99) is valid since ¢y # 0 and (100) may be written as

yur1 = (qeo)(1 =g Mg, nx1. (101)
Putting gco = —c? in (101), writing 71 = p, p # 0 and thanks to (98) and (61), we are led to the following
situation (p #0,c # 0, g € C)

Yi=p,

Vur1 = —C(L—g "), n =1, (102)

Hy((? =g ') —qg g -1 xu+q7 (g - 1)‘1(x2 —(qg-1c% - qp)(x‘lu(hqu)) =0.

We meet the perturbed of order one of a certain symmetrical modified 4~ —classical 47! —Jacobi kind ( see
(329)in [20] withg « g}, n—n—-1, n>1).
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532 &40
On account of (96), by # g7'(9 —1)7L. In view of (95) and the constraint (97), two cases appear: ro — byq® +
g+1=0o0rrg—byg®+q+1#0.

3321L.r0-by?+q+1=0
Then (97) remains valid since cy # 0 and

7o = b2q3 -q-1, (103)
with necessary
by #q°(q+1), (104)
since rg # 0. Now, putting
gl =—(a+1), a#-1 (105)

On account of (96), (103) and (105), necessary a # (g — 1)7!, we get for by,

1-ga
_ -2
b= o (106)
and the constraint (104) is valid. Consequently, we may write for (95),
[n]o([n], +ga+g—1
Vns1 = ——2 gt q( 1At ) n>1. (107)

g&, ! (2n =21y + @+ 1)([2n]y + 2+ 1)

Putting y1 = —q% p, p # 0, choosing A in (63)-(65) such that A% = _;?Oq and thanks to (61), (98), (103)-(107)
we are led to the following situation

Yi=p,

il (1 g1
([2n—2],,+a+1)([2n],,+a+l) ’

2 1 Vo), e —
Hq((x _1+(1—q)a)u)+ Tr(i—ga Ut

m (4_2(1 —gay® + pla+1) - 1)(x‘1ﬂ(hqﬂ)) =0.

n—-1

Vna1 =q nx1,

(108)

The form u is regular, if and only if,
p#0, a#z@-1)7", a+l#-[2n],n>0, gqa+1)#1-[n], n>1

When g — 1 in (108), we meet the general situation of the singular symmetrical D-Laguerre-Hahn of class
0 of Jacobi type [9] (see Table C. 1. in the Appendix).
Meanwhile, there is another way to write (95) by replacing [1], by its expression,

(qn _ 1) qn—l —-1- q—lg—lro(q _ 1)
Var = ——2 " ( : ) nx1 (109)

980" (2 =1 - g1 r0(g — D)2 — 1 - 01&; 0 - 1)’

Putting
1
g'& o =[2a-1];, O0<g<lorg>1, a# —5 (110)
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which is equivalent to 1 + '€ 'r0(g = 1) = 7>*!, a # —3. Therefore, (109) becomes

_o @ =DE@T D)
qéq (q2n+2a—1 — 1)(q2n+2a+1 — 1)

Vel = , nx1 (111)

On account of (96), (103) and (110), necessary 1 — g — g~2*~! £ 0, we get for by,

R 1+4q(1+[-2a-1])) 112)
2=71 1-g-g2t 7

and the constraint (104) is valid. Putting y;, = —q% p, p %0, choosing A in (63)-(65) such that A* = —q% and
thanks to (61), (98), (103)-(104), (110)-(112) we are led to the following situation

Yi=p,

> (" -D(g"*-1) 2a+1
Vn+1 = Ty ey e, n> 1,

(113)

_ _5 [Bl;+g[-2a-1], —
(0 + i) + 7 B )

1_qﬁT{(l +q(1+[-2a - 1]))? - g%(1 + p[-2 - 1]q)}(xflﬁ(a)(hqa‘(a))) =0.
The form u(«) is regular, if and only if,
p#0, 1-g—g2120, ai—g,nzl. (114)

We meet the perturbed of order one of a certain modified symmetrical g—classical g—Jacobi kind ( see (8) in
1
[25] withn < n —1, n > 1). Moreover, taking a = > in (113), the constraints in (114) are valid for0 < g <1

or g > 1 and (113) becomes (if:z ﬁ(%)),

V=g
5/\n+1=¢1m, n>1,
115)
O\ B2l —~ (
Hq((XZ + 17111711*2 )”) tq T XU
-2 —
o= {(1 +q(1+[-2]))2 - g?(1+ p[—z]q)}(x-lu(hqa)) = 0.
Denoting’ﬂ:: h _yu, itis also a symmetrical Hy-Laguerre-Hahn of class 0 fulfilling
q 2
n=4a7p
- n+1
Vue1 = gy 12 L
L _ (116)
— —2 Bly+ql=2]; —
Hq(<x2 + 1—3—'1‘2)”) +q72 1”_q_q_2‘7 Xu—
2 -~ =
s { (1 a(1 4 1202 = (1 + pl-21,) (- Tin) = .

The situation in (116) deals with the co-dilates of the perturbed of order one of the modified symmetrical
g-classical g-Chebyshev form of the second kind ( see (10) in [25] withn «~n -1, n > 1).
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3322.10-by? +q+1+#0

Then putting,
q‘lé,;lro = -1 +2a+3),
_ 1)(t+2a+1
e ya(ro = bag® + g +1) = CRETD, (117)
q&,(QT+2a+1) _
T rn-bptgr1 T P

with necessary the following constraints,

21+20+3#0, (T+1)(T+2a+1)#0, 2t+2a+1#0, p#0,
(118)
O=>01-pQ-9Rt+2a+1)+p(g—2)#0.
Consequently, we may write for (95),
€0 on-1
w1 = ——— "%
Vn+1 qch q
(7 nly + 7+ 1) ([nly + T+ 20 + 1) + g7(q = Dlnl, (20 + 1 + (T + )2 = [n]y))
,n>1. (119)
(21 = 21, + 27 + 20 + 3) ([2n], + 27 + 2 + 3)
Moreover, on account of (96) and (117)-(118) we get for 1, by, qéq, 7o,
_ = (t+1)(t+2a+1)
V1= ﬁ Grs2as3 G rmarT P
bz — q_z q(pfl)(21+2a+1)+p(q71),
© (120)
9¢4 = =5,
ro = p(27-§a+3)'

Now, choosing A in (63)-(65) such that A% = —;TSq and thanks to (61), (98) and (117)-(120), we are led to the
following situation

-~ _ (t+1)(t+2a+1)
Y1 = Grs2a+3)2cr2a+1) P

i/\n+1 = qzn_l X

(77"l +7+1)([nly+7+20+1)+97" (q—l)[n]q(20(+1+('[+1)(2—[n]q))

121
([2n-21,+27+2a+3)([2n];+27+2a+3) ;o onzl (121)

7

H, ((x2 + %)ﬁ) + 5 {(1 —q+@)p+q(g+1-p)Q2T+2a+ 1)}xi[+ Tx

{(q(p -DQRt+2a+1)+plg - 1)) X%+ pqz(l -p %)} (x‘lil\(hqﬁ)) =0.
The form u is regular, if and only if,

p#0, 7#-1, 1+2a+1#0, 21+20+1#0, 2t +2a+3 # —-[2n-2];, n>1,

(q‘”[n]q +7T+ 1) ([n]q + 7+ 20+ 1) +q7"(@q - Dnl, (Za +1+(t+1)2- [n]q)) #0, n>1.

When g — 1 in (121), we meet the general situation of the nonsingular symmetrical D-Laguerre-Hahn of
class 0 of Jacobi type [9] (see Table C. 2. in the Appendix).
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Appendix
Table A.1.

The singular symmetrical D-Laguerre-Hahn of class 0 of Hermite type (p # 0) [9]
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_P
"=z

w = 2xu+(2x* +1 - p)(xtu?) = 0.

n
Vn+1 = E/ nx1.

Table A.2.

8365

The nonsingular symmetrical D-Laguerre-Hahn of class 0 of Hermite type(p # 0, 7 # —n, n > 1) [9]

1+7
y1=p 5

2-p

u +2

xu+(2

_n+T+1
7 )/n+1 - 2 7 n
-1
psz +1-p(1+0) ) =0.

> 1.

Table B.1.
The nonsingular symmetrical D-Laguerre-Hahn of class 0 of Bessel type (t # —1 — g, nx-=-2, 1%
-n—-1,n>0)[9]

[ 1
= -— n = — , 21
ME T s )2e+3) M T T Gnr2t+ Dn+2t+3) "

(Pu) +2((r +1)(1 - %) + % —1)xu + ((% —1DRT+1)22 - %%)(x_luz) =0.

Table C.1.
The singular symmetrical D-Laguerre-Hahn of class 0 of Jacobi type (p # 0, a # —n, n > 1) [9]

nn + a)
(27’l+0é—1)(2n+a+1)' n>1.
((xz _ 1)1’[), " (OC _ 2) xu+ <(1 - 0() X2+ pa+p— 1)(X_1u2) =0.

The nonsingular symmetrical D-Laguerre-Hahn of class 0 of Jacobi type (p # 0,7 # —-n -1, 7 +2a #
-n—-1,2t+2a+-2n-1, n>0)[9]

Y1i=p0, Vn+t1 =

(t+1)(t+2a+1)

=P 2t s 2a+ )2t +2a+3)
m+t+1)(n+1+2a+1)
7n+1: ,TlZ .
2n+27t+2a+ 1)2n + 21 + 20 + 3)

(@ - 1u) +2(201 - %)(T +a)— %)xu+

(t+1D(t+2a+1)
2t +2a+1

((% —DRTt+2a+1)x¥*—1+p )(x_luZ) =0.




