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1-superderivation and transposed Poisson structures on the super
Heisenberg-Virasoro algebra

Yang Yang?, Xiaomin Tang*~

#School of Mathematical Science, Heilongjiang University, Harbin, 150080, P. R. China

Abstract. We describe transposed Poisson structures on the super Heisenberg-Virasoro algebra. We show
that the super Heisenberg-Virasoro algebra does not admit non-trivial 1-superderivations, and consequently
it does not possess non-trivial transposed Poisson structures.

1. Introduction

Poisson algebras originated from the study of Poisson geometry in the 1970s and have found applications
in an extremely wide range of areas in mathematics and physics, such as Poisson manifolds, algebraic
geometry, operads, quantization theory, quantum groups, and classical and quantum mechanics. The
study of Poisson algebras also gave rise to other related algebraic structures, such as noncommutative
Poisson algebras [18], generic Poisson algebras [14], Poisson bialgebras[16], etc. Recently, a dual notion of
the Poisson algebra (transposed Poisson algebra), has been introduced in the paper [2] of Bai, Bai, Guo and
Wu.

More recently, relations between 1-derivations (3-biderivations) of Lie algebras and transposed Poisson
algebras have been established [8, 20]. These ideas were used to describe all transposed Poisson structures
on the Witt algebra which is one of the first examples of non-trivial transposed Poisson algebras [8],
the Virasoro algebra [8], the algebra W(a, b) [8], the thin Lie algebra [8], super Virasoro algebra [8], N = 2
superconformal algebra [8], the twisted Heisenberg-Virasoro algebra [20], the Schrodinger-Virasoro algebra
[20], the extended Schrodinger-Virasoro algebra [20], the 3-dimensional Heisenberg Lie algebra [20], Block
Lie algebras and superalgebras [9], Witt type algebras [12], oscillator Lie algebras [3], Galilean and solvable
Lie algebras [13], generalized Witt algebras and Block Lie algebras [11], Schrodinger algebra in (1 + 1)-
dimensional space-time [19] and the Lie algebra of upper triangular matrices [10]. A list of actual open
questions on transposed Poisson algebras was given in [3].

Throughout this paper, we denote by C and Z the sets of complex numbers and integers, respectively.
As an important infinite-dimensional Lie algebra, the twisted Heisenberg-Virasoro algebra HYV is the
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universal central extension of the Lie algebra

HY = { f(t)% +g(t) | f(t), 9(t) € CLt, t-l]}

of differential operators of order at most one, which was studied in reference [1]. The structure and
representation theories of the twisted Heisenberg-Virasoro algebra and its various extended Lie algebras
have been extensively investigated (see, e.g. [4, 6, 7, 17]). Recently, transposed Poisson structures on the
super Virasoro algebra were researched in [8], which inspires us to study the super case of the twisted
Heisenberg-Virasoro algebra.

Now, let us recall the definition of the super Heisenberg-Virasoro algebra given by [5, 15].

Definition 1.1. The super Heisenberg-Virasoro algebra sHV is an infinite-dimensional Lie superalgebra generated
by even elements {Ly,, Iy, Clmez and odd elements {G,}eirz, where i = 0 (the Ramond case), or i = % (the Neveu-
Schwarz case). In both cases, c is central in the superalgebra, and super-brackets are given by

m® —m

—12 Om+n,0C, @
[Lm/ In] = 1lygn, (2)
[Lm/ Gr] = 1Gsr, [Gr/ Gs] =2I,, [Imr In] = [Irm Gr] =0,

formneZ,rseci+Z.

[Lmr Ln] = (Vl - m)Lm+n +

By the definition, we have the following decomposition:
sSHYV = sHV; EB sHYV5,

where sHVy = spanc{Ly, Ly, ¢ | m € Z}, sHV; = spanc{G, | r € i + Z}. Notice that the even part sHVj is
isomorphic to the twisted Heisenberg-Virasoro algebra HV with some trivial center elements. Recall that
a Lie superalgebra L is perfect if [L, L] = L. Note that the super Heisenberg-Virasoro algebra is perfect,
which can be easily checked using the above definition.

In this paper, we will study 3-superderivations of the super Heisenberg-Virasoro algebra. We find that
there are no non-trivial transposed Poisson structures defined on the super Heisenberg-Virasoro algebra.

2. Preliminaries

In this section, we recall some definitions and known results for studying transposed Poisson structures.
Although all algebras and vector spaces are considered over the complex field, many results can be proven
over other fields without modification of the proofs.

Definition 2.1. (see[21]) Let L be a superalgebra and 6 an element of the ground field. A homogeneous endomorphism
Y of the superspace of endomorphisms is called a 6-superderivation if

V(lx, y]) = 0([Y (), y] + ()™ IO x, (y)]).

The main example of 3-superderivations is the multiplication by an element from the ground field. Let
us call such 1-superderivations as trivial 1-superderivations.

Lemma 2.2. Let 11 and Y, be 61- and 6,-superderivations of a superalgebra L, respectively. Then the supercommu-
tator

Y1, Yolls = Yy — (=1)7WEIG2) gy,

is a 010,-superderivation. Similarly, the commutator [11, 2]l of 61- and O,-derivations of an algebra is a 010,-
derivation.
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Proof. For arbitrary x,y € £, we have

L1, P2ll(lx, yD) = (a2 = (D™D ([, y])
= Y1ya([x, y]) = (D)o ([, y])
= S ([Ya(x), Yl + (=170, o (y)])
— (1) gDAT2) 6, ([ (x), y] + (=1 IO®TE [, oy (3)])
= o ([Y2(x), Y1) + 82(—1) 040G ([x, o (y)])
= Oy (=) Iy ([ (x), y])
_ 51(_1)d€9(¢1)(dey(l/}z)+d6g(x)) a([x, Y1 (y)])
= 0102([Y192(x), y] + (=1)* TN [y (x), P (y)])
+ 0105 (= 1) I ([ (x), ()] + (~1)* 7T o, iy ()])
_ 5162(_1)d6y(¢1)d€9(¢z)([¢2¢1(x), y]
+ (=1)" TG OMII Yy (x), o (y)])
_ (5162(_1)dey(wl)(d69(¢z)+d69(X))([4,2 (), V1(y)]
+ (=1) "I, Pypy (y)])
= 5102([112(x), y] + (1) AWV ETLIHATD Y (x), 1y ()]
+ (=) IO [y (x), a(y)]
+ (1)o@ OHTOD e, gy o (y)] = (=1)TEIIEI [y (x), y]
— (=) Iy (x), a(y)]
_ (_1)d€g(¢1)(dfg(¢2)+d€y(X))w,z(x), ()]
— (_1)dﬁg(lﬁl)deg(¢2)+d89(X)(d€9(¢1)+d€g(¢z))[x, Va1 (v)])
= 8102([(Y1p2 = (~1)*EI DYy ) (), ]
+ (_1)d€g(X)(d69(tP1)+d€g(¢/z))[x/ WY1 — (_1)d€g(¢1)d€9(¢z)¢2¢1)(y)])
= 0102([[1, Y2lls(x), y1 + (~1)* 7O TbDp, [, o s (y)D).

By Definition 2.1, we know [[¢1, 2]l is a 010,-superderivation. And by similar calculations, we can obtain
that the commutator [[¢1, ¢2]] of 61- and 6,-derivations of an algebra is a 616,-derivation. [J

Transposed Poisson algebras were first introduced by Bai, Bai, Guo and Wu in [2].

Definition 2.3. Let L be a vector space equipped with two nonzero bilinear operations - and [-,-]. The triple (L, -, [-,])
is called a transposed Poisson algebra if (L, -) is a commutative associative algebra and (L, [-,]) is a Lie algebra that
satisfies the following compatibility condition
2z-[x,yl=[z-xyl+[x,z -yl
One naturally defines a transposed Poisson superalgebra as a superization of the notion of a transposed
Poisson algebra.

Definition 2.4. Let L = L P L3 be a Zy-graded vector space equipped with two nonzero bilinear super-operations
-and [-,-]. The triple (L, -, [-,-]) is called a transposed Poisson superalgebra if (L, -) is a supercommutative associative
algebra and (L, [-,-]) is a Lie superalgebra that satisfies the following compatibility condition

2z [x,yl = [z x, y] + (1)@ [x, z . y], x,y,z € Ly U Ly.

Definition 2.5. Let (L, [-,-]) be a Lie superalgebra. A transposed Poisson superalgebra structure on (L,[-,-]) is a
supercommutative associative multiplication - on L which makes (L, -, [-,-]) a transposed Poisson superalgebra.
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It is easy to see that Definitions 2.1 and 2.3 imply the following key lemma.

Lemma 2.6. (see [8]) Let (L, -,[,-]) be a transposed Poisson algebra and z an arbitrary element from L. Then the

left multiplication I, in the associative commutative algebra (L, ) gives a 3-derivation of the Lie algebra (L, [-,]).

The super case is the following lemma.

Lemma 2.7. Let (L,-,[-,-]) be a transposed Poisson superalgebra and z € Ly U L7. Then the left multiplication
I, in the supercommutative associative algebra (L, -) gives a 3-superderivation of the Lie superalgebra (L, [-,-]) and
deg(l;) = deg(z).

Proof. For arbitrary x,y € Lz U L7, we have
L([x, y) z-[x,y]
= %([z x, Y] + (—1)deg)deg(@)[x;, 7 - n))
B(lz %, Y] + (1, 2 )

By Definition 2.1, we know ; is a }-superderivation of the Lie superalgebra (£, [-,-]). [
By Lemmas 2.6 and 2.7, it is easy to prove the following lemma.

Lemma 2.8. (see [8]) Let L be a Lie algebra (or superalgebra) of dimension > 1 without non-trivial 1-derivations.
Then every transposed Poisson structure defined on L is trivial.

3. TP-structures on the super Heisenberg-Virasoro algebra

In this section, we describe transposed Poisson superalgebra structures on the super Heisenberg-
Virasoro algebra sHV. To obtain this result, we first have to prove a few lemmas.
Set (sHV;); = spanc{L;,1;} for 0 # j € Z and (sHVp)o = spanc{Lo, lo,c}. Then sHV; = @(s?—(‘VO)]- isa
jEZ
Z-graded algebra. It is easy to see that sHV; is finitely generated. Let ¢ be a 1-derivation on sHV;. Then,
by Lemma 2.4 in [19], the Z-grading of sHV; induces the decomposition

v=), 0

jez

where @ is a 3-derivation on sHV; of degree j, i.e., 9;(sHVo)) € (sHVp) 4k, Yk € Z.

Lemma 3.1. Every }-derivation on sHVy is trivial.

Proof. Let @; be a 1-derivation on sHV; of degree j. We can assume that
@j(Lm) = &jmLjym + a;'/mlj+m + 0j4m,08jmC, @3)
@im) = BimLjrm + B’y ljvm + Ojrmobjmc, ()

@j(©) = yiLj +vilj + djodje,
where the coefficients are elements in C. Firstly, we apply ¢; to both sides of the relation [L,,, c] = 0 and we

obtain
2¢i([Lm, c]) = [@j(Lm), c] + [L, @j(c)]
(Lo, )] = [Ln, yiLj + i + Oj0djc]

(G = m)y Ljsm + 1Y/ Ljsm + 55276 4mc,

0
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which gives
(j=my;j=0, j;=0.

Choosing j # m, we have y; = 0 for all j € Z. In addition, one has 7/} =0for 0 # j € Z. It follows that

¢ilc) =0, j#0.

Po(c) = yolo + doc.

To compute the other coefficients, we have two cases to consider.
Casel. j#0
Applying ¢; to both sides of (1) and by (3) and (5), we can get

m® —m

Z(P]([Lmr Ly]) =2(n - m)(P](Lm+n) + 6
= 2(n — m)ajminLjtmin +2(n — m)a;/m el jrmin
+2(n - m)6j+m+n,oaj,m+nc-
On the other hand, we have
2¢([Lm, Lnl) = [®j(Lm), Lu] + [Lm, @j(Ln)]
= [aj,ij+m + a;',mljﬂn + 6j+m,0aj,mc/ Ln]
+ [Lin, (Xj,nij + a},nljm + 6j+n,0aj,nC]
= ((Tl - ] - m)aj,m + (] +n-— m)aj,n)Lj+m+n
+ ((] + n)a;.,n - (] + m)a;',m)lj+’n+n

GmP—Gm)  w—m
12 Gm T T

+ 6j+m+n,0 (

Comparing (7) with (8), we have

2(n— m)aj,m+n = (1’[ - ] - m)aj,m + (] +n— m)aj,n/

’
jm+n

’

2(n —m)a i

= (j+ma, - (j+ma

and

(j+m)3—(j+m)a +m3—m

2(71 - m)6j+m+n,0aj,m+n = 6j+m+n,0 12 jm 12 aj,n .

Applying ¢; to both sides of (2) and by (4), we obtain

Z(Pj([Lmr L) = zn(Pj(Im+n)

= 2nﬁj,m+nLj+m+n + znﬁ}mwlﬂmm + 2n6j+m+n,0bj,m+nc-

On the other hand, we have

Z(Pj([Lm/ L]) = [qoj(Lm)/ L]+ [Lu, goj(ln)]

= [ij,ij-#m + a],ij+m + 6j+m,0aj,mcl L]
+ [LMI ﬁj,nLj+n + ﬁ;',nlj-m + 6j+n,0bj,nc]

=(j+n—m)BiuLismin + (i + G+ 1), Mismen
Ji

m® —m

T6j+m+n,oﬁj,nc-

6m+n,0(Pj(C) =2(n- m)(P](me)

8515

®)

(7)

(10)

(11)

(12)

(13)
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Comparing (12) with (13), we have

2”ﬁj,m+n = (] +n-— m)ﬁj,n/ (14)
20 4 = N + (J+ 1B, (15)
and
md —m
210 jsmn,00jmen = Téj+m+n,o,3j,n- (16)

Firstly, we see (9), (10), (14) and (15). By taking n = 0in (9), then we have (j —m)a;, = (j —m)a;o. Thus
Ajm = Qjo, M # ] (17)

Furthermore, by letting n = —m = j in (9) we have 4ja;o = ja;-j +3ja;;. According to (17), we have
aj_; = ajo. It follows that a;; = ajo. This, together with (17), gives

Qjn = ajo, Yn € Z. (18)
Letting 7 = 0 in (10), we have (j —m)a}, = ja},, which yields

’ _ ] ’ .
aj,m = ],_ maj,o, m# j. (19)

Letting m = —n with n ¢ {j, —j, 0} in (10), we can get
dnay = (j+ma, — (j - W, (20)

By (19), we know

Substituting this into (20), we can get dna = ;ijzz @y, which implies
ay=0. (21)

Substituting this into (19), we can get &, =0, m # J. Letting n = —m = j in (10) and by (21), we obtain

a’;=0. Hence
&, =0,VneZ 22)

Settingm = 0in (14), wehave (1 — j)f;» =0, whichimplies B, =0, n # j. Withthis, by takingn = —m = j
in (14) one has B;; = 0. This proves

Bin=0,YneZ. (23)

Setting n = 0 in (15), we obtain ﬁ}/o = 0. With this, taking m = —n in (15) gives 0 =naj_, + (j + ”)ﬁ;,n'
This, together with (18) gives

(j+mpj, = —najp. (24)
Letting m = 0in (15), we can get (1 — )}, = nejo. Combining with (24), we have f7, =0,7# 0. Hence

B, =0,YneZ (25)
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With this, taking n = 1in (24) gives ajo = 0. Substituting this into (18), we can get
ajn=0,YneZ. (26)
Now, taking n = 0 and m = —j in (11) and by (26), we obtain
aj-;=0. (27)
Letting n = 1 and m = -1 — j in (16) and by (23), we have
bj-;i=0. (28)
By (26), (22), (23), (25), (27), (28) and (5), we can get
p;j=0,j#0.

Case 2. j=0.
Applying @ to both sides of (1) and by (3) and (6), we can get

m® —m
Z(PO([Lmr Ln]) = 2(” - m)QDO(LmM) + T6m+n,O(PO(C)
’ m3 —-m ’
= 2(n — m)ao manLmn + 2(n - m)a0,m+n1m+n + Témm,o)/olo (29)

3

m —m

6

+ Opman0(2(n — m)ag prn + do)c.

On the other hand, when j = 0, (8) takes the form of

Z(PO([Lm/ L,]) = (n — m)(aom + @0,n)Lisn + (na{),n - ma{),m)lnﬁn

3 _m (30)

m
6m+n,0(a0,m + aO,n)C‘

12
Comparing (29) with (30), we have

21 = m)atomen = (1 = M@0 + 0,0, (31)
2(n — m)oz{),mm = naé/n - ma{),m, m+n#0, (32)
dmayy — "y = (e, + ) @

and
O 201 = Mg+ ) = 810" 0+ 0. (34)

When j =0, (14), (15) and (16) take the form of, respectively

2nﬁo,m+n =n- m)ﬁo,n, (35)
2nﬁé,m+n = TI(OCO,m + ﬁ;),n)’ (36)
and
m® —m
2n5m+n,0b0,m+n = 5;n+n,OﬁO,n- (37)

12
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Setting n = 0 in (31) and (32), it follows that respectively
Qom = oo, YM € Z, (38)
and
ay,, =0, m#0. (39)
According to (39) and taking m = 1 in (33), we obtain a;, = 0. This, together with (39), gives
ag, =0,YnezZ. (40)

According to (40) and by letting m = 2in (33), wecanget y{ = 0. Takingm = 0in (35) gives fo. =0, n # 0.
With this, letting n = —m = 1 in (35), we have oo =0. Hence po, =0, Vn € Z. Taking m = 01in (36), we
have

ﬁa,n =ag, n # 0. (41)

By (38) and (41), letting n = —m = 1 in (36), we can get ,56,0 =app- This, together with (41), gives
Bo,, = @00, Y1 € Z. In the following, we denote agp as A, i.e., @on =pf, =A, Vn € Z. Takingm =-n=1
in (34), we obtain agp = 0. According to this and (38), by setting m = —n = 2 in (34) one has dp = A.
Finally, it follows by setting m = —n = 1in (37) that bgg = 0. As a conclusion, we obtain

Po = Mdsg;.
Combining the two cases above, we get the desired result. [J

Lemma 3.2. Let i be an even 3-superderivation of sHV, then y is trivial.

Proof. Tt is easy to see that the restriction 15 |y, is a %—derivation of sHVj5. By Lemma 3.1, we know
U |sev, is trivial. Hence, by subtracting a multiplication transformation we can suppose that {5 [s2,= 0.
Next, we assume that

Yo(G) = ) TiGy,

tei+Z

where I'; € C. Then we have

2¢5([Lo, G/]) = 2r(G,) = 2r Y T'Gy. (42)

tei+Z

On the other hand, we have

2Yo([Lo, G/]) = [Yo(Lo), Gi] + [Lo, Po(Gr)] = [Lo, Po(Gr)]
= [Ly, X TiG]= Y tI'G. (43)

tei+Z tei+Z

2r Y TG = ) Gy,

tei+Z tei+Z

Comparing (42) with (43), we obtain

which gives
I =0, (t#2r).

It follows that

Yo(Gy) =0, Vr e % +7Z, (44)
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and
1P(_)(Gr) = rngzr, YreZ.

Now, we need only to consider the case of i = 0.

0 = 4Po(liss) = 2¢5([Gr, Gs]) = [Yo(Gr), Gs] + [Gr, ¥5(Gs)]
= [rngZV/ Gs] + [Gr/ F;SGZS]
= 21—‘;_,‘[2145 + Zr;SIH—ZS'
For r # s, we deduce
I, =0, VreZ.
This means
Y5(G,) =0, Vre Z. (45)

Summarizing (44) and (45), we have
Py =0.
1

Hence, every even ;-superderivation of sHV is trivial. O

Lemma 3.3. Let ¢; be an odd 1-superderivation of sHV, then i = 0.

Proof. Let adc, be an inner odd superderivation of sHV. Then, according to Lemma 2.2, we know that

[y1,adc,]lsis aneven %-superderivation of sHV. Furthermore, based on Lemma 3.2, we have that [11, adg, IIs

is trivial, i.e., [Y1,ad:, s = Brldsary, Br € C related to r. Next, we assume that

Yi(c) = Z a;Gy,

tei+Z

where a; are elements in C. Whereupon we have

pre = i, adcIs(c) = (Yradc, + adg,P1)(c) = [Gy, P1(c)]
= [G, X aGl=2 ) ailpyy,
tei+Z tei+Z

which gives

ar=0,Vtei+Z,
and

Br=0,Vrei+Z.
It follows that

Y1(c) =0, (46)
and

[Y1,adc]s =0, Vrei+ Z.
Hence, we see that
0 2[[1101/ ade]]s(Lm) = Z(Ebiade + adGrll}i)(Lm)

2¢i([G7r Lm]) + Z[Grr lpi(Lm)]

[EDT(Gr)r Lm] - [Grr lPT(Lm)] + Z[Gr/ l/’i (Lm)]
w)i(Gr)r Lm] + [Grr Qbi(Lm)]

=[Lm, Y1(G)] + [Pi(Lm), G],
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which yields
(L, p1(GP] = [$1(Lm), G-
Furthermore, one has
2¢1([Lm, Gr]) = [$1(Lm), Gl + [Lin, P1(Gr)]-
Substituting (47) into (48), we can get
V1([Lm, Gr]) = [Y1(Lm), Gr] = [L, P1(GP)]-

Afterwards, we can assume that

Y1(Gy) = Z O Lk + Z el +0a'c,

kez kezZ

where 0}, €], 0" are complex numbers. Whereupon we have

[Lo,¥1(G)] = [Lo, ¥ O/Li+ X el +0'c]

keZ keZ
= Y OfLo, L]+ X €lLo, k]
kez keZ

€
Z k@;Lk + Z ke;(lk.
kez keZ

On the other hand, we have

llbi([LOl Gr]) = ﬁ;bi(Gr)
= 1) OLg+r ) el +ro’c
kez keZ

Comparing (50) with (51), we have
0,=0, (k#r),
€ =0, (k#r),
and
o =0, (r+0).
By (52), (63) and (54), we can obtain
Y1(G,) =0, Vre % +7Z,
and
Ui(Gy) =0L, +€l,0¢re”Z,
P1(Go) = 68L0 + 6810 + d%.
Hereafter, we can assume that

Pill) = Y @Gy,

tei+Z

where w{" € C. Let us now discuss this scenario case by case.
Casel.i= %, i.e., the Neveu-Schwarz case.

8520

(47)

(48)

(49)

(50)

(51)

(52)
(53)

(54)

(55)

(56)
(57)

(58)
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By (49), (55) and (58), we have

0 = rll)T(GmH) = ¢i([Lm/ Gr]) = [IPi(Lm)r Gr]
= [ X (UtmGtr Gl=2 )% w?thrr;
te3+Z tei+z2
which gives
" 1
Wy :O,Vte§+Z.
This means that
Pi(Ly) = 0. (59)
At last, we have
4¢i(lr+s) = lei([Gr; Gs]) = [¢1(Gr)/ Gs] - [Gr/ wi(Gs)] =0. (60)
Since t, s are arbitrary, we have
Pi(ln) = 0. (61)

Hence, by (46), (55), (59) and (61), we obtain
Y1 =0.
Case 2. i =0, i.e., the Ramond case.
By (49) and (57), we have
0 Yi([Lm, Gol) = [Lm, Pi(Go)l
(L, O9Lo + €5lo + 0°c]

09 (m*—m
—mOLy, + 25, oc.

Taking m # 0, we can deduce that
05 = 0.
This means that
¥1(Go) = €5l + a’c.
Setting r # 0 and according to (56), we have

0i(r— %)
[L-;, ¥1(Gy)] = [L,, OLL, + €/I,] = 2rO/Lo + Tc + reLlp. (62)

On the other hand, we have

[L—r/ l;bi (Gr)] = IJJT([L—W Gr]) = r¢i(G0) = reglo + rO'OC- (63)

Comparing (62) with (63), we can obtain
6,=0,(r=+0),

e =e), (r#0),

and
o’ =0.

So we have

V1(Gy) = )L, Vr e Z. (64)
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By (49) and (58), we have

reglmw = ﬁl’i(Gmw) = ¢Y1([Ly, G;]) = [P1(Ln), G/]
= [X 0)'G, G/ =2 Y 'y,

tezZ. teZ
which implies

wy' =0, (t#m), (65)
and

20 = reg. (66)
Taking r = 0 in (66), we can deduce

wyy = 0. (67)

Then setting r # 0 in (66), we can deduce
68 =0. (68)

According to (65) and (67), we can deduce

1(Ln) = 0. (69)
Based on (64) and (68), we have

¥1(Gy) = 0. (70)
Finally, by performing a calculation similar to that in (60), we have

Pi(ln) = 0. 1)
Hence, according to (46), (69), (70) and (71), we have

Y1 =0.

The proof is now completed. [

Theorem 3.4. There are no non-trivial %-superderivations of the super Heisenberg-Virasoro algebra sHV .

Proof. Let1 bea 3-superderivation of sHV. Then the even part ¢ and the odd part y; of ¢ are, respectively,

an even 1-superderivation and an odd 3-superderivation of sHV. According to Lemmas 3.2 and 3.3, we

know that 1 is trivial and ¢; = 0, respectively. Since sHYV = sHV; ® sHV7 is a Z,-graded algebra and
finitely generated, following a similar argument as in the proof of Lemma 2.4 in [19], we can deduce that

=40+ ¢1 =1y
which means ¢ is trivial. The proof is completed. O

Theorem 3.5. There exist no non-trivial transposed Poisson superalgebra structures defined on the super Heisenberg-
Virasoro algebra sHY .

Proof. This statement follows from Theorem 3.4 and Lemma 2.8. [

Acknowledgements

We would like to thank the referee for invaluable comments and suggestions.



Y. Yang, X. Tang / Filomat 38:24 (2024), 8511-8523 8523

References

(1]

[2]
(3]
[4]
[5]
(6]
(7]
(8]

9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]

[21]

E. Arbarello, C. De Concini, V. G. Kac, C. Procesi, Moduli spaces of curves and representation theory. Commun. Math. Phys. 117
(1988), No. 1, 1-36.

C.Bai, R. Bai, L. Guo, Y. Wu, Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie algebras, J. Algebra 632 (2023), 535-566.
P. D. Beites, B. L. M. Ferreira, I. Kaygorodov, Transposed Poisson structures, arXiv:2207.00281.

Y. Billig, Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canad. Math. Bull. 46 (2003), No. 4, 529-537.

H. Chen, X. Dai, Y. Hong, The Heisenberg-Virasoro Lie conformal superalgebra, J. Geom. Phys. 178 (2022), 104560.

H. Chen, X. Guo, New simple modules for the Heisenberg-Virasoro algebra, J. Algebra 390 (2013), 77-86.

H. Chen, ]. Li, Left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra, Sci. China Math. 57 (2014), No. 3, 469—476.
B. L. M. Ferreira, I. Kaygorodov, V. Lopatkin, 1-derivations of Lie algebras and transposed Poisson algebras, Rev. Real. Acad. Cienc.
Exactas, Fis Nat A: Mat. 115 (2021), No. 142.

L. Kaygorodov, M Khrypchenko, Transposed Poisson structures on Block Lie algebras and superalgebras, Linear Algebra Appl. 656
(2023), 167-197.

L. Kaygorodov, M Khrypchenko, Transposed Poisson structures on the Lie algebra of upper triangular matrices, arXiv:2305.00727.

I. Kaygorodov, M Khrypchenko, Transposed Poisson structures on generalized Witt algebras and Block Lie algebras, Results Math. 78
(2023), No. 5, 186.

I. Kaygorodov, M Khrypchenko, Transposed Poisson structures on Witt type algebras, Linear Algebra Appl. 665 (2023), 196-210.

I. Kaygorodov, V. Lopatkin, Z. Zhang, Transposed Poisson structures on Galilean and solvable Lie algebras, ]. Geom. Phys. 187 (2023),
No. 104781.

I. Kaygorodov, I. Shestakov, U. Umirbaev, Free generic Poisson fields and algebras, Commun. Algebra 46 (2017), No. 4, 1799-1812.
J. Li, J. Sun, Super-biderivations on the super Heisenberg-Virasoro algebra, Linear Multilinear Algebra 70 (2022), No. 21, 6500-6510.

J. Liu, C. Bai, Y. Sheng, Noncommutative Poisson bialgebras, ]. Algebra 556 (2020), No. 1, 35-66.

R. Shen, C. Jiang, The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra, Commun. Algebra 34
(2006), No. 7, 2547-2558.

P. Xu, Noncommutative Poisson Algebras, Am. J. Math. 116 (1994), No. 1, 101-125.

Y. Yang, X. Tang, A. Khudoyberdiyev, Transposed Poisson structures on Schrodinger algebra in (n + 1)-dimensional space-time,
arXiv:2303.08180.

L. Yuan, Q. Hua, 1-(bi)derivations and transposed Poisson algebra structures on Lie algebras, Linear Multilinear Algebra 70 (2022), No.
22,7672-7701

P. Zusmanovich, On d-derivations of Lie algebras and superalgebras, ]. Algebra 324 (2010), 3470-3486.



