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Abstract. In this paper, we apply classical Banach and Krasnosel’skii’s fixed point theorems along with
Leray-Schauder alternative to study the existence and uniqueness of solutions for FDEs involving (k, ¢)-
Hilfer fractional derivative with a linear combination of two (k, ¢)-Hilfer derivatives in boundary value
conditions. Finally, we present some examples to validate our theoretical outcomes.

1. Introduction

Fractional-order integral and derivative operators appear in fractional calculus to study many sci-
entific phenomena associated with physics, chemistry and engineering problems, see [1]-[9]. Fractional
derivative operators are constructed by applying fractional integral operators of many kinds such as
Riemann-Liouville, Caputo, Hadamard, Katugampola, Hilfer and etc. Some fractional derivative operators
are special cases of the other types of fractional derivatives. For example, Riemann-Liouville and Hadamard
fractional derivatives are obtained as special cases of the generalized fractional derivative which have been
introduced by Katugampola [10, [11]. On the other hand, fractional derivative operators Caputo, Caputo-
Hadamard and Caputo-Erdelyi are introduced by the i-fractional derivative operator [12]. Authors in
[19] introduced the (k, ¢)-Hilfer fractional derivative operator which generalize some known fractional
derivative operators. In [14], authors studied the multi-order boundary value problem (BVP) consisting of
two fractional derivatives supplemented with a linear composition of fractional integral in the boundary
conditions:

(P D§! + (1= 7) Dg2)z(r) = f(r,z(r)), r€[0,7],
z(0) =0, 7Itz(t") + (1 —7) I2z(T") = ao,

(1)
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in which Dg+ is the Riemann-Liouville fractional derivative of order n € {61, 5>} such that 1 < 61,62 < 2, Ig;
is the Riemann-Liouville integral with " € {v1,v,}, 0 < v1,7, <1 and a9 € R. The investigation of the BVP:

{(? Dg+ + (1 -7) Dg.)z(r) = f(r,z(r)), re€[0,77], 2

2(0) =0, #D7z(t") +IJ*z(10) = ao,

was initiated in [15], in which D¢, and Dg. indicate the Riemann-Liouville fractional derivatives with
1<6<2,1<v<0,0<7<1,0<61<6-9,6,>20,a0e Rand0< 19 < 7"

For more information about boundary value problems with fractional derivatives see, [19]-[23].
Inspired by the above works, Rezapour et al. [16] have studied the Liouville-Caputo integro-differential
BVP of the form:

(DI + (1 = 7) IT)z(r) = f(r,2(r)) + ‘DS f(r,2(r)), r€[0,77], 3
z(0) =0, 7°Dy.z(t") + (1 —=7)°Dgz(t") = ao,

in which CDé is the Caputo derivative with y € {61,62,v2,v1}, 490 € R and Igf indicates the Riemann-
Liouville fractional integral such that 1 < 61,63 <2,61 > 63,0<62<1,0<7r<1,0<v,v; <61 — 63 and
f, f e C([0, 7] x R, R).

Recently, Ntouyas et al. [17] have considered the BVP involving (k, i)-Hilfer type fractional deriva-
tives of order in (1, 2], supplemented with a linear combination of (k, ¢»)-Hilfer type derivative and integral
operators of the form

u(@ =0, ub)=ADPIYy1n) + u Y u(o). 4)

{k'HD“'ﬁ'“”u(r) = f(r,u(r)), re€@,b],
Here, “"'D%¥ is the (k, y)-Hilfer-type fractional derivative of order a, 1 < a < 2 and parameter ,0 < < 1,
k>0, f:[a,b]xR — Risa continuous function, kHDPAaY indicates the (k, 1p)-Hilfer-type fractional derivative
of order p, 1 < p < 2 and parameter q,0 < g < 1, p < a, *I?¥ denotes the (k, {)-Riemann-Liouville fractional
integral of orderv > 0, A,y € R,anda < &, v < b.

Motivated by the above works, our goal of this study is to consider multi-order BVP with linear
combination of fractional derivatives in boundary conditions:

(5)

(P FHDOBY 1+ (1 - 7) k'HIgf’(P)Z(r) = f(r,2(r)) + "HD%P% f(r,2(r)), re0,77],
20)=0, ,#FADEP2(r) + (1 - 7) D0 2(1") = ap,

where “'D"#¢ indicates the (k, p)-Hilfer-type fractional derivative of order 1, with n € {51, 63, v1,v2}, 40 € R

and k'HIgf’(P stands for the (k, ¢)-Riemann-Liouville fractional integral of order &, > 0 such that k > 0,

1<61,63<2,61>063,0<62<1,0<7<1,0<wv;,v; <81 —053. The presented results will be considered via

classical Banach principle along with Leray-Schauder nonlinear alternative and Krasnoselskii fixed point

theorem.

The remainder of this paper will be arranged as follows: First the main concepts are recalled in
Section 2. In Section 3, a basic lemma is proved to convert the problem (5) into a fixed point problem. The
existence and uniqueness result concerning the problem (B) are presented in Section 4. Section 5 contains
illustrative numerical examples.

2. Preliminaries

First, some definitions and lemmas related to this work are recalled.
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Definition 2.1. [18] Let h € L*([a,b],R), k > 0 and ¢ is an increasing function with ¢'(t) # 0 for all t € [a,D].
Then the (k, (p)—Riemann—Liouville fractional integral of order a > 0 (a € R) of the function f is given by

0 = s [ 9O - oot s

Definition 2.2. [19] Let a,k € R* = (0,00), B € [0,1], ¢ is an increasing function such that ¢ € C"([a, b], R),
@'(t) #0,t € [a,b] and f € C*([a, b], R). Then the (k, p)-Hilfer fractional derivative of the function h of order o and

type B, is defined by

KHygyip £y = pP0k-ane [k A" a-piok-aye _re
DY f(t) =TT ((p(t)dt) Iov o), n=[7].

Lemma 2.3. [19] Let u,k € R* and n = | £ |. Assume that t € C"([a, b], R) and kS”k_W/)b € C"([a,b], R). Then
[’l k a+

k rwy (k, 5 _ - (1/)(w) - gb(a))%‘f k i " k 7nk—w P
TuY ( RL gy l/’[)(w)) = b(w) ~ ; Ti(u = jk + k) [( P (w) dw) Lo b(w)]

Lemma 2.4. [19] Let o,k € R* witha <k, € [0,1] and O = a + B(k — a). Then
kZ'Qk v (kRLz)Qk lpb) (ZU) k]'alp (kHDaﬁlpb) (ZU) b e Cn([ﬂ b] )

z=a

Lemma 2.5. [19] Let C, k € R* and n € R such that '—’ > —1. Then

F n+C
(0. T - )t = D (n(Z,H S0 - ).
N kY Fk( ) ¢
(@0 D) - @) = 2 D0 -y T

Lemma 2.6. [2l] Let aq, a2, B,k € (0, 00) with ay > a1, k> 0 and B € [0,1]. Then,

it (T i) = FI ), e Clla,bL R,

3. An auxiliary Result

LemmNaS.l. Letk>0,1<61,63<2,61>030<6,<1,0<7<1,0<?,0, <61—-03p=06 +‘3(2k—51)
and h,h € C*([0, 7], R). Then, if

= (= 1) ((r") = p(O) T — P ((z") = (O)) !
A= (= D= () = 9(0) Py oy @) PO T £ 0,

the unique solution of the linear fractional BV P:

(FEHDN + (1= ) KT P02 = () + DR, re 0,7, ©
20) =0, #MDFPL() + (1 - ) FHDFP2(1) = a,
is given by
i = — 1 AN )+ 5 kf‘“ Thr) + < kI‘“ S h(r)
+K[(f o (PZ(T )+ k_z*gr”l""h(r*) R S ()
Y P
R A O = A
(=) i por-ss-oupy, ]((Pw)—(pm»’i*
= KT TR - g | 7
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Proof. Assume that Z is a solution of the boundary value problem -i Taking fractional integral operator
k[53¢ on both sides of the first equatlon in @ and usmg Lemmas2.3/and 2.4 . we conclude that

1y

W) = —= L) + 5 kf“l Phir) + < "I‘” S Rr)
(p() - (0))k‘1 (T )—<P(0))r
T ) TR ©
Using £(0) = 0 with (8) we conclude that ¢; = 0 since £ — 2 < 0. By using Lemrna we have
4 r ( ) il
kqyorpB ol = ol
D) —pO)™ = ¢ -0 )( @(t) = ¢(0)) ©)
and
DR ()~ PO = = P (plt) ~ p(0) T (10
- Tp—02)

Now applying (Eb, and the condition # ¥1D"Fe5(t*) + (1 — 7) MHD2P%5(1*) = gy in , after inserting
c1 =0, we get

(P = 1) KT 0y + KT () + KT T T ()

1=72 4,460 1-7 P
+( 1,; ) k_z—g}r+62 Uz,([JZ(T*)+( if\ )k‘z—g}r Uz,([Jh(Tae)+

+(1t”) k
7

J“r“rwﬁ(f) — ag

= o[ (P - D () = pO) T = P () - () )

Tk(P 02) F(P 01)

Consequently, we conclude that
G = 3]0 - DI ) )+ TR )

(1 —rr) k]—01+02 0; qJV( N (1 7) k]—al—vz;@h(,[*)

1 r G1—03—02; *
+(—?)kIO+ : ”“Ph(T)—aO].

Replacing ¢ in (8) we get (7). We can prove the converse by direct computation. The proof is finished. [

4. Existence and uniqueness results

Let X = C([0, 7], R) be the Banach space endowed with the norm |[¥|| = max{[X(r)| : r € [0, T*]}. Itis
obvious that the space X is a Banach space.
Now, using Lemma assume that the operator Q : X — X has been defined as follows:

v i;_ 1 51+02; 51; v 1 51—03,0 F, v
QI = —= TR + < ST 50 + = KL fn )

1 (p(t") = 9(0))i~ [ K o1+02-01p

+A ) (F=1) "Iy X(7%)

+kjg}r—vl}(Pf(T*, J?(T*)) + kjgi—GS—Ul}({)f(T*, X(Tae))
(1 - ?)2 61+62—02;Q n /% (1 - f) 61-02; o

- KT + p KT (T, ()

e ; D kIO fle, ¥() — ao]. (11)
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For convince, we set:

(1P =1](p(T") = p(0))7*
o = { 7 T1(61 + 62 + k)
)= O 117~ 1 Digte) g
WAy rk(p) I (61+ 62 —v1 +k)
1- f)z (p(t") - (p(()))fflﬂ?z—vz
TR ['k(61+ 62 —v2 +k) ]}’
G = (DO () e O o) - pO)
R I'(61 + k) | A | Tk(p) Ti(61 — v + k)
(1 -7 (p(r") = p(0)" ™ ]}
P TG —va+k) 1
Gy = {1 (p(T) = p(0))1~% 4 (p(t) = (p(O))%‘1 [((P(T*) - @(0))61_63‘7’1
5 T \7 I (61 —63+k) | A | T(p) T(61 - 63 — 1 + k)
(1 - 7) (p() = p(0))71 752
T [(61 — 63 — vz + k) ]}’
| A | Tk(p)

In the following theorem, Banach’s fixed-point theorem is applied to present an existence and unique-
ness result to the problem (5).

Gy = laol (12)

Theorem 4.1. Suppose that the following condition holds:
(D)

|f(7’,56) - f(r/]?)l < g|5é - ]?l/
1f(r, %) = fr, )| < Glx = 3,
where G, G > 0foreachr e [0,7"]and %, 7 € R.

Then a unique solution of the problem (5) is obtained on [0, T*], provided that

S:=G1+GG+GG <1 (13)

Proof. We show that the hypotheses of Banach’s fixed point theorem are satisfied by the operator Q. Assume
that M = SUP,¢[0,] |f(r,0)land N = SUP,¢0,0] If(r, 0)|. Now assume that Bs = {¥ € C([0, 7], R) : ||X]| < 0} with

5> §2M+§3N+§4_' (14)
1-G1-6:G -GG
First, we indicate that Q(Bs) C Bs. Applying condition (D), we get

[f (DL < 1f(r, %) = f(r, 0l + |f (1, 0)l,
<GIFl+ M <G5+ M.

Similarly, we conclude that

|f(r, ¥(r))| < G6 + N.
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Accordingly, for all ¥ € Bs, we get

| 7-11

@@ < o AT )+ 25150, 500) ~ 0,00+ 1,0

*ékfﬁﬁmﬂﬂnﬂﬂ)—ﬂnmrwﬂnmb
L L () - et
AT Tup)
I f(@, X)) = f(@, 01+ If(7,0))
IR f(, % (1) - fx, 00+ 1, 0)))
+ (1 - f)z k.[ﬁl+6z_v2;(p|5f("[*)|

? o*
+“;”@ﬁr”%ﬂfjww—ﬂfﬁnﬂﬂfgm
HED kg e vy - fa, 00+ 1,00 + oo
P11 (9(T) = 9(0)* 1 (p(r) — p(0)”

M G v e+ TP heirn  @0tM
L) — o)
7 Fk(61 - 03+ k)
L L (@) —pO)i!

(= 1) | KT ()

ot

IN

(G6 + N)

(p(T") = p(0))r+o2n

A Tk(p) 17=1)] [k(61+ 62 —v1 +k) I
(p(") — p(0)"1 (p(T) — pO)" "™ =

* rk(61 — 0 +k) (g6+M)+ 1-'k(a_l _63_01 +k) (g6+N)
(1= 7 (@(1) = p(0)71+%7

T T xR M

1= () — )" GO+ M) +

7 Fk(61 — U+ k)
1 -7 (p(t") = p(0) 7722
* 7 Fk(61 — 63 — 0y + k) (gé * N) * |110|]
{w—u@wrw@ﬁ%
7 Fk(61 + 5'2 + k)
(Mf%wﬂmVT@—D@@ﬂ—wWW”ﬂ”
| A | Ti(p) Tx(61 + 62 —v1 +k)
(1= )2 (p(t*) = @(0))7r 0272
T TG+ 0a-m 4R ]}6
{1 (P(T) = @(O)"  (p(r) = p(0) ! [(qo(r*) - p(0)) ™
7 Tk(61+k) | A|Tk(p) [(61 -1 +k)
(1-7) (p(r") = p(0) ™ 1 (p(t*) — (0))717%
? TW61—-0vy+k) ]}(gé M+ {5 Tk(61 — (63 + k)
(ﬂﬁ—ﬂw?vﬂﬂ—wWW”“
| Al Tk(p) I'e(61 = (63 —v1 +k)
(1 -7 (p(T*) = @(0)) =972 ) —
M I F——— ]}(Qr +N)
l@uw—wmﬁ4
| A|Ti(p)
= G156+ Ga(G0+ M) +Gs(G5+ N) + G4 < 6.

IN

+lag

8588
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Inconsequence, ||Q(X)|| < 6 and we have Q(Bs) € Bs. Now, we indicate that the operator Q is a contraction.
Forall ¥ € [0, 7] and X, 7 € Bs we have

| 7=114

QRN = QNN | < ——— T 1x(r) - y0)

#2 TR 00 - 0, O + 3 T 0,500 - For 500

7
LA 0 %‘1 61+062—01;
OO0 OOV 1) A7 - i)

| A|T(p)
TP (T, 1) = f(, )+ LT f(, 1) - f(, ()
(1-7)7%,

e TN - ()

1—’\ 51—0p; % N % * Mo %
S Do e 5w - f, g

1-7 61—03=02,0 ) F/ % g _* Tk N %
SO D pheemme e ww) - fo, g

|7 =1](p(T") —@O)7*= 1 (pr")=pO)"
R e v r e R L ey el
1-(p(r) = ()"~
S TGl X
(P(T) =) (p(T) @)
FETT I R e e
SO = QO 2 e gy QOO )

I'(61 —v1 +k) I'k(61 =63 —v1 +k)
(1 =7 (p(r7) = @(0))1+27> (1 =F) (p(T") = p(0))" ™
M W ey sl a g
(1-7) (p(T) — )"~ ]}
R Wra—— L
= S||x - vl

glix -7l

Hence, [|Q(¥) — Q)| < S|I¥ — 7ll and using S < 1 we conclude that Q is contraction. Now, applying Banach
contraction principle we conclude that Q has a unique fixed point which is a unique solution of the problem
®). O

In the following theorem, Krasnosel’skii fixed point theorem [24] is applied to present an existence result.

Theorem 4.2. Assume that the functions f, f : [0,7°] x R — R are continuous functions satisfying condition
(Dy). Moreover we assume that:

(D2) i _
| f(r, %(r)) IS P(r), | f(r, X(r)) I< P(r),

for all (r,%) € [0,7°] X R, and P, P € C([0, T*], [0, c0)).
Then the problem (5) has at least one solution on [0, T*], if S1 < 1, in which

Sy = (@(7") — p(0)F ! [(90(1*) — @(0))77 (1 - ) (p(7") — (0)) 2 ]} 1P+ {1 (p(T) — @(0))71 =%
b | A Te(p) T61—0v1+k) 7 Ti61-v2+k) ? Te(61-03+k
(@(T) = @O)F [ (@(T) = p(0)1 7571 (1 =) (p(T7) — (O)P~5—22 ) —
* |A|Fk(p) [rk(51—63—01 +k) * 7 rk(61—63—02+k) ]} ”P”

(15)
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Proof. Let sup, .. | P(r) I=Il P Il, sup,o. | P 1=l P | and B; = {¥ € C([0,T'],R) 1| ¥ [I< 6}, with
02G10+G | P Il +G3 || P || +G4. Assume that the operators @Q; and @, have been defined on B; as follows:

Qix(r) = %kfg” P, x() + 5 kf‘” B9 flr, 1(r),

and

s o _ Lo
Qui(r) =1L kg 1 00— 90)

I A SR S LA 1 I k 701+62—01;0 v/ _+
Al T |07 -1przpe e

+ kjgf}r—vu(Pf(T*’ J\E(T*)) + k]'gl—ﬁcs—vl;({)f(,_[* J\Z(T*))

(1 B ?)2 G1+062—02; (1 r) 51—02; * N7 %
o ML) ¢ = ML (0 ()
1 - ? 51—63—02; * Nk
 E Do Wﬂrwh»—%}

For all X, 7 € Bs, we have
F—1 G61+62; 61 G1—03; (o N
| Qi) + Qi) | < sup{”—f——'-kfw+ ¢|(ﬂ|+ ‘I q”|frx<r>)|+ I fr %) |
re[0,7*]

— (0))F 1 1462015

#ﬁﬁ”wwww|#mﬂﬂmﬂfmﬂn
WD apoetmese gy | LD bptoee e e |
+Q%QW$”W”ﬂﬂmeH%@}
=11 (@) = pO)" 1 (p) = p0)"
7 T G1+062+k) 7 T(61+k)
1)~ pO)"

IA

121l

7 Fk(61—63+k) ”7)“

1 (@) = @), - (p(t") = (0)7 0
mTP)[(l P=1 l) Fk(él + G, — 1 +k) 0
((P(T ) = ¢(0)) ™" (p(T") = p(0)) =1 —

rk(0'1—01+k) ||P”+ Fk(61—63—01+k) ”P”

+“—W@@%w©ww%6
f rk(61 +6'2 — Uy +k)
— 7 (p(T7) — @(0))7172

i’\ Fk(al vy + k) ” P ” +
-7 (@(T ) — (0))51*537212 _ ]
f I't(61— 63 — 02 +k) 121l +laol

= Gi6+G IPI+G I P || +Gu < 6.

Hence || QX(r) + Qi 3(r) |I< 6 which implies that Q% + Q17 € B5. On the other hand, by applying the
operator @ is a contraction mapping and the details are omitted. By applying the continuity property of f
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and f, we conclude that the operator @; is continuous. Besides, @ is uniformly bounded on B; as

Qx|
o7 1) @) O™ 1) e |
= 7 TW(61+62+k) 7 Tw(61+k)
1) - e =
TG o eR

Now let 11,1, € [0, "] with ry < 5. Thus we have

[ (Q1)(X)(r2) — Q1)(X)(r2) |

1 L [l [l
I T @n) fo P O)p(r2) = ()T~ = (p(r1) — () * (s, X(s))ds

+ f 9 6)(@(r) — () F 1 Fls, 1(s))ds |

_ 1 (" _ afsy _ 3 0y 5
+ | Th(61 = 03) j(; @ O)(p(r2) — @(s)) (p(r1) — @(s)) 1f(s, %(s))ds

+ | @G ) - ps) T fls, #s))ds |

"

P [t il il
%{zap(m — o) F+ 1 (@) — pO) F + () — p(O) F 1]

7_) 31-63 5193
B 200~ p() T 4 ()~ 9(0)

+(p(r) - p(0) T 1.

As ry —r; — 0, the right hand of the above inequality tends to zero indecently of ¥. Thus @, is equicon-
tinuous and by Arzeld—-Ascoli theorem, we conclude that Q; is completely continuous. Now applying
Krasnoselskii fixed point theorem we conclude that the problem (5) has at least one solution on [0,7*] O

Now we apply Leray-Schauder alternative type [25] to present another existence result.

Theorem 4.3. Assume that the functions f, f : [0, 7] xR — R are two continuous functions. Moreover we assume

that there exist continuous, nondecreasing function U : [0, c0) — (0, o) and continuous function U: [0, 00) —
(0, 00) such that

| f(,9) | UEUA D, | f0,%) 1< UOU( E D),
forall (r,X) € [0, 7] x R.
(Ds) There exist a constant v > 0 such that

v

— — >1
Gv+GIUIUNvID+G I UNU VI +Gs

Then the problem (5) has at least one solution on [0, T*]

Proof. First we indicate that the bounded sets are mapped into bounded sets in C([0, ], R). For 6 > 0, let
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Bs = {¥ € C([0, T°], R) :|| % [|< 6}. Thus for r € [0, T] we get

|7 =11 (@) = @O (@(r") = pO)F ' [(| 7~ 1 @(T) = p(0)" ™
[ (Qu)(r) | < { 7 T (61 + 62 + k) + | Al Tk(p) [ (61 + 62 —v1 +k)
L (L= 7P (@(T) — (07 |

P Ti(61+062—v2+k)

{1 (@) = 9O)"  (@(r") = p(O) " [ (p(r") = p(O)"

7 Tk(61+k) | A Ti(p) I'e(61— 01 +k)
(1-7) (@) = O)" ™ )\ § 1 (p(") = @(0)7—%
7 Fk(61 — U+ k) ]}(L((V)(Ll(l * I) * {; rk(f)'l - (63 + k)

(p() — p(0)F ! [(q)m — (0))71-o-1

| A | Tk(p) Ix(61—63—v1+k)

, (=7 (@) = p(O)" %7

P Tw(61—03—v2+k)

(p() — p(0)F !
| A T(p)

[f@ouaz

+ aol =616+ GoUMU( % |) + GyUT)U( %) + Ga

8592

Now we indicate that bounded subsets of C([0, 7], R) are mapped into equicontinuous sets by the operator

Q.

Let 7y, 71 € [0, T'] with r; < rp. Thus we get

[ (Q1)(X)(r2) = Q)F)(r2) |
L " - 2-1_ _ L .
< | rk(al) jO‘ % (S)[((P(rZ) (P(S)) ((P(rl) (P(S)) ]f(S/ x(S))dS

+ f & G(r2) — p(s) (s, 1)) |

1 "o, B Ny _ A1y fg g
e —‘a@fo ¢ O)(@(r) - ¢() (p(r1) = ()71 (s, X(e))ds

+ f o @) — pe) = fls, 5(e))ds |
1
I'k(61)

+ f @ ((p(r2) — p(s))

P(r2) = P(0)F ! = (p(r1) — p(0))F !
| A|Ti(p)

(p(t") = (0)) ™
k(61 —v1 +K)

N (p(1*) = @(0))71~%~0n

I'k(61— 63 —v1 +k)

LA-9 ) - P(0))1 =
7 Fk(61 — U7 + k)

L(1=7) (@) —pO)7

~

r Fk(61 —63—Uz+k)

+|

fo P O — ) T — (o) — pls) F 1K)

51489

T 1¥(s)ds |

; (@(t*) — @(0))71 02—
0F-D1e
(P(T") = ()"0
Ti(61+ 62— 01 +K) Il | UO)
(1- ?)2 ((P(T*) _ (P(O))(‘ilJrfrz—vz 5
P 61+ 02— 02 +k)

X

| U N UE) +

U UEG) +

U UE)

TN UG+ | ag |]
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As rp —ry — 0, the right hand of the above inequality tends to zero. Hence Arzeld—Ascoli theorem implies

that the operator Q : C([0, '], R) — C([0, 7*], R) is completely continuous
Finally, For A € (0, 1), the set of all solutions to equations ¥ = AQ(¥) is proved

Assume that ¥ is e; solution. Then, for r € [0, T*] we have

| %) IS G16+ G N U N U F 1) +Gs | U U % 1l) + G
[E] <

GO+ G N UNUN XN +Gs | U U # ) + G

or
Due to (D3), there exists v > 0 such that || X ||# v. Let us put

W ={x e C(0,7"], R); || x lI< v}.

The operator Q : W — C([0,7'],R) is continuous and completely continuous. Besides, there is

= AQ#% for some A € (0,1). Consequently, applying nonlinear alternative of
Leray—Schauder type, a fixed point of Q is obtained on W which is a solution of the problem (5 '

no ¥ € oW such that ¥
(16)

+ 1000 f(r X r)

Example 4.4. Consider the BVP of the form

(1 1H )2, 31+ 1 +§ THq)13 1+ﬁ)y(r) = f(r,x(r)) +

. 1 11941 21 11941 1

X(0) =0, % 2 Hq)7.511+1 w0 %(1) + 5 3 Hqyz.3:1+ 1 X(1) = 5

Here,# = 3, k=3,61=202=1%,03=13,B=13% @) =1+, 7 = 1. By computation, we have Gy ~ .003
Gs ~=.006,.009, G4 ~ 3, A = -2.
(i) Assume that the functions f, f : [0,7'] X R — R have been defined by
e’ | %] ) 5 ( | %] )
= 17
Fo D = 156 510) © (1+ ) S = aean(IEa T 17
Thus, we get
£, = £, < 3=, 170,0) = £, 9) < g5k i
forr €[0,1] and X,y € R. Therefore, we have G = 104 and g 103, which implies that S 1= G1 + GG + G3G =
.003 + ?gf + %2 ~ 0045 < 1. Consequently, by Theoremthe boundary value problem (16) with the functions f
and f given by (.) 17) has a unique solution on [0, 1].
(ii) Assume that the functions f, f : [0,7'] x R — R have been defined by
< r . 7 1
Fr,%) = ﬁcos(|x|)+4 =5 [0 = Wsm(lxl)+§+ﬁ (18)
Now, we see that
LT
- — < I
+1=P0), I DIS o + £ =P0)
% and G = 106 On the other hand, S ~ .83317 < 1.

<

F0,01 < 1
Moreover, the functions f and f satisfy condition (D) with G

Consequently, by applying Theorem we conclude that the problem (16) with f and f given by (.) 18) has at least

one solution on [0, 1]
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(iii) Let now the functions f, f : [0, 7] Xx R —> R be presented by

w1 e 1 s 1 1
fr %) = 10r+5(8+ IZP © 8)’ fn¥) =5+ g). (19)
By putting U(| ¥ |) = e + L and U(r) = L, we have || U ||= L. Consequently, there exists v > 0 such that

v
.006 (,— 1 .009 / ,— 1 3
.003v + T(E V+§)+?(€ V+§)+§

> 1.

Hence, by applying Theorem [4.3|we conclude that BVP with the function given by has at least one solution
on [0,1].

5. Conclusions

In this work, the existence and uniqueness results have been considered for a system of (k, )- Hilfer
fractional differential equations with linear combinations of fractional derivatives in boundary conditions.
The standard tools of fixed point theory have been applied to construct the desired results. our results are
new and extend the results of [16]. In the future directions, the coupled version of the problem (5) will be
considered.
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