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Abstract. In this paper, we establish the generalization of Meir-Keeler condensing operators using the
concept of L−functions in Banach spaces. We prove some coupled fixed point theorems, and in application
we use the obtained results to study the existence of solution of a coupled system of functional integral
equations in Banach space BC(R+).

1. Introduction and Preliminaries

Fixed point argument is very useful in the study of existence of solutions of functional equations,
which has captured the attention of numerous researchers over an extensive period of time. Several
approaches have been used to establish the existence of solutions of functional equations such as functional
integral equations, differential equations, integro-differential equations, and fractional integro-differential
equations. For some of the recent studies on fixed point theorems and application to functional equatons one
can refer [10, 28, 29]. Due to the fact that fixed point methods requires for the conditions of compactness and
the Lipstchitz condition to be satisfied, researchers came up with another technique which is effective for
non-compact operators, that is the technique of measures of non-compactness. Measure of non-compactness
is the function that determines the degree of non-compactness of a bouded set. The concept was firstly
introduced in 1930 by Kuratowski [18]. It was Darbo [11] who generalized the classical Schauder’s fixed
point theorem and the Banach’s contraction principle using the concept of Kuratowki measure of non-
compactness. His theorem became very famous in studying the existence of solution of functional equations.
Several researchers generalized Darbo’s fixed point theorem and applied it to study the existence of solutions
of differential and integral equations. Another important measure of non-compactness is the Hausdorff or
ball measure of non-compactness introduced by Goldenstein et al. (1957) [12]. Following the work done by
Darbo, many other researchers came up with generalizations of his theorem. In 1969, Meir and Keeler [17]
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introduced the concept of Meir-Keeler contraction in metric space. Later on Aghajani et al. [1] applied this
concept to Banach spaces and came up with the so called Meir-Keeler condensing operators, and proved
several fixed point theorems which are useful in studying the existence of solution for functional integral
equations, in the same work of Aghajani et al. [1], the concept of L-functions was generalized and some
fixed point theorems was proved. It was Lim [19] and Suzuki [26] who studied L-functions and proved
fixed point theorems for Meir-Keeler contractive maps, their work act as a bench mark for the work done
by Aghajani et al. [1].
Wairojjana et al. [27] extended the work done by Aghajani et al.[1] and proved fixed point theorems for
Meir-Keeler condensing operators in partially ordered Banach spaces. Furthermore, Matani and Rezaei
[20] proved fixed point theorems for Multivariate generalized Meir-Keeler condensing operators and used
it to study the existence of solution for a system of integral equations of Volterra type in three variables.
The measures of non-compactness are convenient in the study of single and multi-valued fixed point
theory, we refer [1, 4, 15, 20], for some studies which involve multi-valued fixed point theorems. Together
with some algebraic considerations measures of non-compactness are useful in examining the existence of
solutions to certain problems under specific conditions.
Recently, several authors [16, 21–25] studied the problems of existence of solutions of differential equations,
fractional differential equations and integral equations in various spaces by using the techniques of measures
of noncompactness.
In this paper, we extend and generalize the work done by Aghajani et al.[1]. We prove some coupled fixed
point theorems and a theorem for the existence of solution for a coupled system of functional integral
equations in Banach space BC(R+).
Consider R+=[0,∞), suppose that (M, ∥.∥) is a real Banach space, if X is a non empty subset of M then by
X̄ and ConvX, we denote the closure and convex closure of X respectively. Let QM denote the family of all
non empty and bounded subsets of M and NM denote its subfamily consisting of all relatively compact sets.

Definition 1.1. [8] A function λ : QM → R+ is called a measure of non-compactness if it satisfies the following
conditions:

i. the family ker λ = Y ∈ QM : λ(Y) = 0 is nonempty and ker λ ⊂ NM,
ii. Y⊂ Z =⇒ λ(Y) ≤ λ(Z),

iii. λ(Ȳ) = λ(Y),
iv. λ(ConvY) = λ(Y),
v. λ(kY + (1 − k)Z) ≤ kλ(Y) + (1 − k)λ(Z) for k ∈ [0, 1],

vi. if (Yn) is a sequence of closed sets from QM such that Yn+1 ⊂ Yn for n = 1, 2, 3, . . . and lim
n→∞
λ(Yn)=0

then
⋂
∞

n=1 Yn , ∅.

If a measure of non-compactness satisfies the following additional conditions, then it is called a regular
measure.

vii. λ(Y1 ∪ Y2) =max{λ(Y1), λ(Y2)} ,
viii. λ(Y1 + Y2) ≤ λ(Y1) + λ(Y2),

ix. λ(kY) = |k|λ(Y),
x. ker λ = NM.

The family kerλ is said to be the kernel of measure λ.

Darbo [11], in his work introduced the following definition of condensing operators and proved a very
famous Darbo’s fixed point theorem.

Definition 1.2. [5] Let M1 and M2 be two Banach spaces and let λ1 and λ2 be arbitrary measures of non-compactness
on M1 and M2 respectively. An operator f from M1 to M2 is called a (λ1, λ2)-condensing operator if it is continuous
and λ2( f (D)) < λ1(D) for every set D∈M1 with compact closure.

Remark : if M1 =M2 and λ1 = λ2 = λ, then f is called a λ-condensing operator.
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Theorem 1.3. [11] Let H be a nonempty, closed, bounded and convex subset of a Banach space M and f : H→ H be
a continuous mapping such that there exists a constant k ∈ [0, 1) with the property λ2( f (H)) < kλ1(H). Then f has a
fixed point in H.

In 1969 [17], Meir and Keeler generalized the Banach contraction principle and proved an interesting fixed
point theorem. Again the results of Meir and Keeler’s work were generalized to Banach space by Aghajan
et al. [1] where they proved some fixed points theorems which guarantees the existence of solution for
functional equations.

Definition 1.4. [1] Let C be a nonempty subset of a Banach space M and let λ be an arbitrary measure of non-
compactness on M. We say that an operator T : C → C is a Meir-Keeler condensing operator if for any ϵ > 0 there
exists δ > 0 such that

ϵ ≤ λ(X) < ϵ + δ =⇒ λ(T(X)) < ϵ

for any bounded subset X of C.

Theorem 1.5. [1] Let C be a nonempty subset of a Banach space M and let λ be an arbitrary measure of non-
compactness on M. If T : C→ C is a continuous and Meir-Keeler condensing operator, then T has at least one fixed
point and the set of all fixed points of T in C is compact.

Lim [19] introduced the notion of L−functions and characterized Meir-Keeler contractions in metric spaces

Definition 1.6. [19] A function ϕ from R+ into itself is called an L-function if ϕ(0) = 0, ϕ(s) > 0 for s ∈ (0,∞),
and for every s ∈ (0,∞) there exists δ > 0 such that ϕ(t) ≤ s, for all t ∈ [s, s + δ].

Example 1.7. [1] If we define ϕ(t) = kt, for 0 < k ≤ 1, then ϕ is an L − f unction.

Definition 1.8. [19] We say that θ : R+ → R+ is a strictly L-function if θ(0) = 0, θ(s) > 0 for s ∈ (0,∞), and for
every s ∈ (0,∞) there exists δ > 0 such that θ(t) < s, for all t ∈ [s, s + δ].

Example 1.9. The function θ(b) = ln(1 + kb) where 0 < k ≤ 1 is a strict L − f unction.

Using L − f unctions Aghajani et al. [1, 2] proved several fixed point theorems, these theorems will serve as
guidelines for our main results

Theorem 1.10. [1] Let C be a nonempty and bounded subset of a Banach space M, λ be an arbitrary measure of
non-compactness on M and T : C→ C be a continuous operator. Then T is a Meir-Keeler condensing operator if and
only if there exists an L-function ϕ such that

λ(T(X)) < ϕ(λ(X)),

for all X ∈ QM with λ(X) , 0.

Theorem 1.11. [1] Let C be a nonempty, bounded, closed and convex subset of a Banach space M and let T : C→ C
be a continuous operator such that

λ(T(X)) ≤ θ(λ(X)),

for each X ⊂ C where λ is an arbitrary measure of non-compactness and θ is a strictly L-function. Then T has at least
one fixed point and the set of all fixed points of T in C is compact.

Aghajani et al. [1] obtained the following results for the compact operators.

Definition 1.12. Let M be the Banach space. An operator F is said to be compact if the closure of F(Y) is compact
whenever Y ⊂M is bounded.

From Theorem 1.11 we consider the following Corollary.

Corollary 1.13. [1] Suppose that E is a nonempty, bounded, closed, and convex subset of a Banach space M and
let F : E → M be an operator such that

∥∥∥Fx − Fy
∥∥∥ ≤ θ(

∥∥∥x − y
∥∥∥), where θ is a nondecreasing and right continuous

strictly L-function. Assume that G : E → M is compact continuous operator, we define T(x) = F(x) + G(x) and
assume that T(x) ∈ E for x ∈ E. Then, T has fixed point in E and the set of all fixed points of T in E is compact.
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2. Coupled fixed point theorem

Definition 2.1. [9] Let X be a subset of a Banach space M, an element (x, y) ∈ X ×X is called coupled fixed point of
a mapping T : X × X→ X if T(x, y) = x and T(y, x) = y.

Example 2.2. A map defined by T(x, y) = x2 + y2 has a unique coupled fixed point (0, 0).

Theorem 2.3. [7] Suppose λ1, λ2...λn are the measures of non-compactness in Banach spaces M1,M2, ...Mn, re-
spectively. Moreover assume that F : [0,∞)n

→ [0,∞) is convex and F(x1, x2, ..., xn) = 0 if and only if xi = 0 for
i = 1, 2, ...,n, then λ̃(X) = F(λ1(X1), λ2(X2), ..., λn(Xn)) defines a measure of non-compactness in M1,M2, ...,Mn,
where Xi denotes the natural projection of X into Mi, for i = 1, 2, ...,n.

Example 2.4. [3] let λ be a measure of non-compactness on a Banach space M, then if we take F1(x, y) = x + y and
F2(x, y) = max

{
x, y

}
for (x, y) ∈ R2

+, conditions of Theorem 2.3 are satisfied therefore

λ̃1 = λ(X1) + λ(X2)

and
λ̃2 = max {λ(X1), λ(X2)}

defines measures of non-compactness in the space M ×M, where Xi = 1, 2 denote the natural projections of X.

Definition 2.5. Let E be a nonempty, bounded, closed, and convex subset of a Banach space M and λ be an arbitrary
measure of non-compactness. An opertor T : E × E→ E is a Meir-Keeler condensing operator if for any ϵ > 0, there
exists δ > 0 such that

ϵ ≤ λ(X1) + λ(X2) < ϵ + δ =⇒ λ(T(X1 × X2)) < ϵ.

Theorem 2.6. Let E be a nonempty, bounded, closed, and convex subset of a Banach space M and λ an arbitrary
measure of non-compactness on E. If T : E × E→ E is a continuous Meir-Keeler condensing operator, then T has at
least one coupled fixed point.

Proof. Note from Example 2.4 that λ̃= λ(X1) + λ(X2) is a measure of non-compactness on E × E, for any bounded
subset X of E × E, where Xi, i = 1, 2 denotes the natural projections of X.
We define an operator H : E × E→ E × E by

H(x, y) = (T(x, y)), (T(y, x))

is clearly continuous on E × E. Now we claim that H satisfies conditions of Theorem 1.5.
Now, let ϵ > 0 and δ(ϵ) > 0 be as in Definition 2.5. If X is a bounded subset of E × E such that

ϵ ≤ λ(X) < ϵ + δ

then
ϵ ≤ λ(X1) + λ(X2) < ϵ + δ(ϵ),

where Xi, i = 1, 2, denotes the natural projection of X. By axiom (2) and Theorem 2.3 we have

λ̃H(X) ≤ λ̃(T(X1 × X2)) × T(X2 × X1)
= λ(T(X1 × X2)) + λ(T(X2 × X1))
< ϵ.

Thus from Theorem 1.5 H has at least one coupled fixed point in E × E and the fixed point of H is also a fixed point of
T.
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Theorem 2.7. Let E be a nonempty, bounded, closed and convex subset of a Banach space M , λ an arbitrary measure
of non-compactness on E, and suppose that ϕ an L-function. If T : E × E→ E is an operator satisfying

λ(T(X1 × X2)) <
1
2
ϕ(λ(X1) × λ(X2)), (1)

then T has atleast one coupled fixed point.

Proof. Let H : E × E→ E × E defined by

H(x, y) = (T(x, y),T(y, x))

be a continuous map, we have the fact that

λ̃1 = λ(X1) + λ(X2)

defines a measure of non-compactness on M ×M, Xi i = 1, 2 denotes the natural projections of X.
Now, let X ⊂ E × E be any nonempty subset. Then by condition (2) of Definition 1.1 and Equation (2.7) we
obtain

λ̃(H(X)) ≤ λ̃(T(X1 × X2) × T(X2 × X1))
= λ(T(X1 × X2)) + λ(T(X2 × X1))
< ϕ(λ(X1) + λ(X2))
≤ ϕ(λ(X)).

From Theorem 1.10 H has a fixed point and it is equivalent to the fixed point of T.

Theorem 2.8. Let E be a nonempty, bounded, closed and convex subset of a Banach space M , λ an arbitrary measure
of non-compactness on E, and suppose that θ a strict L-function. If T : E × E→ E is an operator satisfying

λ(T(X1 × X2)) ≤
1
2
θ(λ(X1) × λ(X2)),

then T has atleast one coupled fixed point.

The proof is similar to that of Theorem 2.7

Corollary 2.9. Suppose that E is a nonempty, bounded, closed, and convex subset of a Banach space M and let
F : E→M be an operator such that∥∥∥F(x, y) − F(u, v)

∥∥∥ ≤ 1
2
θ(∥x − u∥ +

∥∥∥y − v
∥∥∥), (2)

where θ is a nondecreasing and right continuous strictly L-function. Assume that H : E × E → M is compact
continuous operator, we define T(x, y) = F(x, y) + H(x, y) and assume that T(x, y) ∈ E for all x, y ∈ E. Then, T has
atleast a coupled fixed point.

Proof. Let λ : QM → R+ be the Kuratowski measure of non-compactness defined in Definition 1.1, fur-
thermore assume that X1 and X2 are nonempty subsets of E. Since θ is nondecreasing and from (2), we
have ∥∥∥F(x, y) − F(u, v)

∥∥∥ ≤ 1
2
θ(∥x − u∥ +

∥∥∥y − v
∥∥∥)

≤
1
2
θ(diam ∥x − u∥ + diam

∥∥∥y − v
∥∥∥)

and
diam(F(X1 × X2)) ≤

1
2
θ(diam(X1) + diam(X2)).
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Using the fact that θ is a right continuous and by definition of Kuratowski measure of non-compactness we
have,

λ(F(X1 × X2)) ≤
1
2
θ(λ(X1) + λ(X2)),

and since G is compact, we obtain

λ(T(X1 × X2)) = λ((F +H)(X1 × X2))
≤ λ(F(X1 × X2) +H(X1 × X2))
≤ λ(F(X1 × X2)) + λ(H(X1 × X2))

≤
1
2
θ(λ(X1) + λ(X2)).

Applying Theorem 2.8, the proof is complete.

3. Applications and Examples

Let BC(R+) denote the space of all real valued functions defined, continuous, and bounded on R+ with
the standard supremum norm ∥∥∥y

∥∥∥ = sup
{∣∣∣y(t)

∣∣∣ : t ≥ 0
}
, y ∈ BC(R+).

Let Y ∈ QBC(R+), suppose that ϵ, K > 0 and y ∈ Y be fixed. We define the following quantities

ωK(y, ϵ) = sup
{∣∣∣y(t, s) − y(u, v)

∣∣∣ : t, s,u, v ∈ [0,K], |t − u| ≤ ϵ, |s − v| ≤ ϵ
}
.

This quantity represents the modulus of continuity of the function y on the interval [0,K], while the quantity

ωK(Y, ϵ) = sup
{
ωK(y, ϵ), y ∈ Y

}
,

is the modulus of continuity of the set Y, we also define,

ωK
0 (Y) = lim

ϵ→0
ωK(Y, ϵ),

ω0(Y) = lim
K→∞
ωK

0 (Y),

and

λ(Y) =
1
2

(ω0(Y)) + lim
max(s,t)→∞

sup diamY(t, s), (3)

where

lim
max(s,t)→∞

sup A = inf
T>0

 sup
max(s,t)>T

A

 .
Banaś [6] proved that the function λ is a measure of non-compactness in the space BC(R+)× BC(R+) (in the
sense of Definition 1.1).

The following lemma is useful for the proof of the next theorem.

Lemma 3.1. Suppose that 1 satisfies the hypothesis (iii) of Theorem 3.2. Then G : BC(R+) × BC(R+) → BC(R+)
given by

G(x, y)(t) =
∫ t

0
1(t, s, x(s), y(s))ds

is compact and continuous.
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Proof. First we show that G(x, y)(t) is continuous for any x, y ∈ BC(R+).
Let x, y ∈ BC(R+) and ϵ > 0. Take u, v ∈ BC(R+) with

∥∥∥(x, y) − (u, v)
∥∥∥

BC(R+)2 < ϵ, then by condition (ii) and
(10), there exists K > 0 such that for t > K we have∣∣∣G(x, y)(t) − G(u, v)(t)

∣∣∣ ≤ ∫ t

0

∣∣∣1(t, s, x(s), y(s))ds − 1(t, s,u(s), v(s))ds
∣∣∣ ≤ ϵ (4)

for any x, y,u, v ∈ BC(R+). Also if t ∈ [0,K], then the first inequality (4) implies that∣∣∣G(x, y)(t) − G(u, v)(t)
∣∣∣ ≤ KΥK(ϵ),

where, ΥK(ϵ)

= sup
{∣∣∣1(t, s, x, y) − 1(t, s,u, v)

∣∣∣ : t ∈ [0,K], x, y,u, v ∈ [−b, b],
∥∥∥(x, y) − (u, v)

∥∥∥
BC((R+)2 ≤ ϵ

}
with b = ∥x∥∞ +

∥∥∥y
∥∥∥
∞
+ ϵ. By using the continuity of 1 on [0,K]× [0,K]× [−b, b]× [−b, b], we have ΥK(ϵ)→ 0

as ϵ→ 0. Thus G is a continuous function on BC((R+) × BC((R+).
Now, let X1,X2 be nonempty and bounded subset of BC(R+) and assume that K > 0 and ϵ > 0 are arbitrary
constants. Let t1, t2 ∈ [0,K] with |t1 − t2| ≤ ϵ and (x, y) ∈ X1 × X2. We have∣∣∣G(x, y)(t1) − G(x, y)(t2)

∣∣∣ ≤ ∣∣∣∣∣∣
∫ t

0
1(t1, s, x(s), y(s))ds −

∫ t

0
1(t2, s, x(s), y(s))ds

∣∣∣∣∣∣
≤ KωK

r (1, ϵ) +UK
r ϵ,

where r = supx,y∈X

{
∥x∥∞ +

∥∥∥y
∥∥∥
∞

}
,

ωK
r = sup

{∣∣∣1(t1, s, x, y) − 1(t2, s, x, y)
∣∣∣ : t1, t2 ∈ [0,K], x, y ∈ [−r, r], |t1 − t2| ≤ ϵ

}
,

UK
r = sup

{∣∣∣1(t, s, x, y)
∣∣∣ : t1, t2 ∈ [0,K], x, y ∈ [−r, r]

}
Since (x, y) was arbitrary, we obtain

ωK(G(X1 × X1), ϵ) ≤ KωK
r (1, ϵ) +UK

r ϵ. (5)

On the other hand, by the uniform continuity of 1 on [0,K] × [0,K] × [−r, r] × [−r, r], we have ωK
r (1, ϵ) → 0

as ϵ→ 0.
Therefore we obtain

ωK
0 (G(X1 × X2)) = 0

and finally

ω0(G(X1 × X2)) = 0 (6)

In addition, for arbitrary (x, y), (u, v) ∈ X1 × X2 and t ∈ R+ we have∣∣∣G(x, y)(t) − G(u, v)
∣∣∣ ≤ ∫ t

0

∣∣∣1(t, s, x(s), y(s))ds − 1(t, s,u(s), v(s))ds
∣∣∣ ≤ β(t)

where
β(t) = sup

{∣∣∣1(t, s, x(s), y(s)) − 1(t, s,u(s), v(s))
∣∣∣ : t, s ∈ [0,K], x, y,u, v ∈ BC((R+)

}
.

Thus, we have

diamG(X1 × X2)(t) = 0. (7)

Taking the limit as t→∞ in the inequality (7) and using (iii) we get

lim sup
t→∞

diamG(X1,X2)(t) = 0. (8)
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Further, combining (6) and (7) we get

lim sup
t→∞

diamG(X1 × X2) + ω0(G(X1 × X2)) = 0. (9)

Or equivalently
λ(G(X1 × X2)) = 0.

Thus, G is compact and the proof is complete.

Theorem 3.2. Assume that the following conditions are satisfied:

i. The function f : R+ ×R ×R→ R is continuous and there exists a nondecreasing and upper semicontinuous
strictly L-function θ such that∣∣∣ f (t, x1, x2) − f (t, y1, y2)

∣∣∣ ≤ 1
2
θ(

∣∣∣x1 − y1

∣∣∣ + ∣∣∣x2 − y2

∣∣∣), (10)

for all (x1, x2), (y1, y2) ∈M ×M, t ≥ 0.
ii. H:= sup

{∣∣∣ f (t, 0, 0, 0)
∣∣∣ : t ∈ R+

}
< ∞.

iii. The function 1 : R+ ×R+ ×R ×R→ R is continuous and there exists a positive constant N such that

N = sup
{∣∣∣∣∣∣

∫ t

0
1(t, s, x(s), y(s))ds

∣∣∣∣∣∣ : t, s ∈ R+, x, y ∈ BC(R+)
}
. (11)

Moreover,

lim
t→∞

∫ t

0

∣∣∣1(t, s, x(s), y(s)) − 1(t, s,u(s), v(s))
∣∣∣ ds = 0 (12)

for all x, y,u, v ∈ BC(R+).
iv. There exists a positive solution r0 of the inequality

1
2
θ(2r) +H +N ≤ r.

Then the coupled system of functional integral equations
x(t) = f (t, x(t), y(t)) +

∫ t

0
1(t, s, x(s), y(s))ds

y(t) = f (t, y(t), x(t)) +
∫ t

0
1(t, s, y(s), x(s))ds

, (13)

has at least one solution on the space BC(R+) × BC(R+).
For any x, y ∈ BC(R+), let ∥∥∥(x, y)

∥∥∥
BC(R+)2 = ∥x∥∞ +

∥∥∥y
∥∥∥
∞
.

We have to prove that the solution of (13) in BC(R+) × BC(R+) is equivalent to the coupled fixed point of G.

Proof. We define the operator F,T : BC(R+) × BC(R+)→ BC(R+) × BC(R+) as follows:

F(x, y)(t) = f (t,X(t), y(t))

and

T(x, y)(t) = f (t, x(t), y(t)) +
∫ t

0
1(t, s, x(s), y(s))ds.
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Applying condition (i)-(iv) for arbitrary fixed t ∈ R+, we have

G(x, t)(t) ≤

∣∣∣∣∣∣ f (t, x(t), y(t)) +
∫ t

0
1(t, s, x(s), y(s))ds − f (t, 0, 0, 0)

∣∣∣∣∣∣ + ∣∣∣ f (t, 0, 0, 0)
∣∣∣

≤
1
2
θ(|x(t)| +

∣∣∣y(t)
∣∣∣ + ∣∣∣∣∣∣

∫ t

0
1(t, s, x(s), y(s))ds

∣∣∣∣∣∣ + ∣∣∣ f (t, 0, 0, 0)
∣∣∣)

≤
1
2
θ(|x(t)| +

∣∣∣y(t)
∣∣∣) +H +N.

Thus, keeping in mind assumption (iv) we infer that T is a self mapping of the ball B̄r0 . Next, by condition
(ii) of Theorem 3.2 it is obvious that F and G for any x, y ∈ BC(R+)2 are continuous functions, and

∥∥∥F(x, y) − F(u, v)
∥∥∥ < θ(

∥∥∥(x, y) − (u, v)
∥∥∥ BC(R+)2).

Let λ : QM → BC(R+) be the Kuratowski measure of non-compactness defined by Definition 1.1, and using
Theorem 2.8, we get

λ(F(x)) ≤ θ(λ(x)).

Thus, F is a Meir-Keeler condensing operator. Finally, since T(x, y) = F(x, y) + G(x, y),G is a compact and
continuous operator and F is a continuous Meir-Keeler condensing operator. Therefore, by Corollary 2.9, T
has a fixed point.

Example 3.3. Consider the following system of integral equations.


x(t) =

1
8

e−t2
+

t2 ln(1 + |x(t)|)
6(2 + t2)

+
e−t ln(1 + |y(t)|)

4
+ ln

(
1 +

1
3

∫ t

0

sin(1 + sy(s) + cos2
{sx(s)})

et2

)
ds

y(t) =
1
8

e−t2
+

t2 ln(1 + |y(t)|)
6(2 + t2)

+
e−t ln(1 + |x(t)|)

4
+ ln

(
1 +

1
3

∫ t

0

sin(1 + sx(s) + cos2
{s(s)})

et2

)
ds

We have, f (t, x(t), y(t)) = 1
8 e−t2

+
t2 ln(1 + |x(t)|)

6(2 + t2)
+

e−t ln(1 + |y(t)|)
4

,

1(t, s, x(s), y(s)) =
sin(1 + sy(s) + cos2

{sx(s)})
et2 .

It is obvious that the function f is continuous.
Now from condition (ii) we have ∣∣∣ f (t, 0, 0, 0)

∣∣∣ = 1
8

e−t2
.

Implying that

H = sup
{∣∣∣ f (t, 0, 0, 0)

∣∣∣} = 1
8

is bounded.
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Let t ∈ R+, x1, x2, y1, y2 ∈ R. Suppose that |x1| ≥
∣∣∣y1

∣∣∣ , |x2| ≥
∣∣∣y2

∣∣∣ . Then we have

∣∣∣ f (t, x1, x2) − f (t, y1, y2)
∣∣∣ ≤ t2

6(2 + t2)
| ln(1 + |x|) − ln(1 + y1)| +

e−t

4
| ln(1 + |x2|) − ln(1 + |y2|)|,

≤
t2

6(2 + t2)

∣∣∣∣∣∣ln
(

1 + |x1|

1 + |y1|

)∣∣∣∣∣∣ + e−t

4

∣∣∣∣∣∣ln
(

1 + |x2|

1 + |y2|

)∣∣∣∣∣∣ ,
≤

∣∣∣∣∣∣ln
(

1 + |x1|

1 + |y1|

)∣∣∣∣∣∣ + 1
4

∣∣∣∣∣∣ln
(

1 + |x2|

1 + |y2|

)∣∣∣∣∣∣ ,
=

1
4

∣∣∣∣∣∣ln
(
1 +
|x1| − |y1|

1 + |y1|

)∣∣∣∣∣∣ + 1
4

∣∣∣∣∣∣ln
(
1 +
|x2| − |y2|

1 + |y2|

)∣∣∣∣∣∣ ,
≤

1
4

ln(1 + |x1 − y1|) +
1
4

ln(+|x2 − y2|),

≤
1
2

ln
(
1 +
|x1 − y1| + |x2 − y2|

2

)
=

1
2
θ(|x1 − y1| + |x2 − y2|).

Therefore, ∣∣∣ f (t, x1, x2) − f (t, y1, y2)
∣∣∣ ≤ 1

2
θ(

∣∣∣x1 − y1

∣∣∣ + ∣∣∣x2 − y2

∣∣∣).
The function 1 is continuous, furthermore for each t, s ∈ R+, and x, y,u, v ∈ R∣∣∣1(t, s, x(s), y(s) − 1(t, s,u(s), v(s))

∣∣∣ ≤ 4
et2 .

Therefore, ∫ t

0

∣∣∣1(t, s, x(s), y(s) − 1(t, s,u(s), v(s))
∣∣∣ ds ≤

4
et2 .

and

lim
t→∞

∫ t

0

∣∣∣1(t, s, x(s), y(s) − 1(t, s,u(s), v(s))
∣∣∣ ds ≤ lim

t→∞

4
et2 = 0.

for all x, y,u, v ∈ BC(R+).
Further, ∣∣∣1(t, s, x(s), y(s)

∣∣∣ ≤ 2
et2 .

Therefore, ∣∣∣∣∣∣
∫ t

0
1(t, s, x(s), y(s)ds

∣∣∣∣∣∣ ≤ 2
et2

for any t, s ∈ R+ and x, y ∈ R.
Thus,

N ≤ sup
{ 2t

et2 : t ≥ 0
}
=

1
√

2e
.

Now substituting the values of H and N in condition (iv) we have the following inequality

1
2

ln(1 + r) +
1
8
+

1
√

2e
< r,
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for any r ≥ 1 we have

r −
1
2

ln(1 + r) −
1
8
−

1
√

2e
> 0.

We can choose r0 = 1. All conditions of Theorem 3.2 are satisfied, hence the system (13) has atleast one solution in
the space BC(R+) × BC(R+).

4. Conclusion

We have used the technique of measures of non-compactness to study the existence of solution of a
coupled system of integral equations,

x(t) = f (t, x(t), y(t)) +
∫ t

0
1(t, s, x(s), y(s))ds (14)

y(t) = f (t, y(t), x(t)) +
∫ t

0
1(t, s, y(s), x(s))ds.

in Banach space BC(R+) × BC(R+). Meir-Keeler condensing operators and L−functions have been used in
our work to obtain a generalized coupled fixed point theorem which guarantees for the given system to
have a solution in BC(R+) × BC(R+). Also the method of modulus of continuity is used to define measure
of non-compactness in this space. Moreover, we have provided an example to support our results.
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