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Strong convergence to a solution of nonlinear equations

Shagun Sharma®*, Sumit Chandok?

*Thapar Institute of Engineering and Technology, Patiala- 147004, India

Abstract. In this paper, we propose an algorithm for approximating the common fixed points of non-
expansive mappings and strongly pseudocontractive mappings. We include a few numerical examples
to support our assertions and demonstrate that our technique converges faster. Consequently, we obtain
an algorithm that converges strongly to the fixed point of the mapping. Also, under some assumptions,

we obtain that our iterative process converges to a solution of fractional iterative integrodifferential and
ordinary differential equations.

1. Introduction and Preliminaries

In nonlinear analysis, the convergence of iterative procedures for fixed points has long been a fascinating
problem. For Banach contraction maps, Picard’s iterative technique converges well, but it does not converge
for nonexpansive mappings even when the existence of the fixed point is guaranteed. To overcome this
challenge, several researchers have been active in developing different iterative methods to approximate the
fixed points of nonexpansive mappings and other classes of mappings that are more general than the class
of nonexpansive mappings. Numerous scholars have developed iterative techniques for strong and weak
convergence of nonlinear problems in the literature, which converge more quickly than Picard’s scheme.
Mann [12], Ishikawa [6], Agarwal et al. [1], Sahu [14], Sahu and Petrusel [15], Gopi. and Pragadeeswarar
[5] process, and so on, used various iterative schemes on the approximation of fixed points for different
classes of operators.

Let X be a real Banach space and ] denote the normalized duality mapping from X — 2% defined by

Jd)={e' e X : (d,e') = IldI, lle'll = |}, foralld € X, (1)

where X* denotes the dual space of X and (., .) denotes the generalized duality pairing. We will denote the
single-valued duality map by J.

Definition 1.1. Let S be a non-empty subset of X. A mapping

(i) Ty : S — Sis a nonexpansive (NE) [3] ifllTlcf— T8 < ||d - é|| for all déeS.
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(ii) T : S — Sis a pseudocontractive [8] if there exists j(zf — &) € J(d — @) such that
(Td - Te, j(d - &)) < lld - élP,

foralld,éeS.
(iii) T, : S — S is a strongly pseudocontractive (SP) [11] if there exists j(ﬂi— 2) € J(d — &) and a constant k € (0,1)
such that

(Tod = T2, j(d - ) < Kid —eIP,
foralld,é e S.

Example 1.2. Let X = R with usual norm and S = [0,1). Define T : S — S by
Td)=d+1,

for all deS8. Foralld,é e S, we have
(Td - Te, jd - ¢)) = (d - &)* = |ld - &

This shows that T is a pseudocontractive mapping.

Example 1.3. Let X = R with usual norm and S = [0, o). Define T, : S — S by

~

R d
To(d) = ———,
20 V3(1 +d)

for all deS. Foralld,é e S, we have

1

——————————[d-¢o =kld el
V3(1 +d)(1 +é)( )

(Tzci —Ta8, j(d - é)> =

where k = < 1. This shows that T, is a (SP) mapping.

ﬁ(l+§)(1+é)
Later, many papers on the approximation of fixed points of (SP) and (NE) mappings appeared in the
literature.
In 2011, Sahu [14], Sahu and Petrusel [15] proposed an algorithm known as the S-normal algorithm in
Banach space as follows:
Suppose that T; is a self-mapping on a non-empty subset S of X. For arbitrary dy € S,

e, = 1-vy, ljn wT dAn .
& ( . Vi) 7 T2 Algorithm (NS)
dps1 = Tré,, where y,, €[0,1].

They showed that this process converges faster than Picard, Mann [12] and Ishikawa [6] iteration processes
for contraction mappings in the sense of Berinde [2] to the fixed of T,. In 2013, Kang et al. [9] gave the
following algorithm for approximate common fixed points of (NE) and (SP) mappings in real Banach space.

For arbitrary dy € S,

> 2

bn= (L= yp)ds+y,Tod,
(L =ymdn+y,T2 Algorithm (HNS)
dps1 = T1é,, where y;, €[0,1].
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Dass et al. [4] proposed the following algorithm for approximate common fixed points of (NE) and (SP)
mappings in uniformly smooth Banach space. For arbitrary dy € S,

fo= A=y)di+ 7, Tud,
b= (1=08})dy +8,Tofs Algorithm (D)
‘in+1 = Tié,

where y7,,6;, € (0,1], n € N U {0}.

Recently, Okeke and Ofem [13] proposed the following algorithm for approximate common fixed points
of (NE) and (SP) mappings in Banach space. For arbitrary d € S,

fo= (A =yi)dn+y,Tid,
= (L=n, =0}y + 1, Tafu + 6, Tod, Algorithm (O)

where y;, 1,6, € (0,1], n € N U {0}.

The following results will be used in the sequel.

Lemma 1.4. [9] Let ] : X — 2% be the normalized duality mapping. Then for all d,é € X,
I+ el < IR +2(e, jid + ), ¥j(d +2) € Jd +8).

Lemma 1.5. [16] Suppose {1,,} and {t,} are nonnegative sequence such that
lnv1 < (L= Kty +cy,

where k), € (0,1), Ypg k' = co and lim ,Cc— =0, then lim b,, = 0.

n—oo n—oo

Inspired by these interesting iterative schemes, we construct and propose a new algorithm that converges
strongly to a common fixed point for a pair of mappings satisfying different classes of contractions in
the context of real Banach spaces. We also include numerical examples to support our assertions and
demonstrate that our technique converges faster. Consequently, we obtain an algorithm that converges
strongly to the fixed point of the mapping. Also, under some assumptions, we obtain that our iterative
process converges to a solution of fractional iterative integrodifferential equations (FID) and nonlinear
ordinary differential equations (ODE).

2. Main Results

Throughout this section, we assume that S is a non-empty closed and convex subset of a real Banach space

X.

2.1. Algorithm 1.

Suppose that Ty, T, : S — S are self mappings. For an arbitrary element dy € S, define a sequence {zfn}
as follows:

fa= (=) Tady +V)dy
6o =1 =1, =&, — wl)dy + @, Ty fr + 0, Tafy + 6, Tod,

~

dn+1 =Tié, (2)

where w,, v, 1,06, € [0,1], n € N U {0}.
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Remark 2.1. Algorithm 1 reduces to
o (NS) when y;, =1and6,,w, =0,T; = T»,
e (HNS) when v, =1and d},w; =0,=0.
Now we prove our main result using Algorithm 1 as follows:

Theorem 2.2. Let Ty : S — S be a NE mapping, and T, : S — S be a uniformly continuous SP mapping with
T>(S) is bounded. Further assume that F = ﬁleF(Ti) = {cf €S:Tid =Ty = tf} # Qandy;,n,, O;, are real sequences
in [0, 1], such that:

(@) y,+m,+06,+w, <1;
(i) lim (), + 1, +06,) = 0= lim(1 - y.);
(iii) Y,iq(wy, + 175, + 0}) = oo.

Then for any arbitrary dy € S, the sequence {d}} defined by Algorithm 1 converges strongly to common fixed point
p eF.

Proof. Letp € F(T1) N F(T>). Because T, has bounded range, suppose that
My = sup {ITd - Taél| : d,é € X} 3)
This show M; < co. Consider
fo = pll =lypdn + (1 = ;) Tady — Bl
=lly;(dn = §) + (1= y3)(Tady = P)I
=lly,(dn = p) + (1 = yp)(Tad, = Top)
<yulld, = pll + (A = y})IITody, — Topl
<yl = pll + (1 =y, 1My 4)

8, = pll =11 = 1, = 6, — @) + W, T fu + 0, Tafu + &, Tady — Pl
<(1 =1, = &, = w)ldn = pll + Wl fu = Pll + Ml T2 f = Pl + S, (Tad — P

=(1 =11, = &, = @lidn = Pl + Wy IT1 fi = Tapll + i (Tafo = Top)ll + S MI(Taddy = o)l 5)
We claim that ||, — pll £ My, where
My = My +|ldo—pll,n>0and n e N. ©)

Clearly My < M,. Itis true for n = 0. Suppose that it is true for n = k, then we will prove for n = k + 1. By
equations (2), (4) and (5), we have
1 =PIl =NT1éx - pll
=[IT18 — T1pll < llex = pll
=(1 - 1}, = 6, — wlldi = pll + Wl Ts fi = Tapll + (T2 fi = Tap)ll + S{I(Tody — Top)|
<(1 = nj, = 0 — willdi — pll + willfi = pll + MII(T2fre — Top)ll + S,I(Tady — T2p)l
<(1 =115 = &, = wplidi = pll + w7y lldic = pll + (1 =y )Ma) + mI(Tofi = Tap)l
+ 04 lI(Tody — Tap)|
<A =1, =0, — wIMa + W (Mo + (1 =y )Mo) + Mo + M
=(1 -1, = 0, — w )Mz + My + My + GM;
=M. @)
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This shows that {|id, - fll} is bounded. By equations (4) and (5), {llé, — pll} and {||f, - pll} are bounded
sequences.

Choose Dy = sup {lid, - pll : 7 > 0}, Dy = sup {|Ié, - pll : n > 0} and D = sup {lIf, — pll : n 2 0}. Denote
M= M, + D1 + D, + D3, then M < co. Using Lemma 1.4, we have
lew = pIP =1L = 1, = &), = @}y + @, T1 fu + 7, To fo + 6, Tady — pIP
=L~ 1, = 6} = @) = P) + W (T1 fu = P) + (Tafo = P) + 6,(Tady — P)I?
<(1 =1, = 8, = @)l = pIP + 2(@(T1 fo = ) + 11(Tafo = P) + 8, (Tad = ), j(n = P))
=(1 =11 = &, = W}l = pIP +2 (@) (Tafu = Tap) + 1}(Tafo = Top) + &(Tady = Top), j(@u — P))
<(1 =1, = 8}, = w2l = pIP + 20, (Ti fu = Tup, (&0 = P)) + 2, (Tafo = T, j(u = P))
+26}, (Tody — Tap, j(u - P))
<(1 =), = 8, — @)l — I + 20, (T1fu — Trdy + Taéw — Tap, j(u - P))
+20, (Tafu = Tabw + Taby = Tap, j(u = P)) + 26}, (Tady — Taby + Taby — Top, j(u - P))
< =1, = 8}, = @ Plldy = pIP + 200}, (T £, = Tru, (e — P)) + 200}, (Tréw = Tap, (e — P))
+20, (Tafy = Tabu, j(6 = P)) + 217, (Tabw = Tap, j(@n = P)) + 257, (Tady — Taby, j(@n — )
+206,, (T28n — T2p, j(én — P))
<(1 =1, = 8}, = @ lidy — PIP + 200} IT1 f = Taull 65 = pll + 20, T2 f — Taull s — I
+28, I Tady — Tadall 185 = pll + 207, + 8,) (Tab — Tap, j(6s — P)) + 20, IT18, — T1pllIEs — P
<(1 =1y = 6}, = @, lidy — PIP + 200} 1y — 2ull 112w — pll + 20, T2 £, = Taéull Il — pll
+28,1Tady = Tabull 185 = pll + 20173, + 6)(Tal = Tap, j(én = )y + 2a 116, — pllllés — pl
<(1 =1y = 6}, = @, Ylidy — PIP + 200} 1y — 2ull 112w = pll + 20, T2 £ = Taeull Il — pll
+207 1 Tadyy = Talull 15 = plI + 2017, + 6,) {Tolu = T2p, j(@n — P)) + 20116 — pIF
<(1 =1y, = 6}, = @ Vlidy = PIP + 200, MIlfo = &ull + 2, MIITa £ = Tod,ll + 26, MIITod,, — Toé, |
+2(11;, + 8,) (Taen = Tap, j@n = P)) + 20}y =PI
<( =15, = 8}, = @il = IR + 207, + 5, + wjy max {llfy = eull, T2 fy = Tatull, ITad,, — Tt}
+2(1;, + 6,) Taén = Ta, (9 = P)) + 2a0pllen = pIP.
From equation (6), we get

I1fs = dull =l +(1—y;>T2d — dll
=llyp(dn = du) + (1= Y3 )(Tady — do)
=llyp(dn = du) + (1= Y5 )(Tady — do)
<1 = y)ITady — |
< =y, (IT2dy = pll + Il — pll)
(1 = V) T2dy — Topll + lldy — plI)
(1= yn2M,. 8)

IA

By condition (ii), we obtain

lim [|f,, — doll = 0. )

n—oo
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Again using (6), we have
18, = dall =1 = 1, = 8, — w})d + @, T fo + 1, Tafu + 6, Tody — dyl|
=[|(1 = 1, = 8, — @, )dy — dn) + @ (T1fu = dn) + 0 (Taf — d) + 6 (Tad,, — dy)|
<1 =, = &), — wlldy — dall + @, T1 fr = dull + N T2fy = dull + 5 Tadyy — )l
=@, ||T1 fu = dull + N Tofr = dull + 5 I Tadyy — )l
<@, (IT1fu = Bl + 11p = &all) + 0, (IT2fu — Pl + 11 = éall) + 8, (I T2dw — Pl + [Ip — &4ll)

=}, (|lfn = T1pll + 11p = ull) + 0, (T2 fu — Tapll + 1P — 2ull) + 8, (I T2 — Topll + [1p — 24ll)
Lawy My + 20, Mo + 26, My = 2(w;, + 17;, + 6;,) Ma.

By condition (ii), we get
lim |6, — dy|| = 0. (10)
n—00
Since ||f; —&, < IIﬁ1 —dall + |ld, = &,]I. By equations (9) and (10), we get
lim [Ify = eull = 0. (11)
The uniformly continuity of T, leads to thus we have
lim || T2y — T28,ll = 0 and lim ||Tod,, — T22,|| = 0. (12)
n—o00 n—oo
Since T is a (SP) map, it observes that
a1 = PIP
< (=1, =8}, = @})len — PIP +2(), + ), + ) max{||fy = &ull, IT2fu — Tabull, I Tod, — Taéull}
+2(17, + )Kllén — I + 2wy lle, — pIP
I
1= 2a), + (1 + ,)K)
2w, + 1y + ) max{||fy = eull, IT2f = Tatull, I Tod,, = Totull}
+ .

A a2
e, — pll

7 7 7 (13)
1—=2(wy, + (1, + 6,)k)
Since (w;, + 15, + 0;,) = 0 as n — oo, for all n > ny, there is a positive integer 79 € IN such that
’ ’ ’ : 1 1-k
(wy, + ), + 6;,) < min {E{' -k } , (14)

o 1—(w) 1, +0}) .
where k < 1. This implies m <land m < 2. It now follows from equation (13) that

lds1 — I
< (1= 1), = 8, = wpllen = PIP + 4wy, + 17, + 6) max {||f, = &ll, IT2 £, = Taéull, ITad, — Tatyll}
Now, with the help of equations (12) , we have max {Ilf; —é,ll, ||T2f; — Tol, I Tod,, — Tzén||} — 0asn — oo.
Consider
lds1 = pIF =NT28, — pIP
=[|T1é, — T1pIP

s a2
<llén = pII*.
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Therefore,

41 = IP
< (=17, = 6 — )y — PIP + 4(@), + 15, + 6y max (Il = 2ull, ITafyy = Tatll, IT2dh, = Tatill}.

By taking a, = ||d, = pll, fu = @}, + 1), +0}, By, = max {||fy = &ll, IT2fy — Taéll, IIT2dy — T2é,l} and using Lemma
1.5, we obtain

lim |4, — pll = 0.
|

If we take y;, = 1,0;, = 0, T1 = T, in Theorem 2.2 then Algorithm 1 reduces to Algorithm (NS) (see [15]) and
we get the following fixed point result:

Corollary 2.3. Let T, : S — S be a (SP) mapping and F = F(T;) = {zf €8:Tod = dA} # 0. Then for any arbitrary
dy € S, the sequence {zfn} defined by Algorithm (NS) converges strongly to fixed point p € F.

If we take y;, = 1,6, = 0 in Theorem 2.2 then Algorithm 1 reduces to Algorithm (HNS) (see [9]) and we get
the following fixed point result:

Corollary 2.4. Let T1 : S — S bea (NE), T, : S — S be a (SP) mappings and F = F(Ty) N F(T») =
{dA €8:Tid="Tyd= J} # 0. For any arbitrary dy € S, the sequence iteratively defined by Algorithm (HNS)
converges strongly to fixed point p in F.

If we take T; = T, in Algorithm 1, we get the following algorithm:

bo= (=1, =08, —w)dy + (@) + )T fn + 0,T1d, Algorithm (S*)
fo= (A =yTdy +ydy
where y;, w;,, m,,, 0, €[0,1], n € N U {0}.

In Theorem 2.2 we assume that T is a (NE) mapping, we have the following result, which is very
important in the application section.

Corollary 2.5. Let T1 : S — S be a (NE) mapping and F = F(T) = {dAe S:Tid= dA} # 0. Let y,,w;, 1,0, €
[0, 1], such that:

(i) w,+y,+m,+06,<1;
(ii) lim () + 1, +8,) =0 = lim(1 —y,);
n—o0 n—oo
(iii) Yo (@), + 1, + 0),) = oo.

Then for any arbitrary dy € S, the sequence {d,,)} defined by Algorithm (S*) converges strongly to a fixed point p in F.

3. Numerical Examples

In this section, we give few numerical examples to back up our assertions and demonstrate that our
technique converges faster than well known iterative schemes in the literature.
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Number of iterations

Figure 1:

Example 3.1. Let X = R with usual norm and S = [-1,1]. Define T1,T,: S — S by

Ty(@) = d and To(d) = %,

foralld € S. Clearly Ty is (NE) mapping. Also forall d,é € S, we get
. o 1. .
(Tod = Tot, j(d - 2)) = 7 (d~ &7 =Kl ~ &P,

wherek = } < 1. This shows that T, is a (SP) mapping with bounded range and both T, T, are uniformly continuous

on S. Take dy = 0.22,7) = L=, o), = =L, = —L-and 6, = L. It is easy to see that L is common fixed point

of T1 and T,. All the suppositions of Theorem 2.2, are fulfilled then the sequence defined by Algorithm 1 converges to
1

3

Example 3.2. Let X = R with usual norm and S = [0, ). Define T1,T, : S — S by

~ A

T.(d) = g and Ty(d) = m,

foralld € S. Clearly Ty is (NE) mapping. Also forall d,é € S, we get

(Tod - Tt j(d - 8)) = —(d - ¢ = klld - ¢,

1
V3(1 +d)(1 + @)

where k = L ;< 1. This shows that T, is a (SP) mapping with bounded range and both Ty, T, are uniformly

V3(1+8)(1+7
continuous on S. It is easy to see that Ty and T, has common fixed point say 0. All the suppositions of Theorem

2.2, are fulfilled then the sequence defined by Algorithm 1 converges to 0 see Table 1 and Figure 1. Take y; = 5=,

r — 1 1
Wy = 75257 n+25°

r _ _1 -
M = 5 and 0y, =
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Rn+1 | Algorithm(1) | Algorithm(O) | Algorithm(D) | Algorithm(HNS) | Algorithm(NS)
do 0.26 0.26 0.26 0.26 0.26
dy 0.119718 0.123612 0.126231 0.0127291 0.117157
dp 0.055625 0.059069 0.061500 0.062496 0.059575
ds 0.026002 0.028327 0.029991 0.030738 0.031963
dy 0.012207 0.013619 0.014646 0.015136 0.017619
ds 0.005749 0.006560 0.007160 0.007459 0.009855
dg 0.002715 0.003166 0.003504 0.003678 0.005557
dy 0.001285 0.001530 0.001717 0.001815 0.003148
ds 0.000610 0.000740 0.000842 0.000896 0.001789
dog 0.000290 0.000359 0.000413 0.000442 0.001018
di 0.000138 0.000174 0.000203 0.000218 0.000580
diy 0.000066 0.000084 0.000100 0.000108 0.000331
di 0.000031 0.000041 0.000049 0.000053 0.000189
di 0.000015 0.000020 0.000024 0.000026 0.000108
dig 0.000007 0.000010 0.000012 0.000013 0.000062
dis 0.000003 0.000005 0.000006 0.000006 0.000035
di 0.000000 0.000002 0.000003 0.000003 0.000020
diy 0.000000 0.000001 0.000001 0.000002 0.000007
dig 0.000000 0.000000 0.000001 0.000004
0.000000 0.000000 0.000000 0.000000

Table 1: Camparison of convergence between different algorithms

8671



S. Sharma, S. Chandok / Filomat 38:24 (2024), 8663-8675 8672

4. Applications

4.1. Solution of Fractional Iterative Integrodifferential Equations (FIIE)

Fractional calculus differentiation and integration of arbitrary order is play an important role in the
modelling of dynamical systems, mechanics, economics, control theory, signal, image processing, electrical
sciences, chemical sciences, biological sciences and other allied sciences. In 2018, Kilicman et al. [10] using
the following (FIIE) including derivatives and gave a solution using (NE) mapping.

N PN A A t PN

Djd(t) = (1, dd(v), d@d 1), [, (t,nddr)dr (FID)
d(to) = do,

where ty,dy in I = [a,b], k : IXI = ITand @ : [ x I X I x I — I are given continuous functions. Suppose

that X = C(I,I) is a Banach space of all continuous functions defined on I endowed with the norm ||.|| =

sup,; lu(f)l, and

Cip = {d € C(L 1) : d(tr) - d(tz)] < |1{t[3 :zll)}

forall t1,t, € I,1 > 0 and Cjg is a non-empty convex and compact subset of a Banach space (X, ||.||).

Theorem 4.1. Assume that the following assumptions hold :

(Z) |q)(tr d\lr élr fi) - q)(tr dAZI éZr f;)l < 7-((lcz\l - dAZ' + |é1 - é2| + |ﬁ - f;')/ 7—{ > 0/ and t/ dAlr 62\2/ él/éZIﬁ/f; €l

(ii) 1is a constant such that |d(t) — d(t,)| < l'tlﬁfl‘), subsequently

C= max{lfl)(t dl,el,f1)| (t dl,el,fl)EIXIXIXI}S

TR

(iif) One of these situations are fulfilled:
(A1) r([s+1)Cto Cd , where T = max {a, b}, and Cd~ = max {afo —a,b— cfo} ;
(Ay) tg = a, F(ﬁ+1) <b- do,q)(t dl,el,fl) > 0 where d1,€1,f1 el;

(A3)tp =D, T(ﬁ+1) < do,q)(t d1,61,f1) > 0 where d1,€1,f1 el;

(i) A =2HG, (1+ mhgwer) (+1) = 1.

where k7 = sup {x(r,t) :a <r <t < b}.

Further, suppose that {d } is a sequence generated by Algorithm (S*) with real sequences 1;,, 6}, V5, € [0,1] such
that w), + vy, +1,+ 06, <1, lggo(wn +n,+0,)=0= nh_r)?o(l =V, Yoeq (@), + 1, + 0},) = co. Then Algorithm (S*)
converges strongly to a solut?on of (FID).

Proof. On the lines of Theorem 3.1 of [10], define an integral operator on C; g

Cu—m)P

£d(u)=d0+ . F(ﬁ+1)

(D(m/,zf(tf(m’)), tf(tf’(m’)),f w(m’, NAd@)dr | dm’;u € Lu > n’,
fo

with £(C;g) € Cj 4 is (NE) mapping and the problem (FID) has at least one solution on Cj .
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Therefore (FID) has a solution in C; 4 that can be approximated by the Algorithm (S*) as

N 1 (u—m’)ﬁ
@‘%+m1w 1)

e =(1- 771 wl)dl

CD(m',él(él(m'))rél(é’l(m'))rf x(m’, r)él(él(r))dr) dm’
to

Y u—m)P )ﬁ
w TB+1)
(17:‘(‘8 11)) (m/,dl(til(m’)),oil(zf’l(ml))lf K(ml, T)dl(d}(?’))dr) dm’)
to N
U (1/[ _ m’)ﬁ

w T(B+1)

+w+m%%+ ( ﬁmm>ﬁqomnyWrmmmwym)

+0 (cfo +

—_

h=1-y) (dAo + ) (m’r‘il(dl(m,))/ dAl(dA’l(m,))/f K(m’, r)d; (dAl(r))dV) dm') +y1d1
to

Therefore, by Corollary 2.5, Algorithm (S*) converges strongly to a solution of (FID). O

Example 4.2. Consider the following initial value problem linked to fractional iterative contain derivatives and
integral equation :

D d(t) = dd(e)) + dd (1) + Ader)dr

6.3851 ( 6. 3851 f (2 + 1)
40 =d0) = 5, (15)
where t € [0,1],d € C*2([0,1] X [0, 1]). For all dy,dy,d'1,d’> € C+2([0,1] x [0, 11), we have
Mﬁ%@ﬁ»&@ﬁ»ﬁ%@@%-U&@ﬁ»&@ﬂ»ﬁ&@WN
= (1@ (1)) = da(da(e)] + 1 (@1(1) = da(d2()]) + he“d (e (B) - < da(da ()1

IA

6.3851 3851 (
(|d1(d1(t)) = da(da(t)] + 11 (d"1() = do(d2(0)] + 1" d (da (£)) — *dz(dz(t))|)

~6. 8
1

6.38

where *d(d(t)) = fo (2
max {0, 1}. Also

IA

g d(d(r)dr.Thus H = k=, (g = max {do —a,b - do} = max {1, 3}, ¢, = max{to —a,b—to} =

c,, —{d d(ty) — d(ty) < 1= tz')} with =1

F(§+1

$.15 5 |t — tol?
C,1={d:|dth) —d(t)| < ,
11 { ld(t) — d(t2)| rQ +1)}

forall ty,t; € [0,1]. Presently C < % = %, F(Cﬁjfl)CfO = (%)o.séw(l) =0.5641 < (3, = % and

T 2x3 1
A =2HG, (1 - m”) (+ D= <6851 (1 " 0.88622)2 =1

All the suppositions of Theorem 4.1 are satisfied. Then the problem (15) has at least one solution on C, 1 and integral
operator defined as on Cis

tor ok
gy = dy+ [ £
0

1
I3 +1) \6.3851 (

6.3851

d(d(®) + dd £))) + fo ' G i 7 d(j(r))dr) dm’;uelt>m,
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with £(Cy 1) € Cy 3 is (NE) mapping. Take v, = J5, @), = 75,11, = 7 and &, = 35 by Corollary 2.5, Algorithm
(S*) converges strongly to a solution of (FID).

4.2. Solution of nonlinear ordinary differential equations

Consider the following second order differential equation:

(ODE)

=Ld = y(q,d(g)),q € [0,1]
d) = d(©) =0,

where 1 : [0,1] X R — R is a continuous function.
Assume that 8 = C[0, 1] is the set of all continuous function defined on [0, 1] with maximum norm. Green’s
function associated to (ODE) is defined by

g1 -5),0<g<s<1,

g@ﬂ):LG—ﬁLOSSSqSL

In theorem below, we will discuss the existence of the solution for the problem (ODE).

Theorem 4.3. Assume that the following assumption hold:
(i) [(g,c) — (g, d)l < maxggepoqlc —dl,

forall q € [0,1]. Further suppose that {d;,} be a sequence generated by Algorithm (S*) with real sequences 1, 07, vy, €
[0, 1w, +y,+n,+0, <1, im(w, +1,+0,) =0=Um (1 —y}), Xoq(w, + 1, + 0,) = 0. Then Algorithm (S*)
converges strongly to a solution of (ODE).

Proof. On the lines of Theorem 4.1 of [7], define an operator 3 on the space B by

A~ 1 A~
Sd(g) = fo G(a, 9)(s, d(s))ds,

is a (NE) mapping and the problem (ODE) has a solution in C[0, 1]. Thus, (ODE) has a solution in C[0, 1]
that can be approximated by the Algorithm (5*) as

1
dA = 7 /A d
1 fo GG, 9)0(s, éols))ds
~ 1 ~ 1 2
b0 =(1— 1, — & — wp)do + (1 + ) fo G s, fols))ds + 5, fo G0 9, do(s))ds

1
fr=(-) fo G0 9)(s, dofs))ds +/do

Therefore, by Corollary 2.5, Algorithm (S*) converges strongly to a solution of (ODE). O

Example 4.4. Consider the differential equation:

{‘df]zd =cosq,q €[0,1] (16)

d0)=d1) =0,
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also

(q1,d(s)) = (g2, d(s))| = | cos g1 = cos gal < g1 ~ .
Define an operator 3 on the space B by

1
Scf(q) =(1-9) foq scos(s)ds + qf (1 = s) cos(s)ds.
q

Therefore, (ODE) has a solution in B,

1
Scf(q) = cf(q) =(1-9) fscos(s)ds + qf (1 —s) cos(s)ds,
0 q

~

that is d(q) = cos(q) — gcos(1) + q — 1 is solution of (16). By Theorem 4.3, Algorithm (S*) converges strongly to a
solution of (ODE). Take v}, = -5, @), = =5, n, = -4 and &), = =15 and dy(q) = 0.25. At q = 0.1, approximate

R n+27 n n+2 n+2

solution is d(0.1) = cos(0.1) — 0.1 cos(1) + 0.1 — 1.

5. Conclusion

In this paper, we propose a new algorithm which converges strongly to a common fixed point for pair of
mappings in the context of Banach spaces. We include a few numerical examples to support our assertions
and demonstrate that our technique converges faster than well-known iterative schemes in the literature.
Also, under some assumptions, we obtained our iterative process converges to a solution of fractional
iterative integrodifferential equations (FID) and nonlinear ordinary differential equations (ODE).
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