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Abstract. Let F :
∑+

m ×X →
∑+

m ×X by (ω, x) 7→ (σm(ω), fω0 (x)), be skew product of IFS F = { fi : X →
X|i = 0, 1, . . . ,m − 1} on uniform space (X,UX). In this paper, we prove that the equivalence of the chain
transitive, topologically transitive and topological shadowing property between IFS F and step skew
product F. Moreover, we give two version of entropy, uniform entropy and uniform covering entropy,
for IFS F on uniform space (X,UX), and prove that the basic properties of them. Finally, we show that
hu(F) = log m + hu(F ), where hu is uniform entropy.

1. Introduction

In topological dynamics, which studies the behavior of continuous transformation on topologica spaces,
topological entropy and topological transitivity are fundamental tools for understanding the behavior of a
dynamical system.
Topological entropy measures the complexity of a dynamical system, while topological transitivity describes
the behavior of the system. There are spaces that every topologically transitive map on them, have necessary
positive topological entropy. For instant by [16, Theorem 9.1], every transitive map on interval [0, 1] has
topological entropy atleast log 2

2 , also, if an interval map f has positive topological entropy, then it is transitive
on a closed invariant set which has no isolated point. Topological entropy can be defined in different ways,
dependeing on the type of system and tools used to analyze it. Adler, Konhelm and McAndrew [1] used
the idea of open covers of a compact topological space with continuous mapping . Another definition uses
the idea of metrics which are functions that measure the distance between points in the space [5]. However,
for general topological spaces such distance-or size-related concepts cannot be defined unless there exists
some kind of structure in addition to what the topology itself provides. This can be solved by considering
a completely regular, and not necessarily metrizable, topological space which equipped with a structure,
called a uniformity, enabling one to control the distance between points in the space and generalize notion
of topological entropy on uniform space which is called iniform entropy. Uniform entropy is defined in
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term of uniform cover of a space. Bowen [5] defined uniform entropy of a uniformly continuous self map of
a metric space, that coincides with the topological entropy when the metric space is compact. This approach
was later extended by Hood [11] and Hofer [12] for uniform spaces. The relation between uniform entropy
and topological entropy is discussed in [7]. Although, there is a relation between positive topological
entropy and topological transitivity of systems on interval [0, 1], but transitivity is a global characteristics.
A map having two invariant sets A, B with nonempty interiors cannot be transitive. But the positivity of
the entropy on A implies that the system does have positive topological entropy. Topological transitivity is
strongly of chain transitive, this means that in transitive systems every two point of space can be chained
by pseudo-orbit. If the system does have shadowing property, then the notions of chain transitivity and
topological transitivity are coincide. Note that the shadowing property is a fundamental concept in the
theory of dynamical systems. It describes how well an approximate trajectory can be shadowed by an
exact trajectory. In [17], Author gave a characterization of zero topological entropy maps which have the
shadowing property.

A family { fσ : σ ∈ Γ} ⊆ C(X) such that Λ is a finite set, is said to be an Iterated Function System (IFS for
short). This notion introduced by Hutchinson to study hyperbolic IFS. Many authors generalized notion
of classical dynamical system to IFS, see notions of transitivity, mixing, ergodicity in [10, 15], various types
shadowing properties in [4, 9, 20], some criteria for transitivity and accessibility in [18, 19]

Compositions of uniformly continuous maps f0, . . . , fk on X can be studied in a single framework given
by a skew product system

F(ω, x) = (σm(ω), fω0 (x)), ∀(ω = ω0ω1ω2 · · · , x) ∈ Σ+m × X.

Bahabadi [4] obtained the equivalence of the shadowing property between IFS F and step skew product F.
Also, in [23], authors showed that this also holds for chain transitivity and chain mixing.
In this paper we study notions of shadowing property, topological entropy, chain transitive and chain mixing
for an IFS on a uniform space. Indeed, We define step skew product and equip it with a uniform structure
and then we prove the inherited properties of this mapping with that uniform structure, including the
topologically chain transitive, topologically chain mixing, topologically shadowing property and transitive.
Moreover, we extend Hood’s definition of uniform entropy from a single self-mapping to a finite number
of self-mappings(IFS).

2. Preliminaries

For non-empty set X, take ∆X = {(x, x) : x ∈ X}, which is called the diagonalof X × X. For A ⊂ X × X
consider A −1 = {(b, a) : (a, b) ∈ A }. We say A is symmetric, if A = A −1. For any A ,B ⊂ X ×X, composite A
and B is

A ◦B = {(a, b) : ∃ (a, x) ∈ B, (x, b) ∈ A } . (1)

Definition 2.1. [14, p. 176] A uniform structure on X is a non-empty collectionUX of subsets of X × X satisfying
the following:
(U1) If A ∈ UX, then A −1

∈ UX and ∆X ⊂ A ;
(U2) If A ∈ UX and A ⊂ B ⊂ X × X, then B ∈ UX ;
(U3) If A ,B ∈ UX, then A ∩B ∈ UX ;
(U4) For any A ∈ UX, there exists a B ∈ UX such that B o B ⊂ A .

The pair (X,UX) is called a uniform space and the members ofUX are called entourages. The largest uniformity
on X, discrete uniformity, is the family of all those subsets X×X which contains the diagonal, and the smallest
uniformity on X, trivial uniformity, is the set X × X.

Definition 2.2. [14, p. 180] The map f : (X,UX)→ (Y,UY) is uniformly continuous if ( f × f )−1(U ) ∈ UX for all
U ∈ UX .

Every uniformityUX on X induces a topology TU as follows: A subset T ⊆ X belongs to TU if and only if
for every x ∈ T there is U ∈ U such that U [x] ⊆ T where U [x] = {y ∈ X : (x, y) ∈ U }.
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Remark 2.3. Different two-uniformity may create equal topology, and there are topologies of space that never obtained
by uniformity except those that are completely regular [14, Corollary 6.17].

Definition 2.4. If {(Xi, Ui)}i∈N is the family of uniform spaces then the product uniformity for
∏

Xi is the smallest
uniformity such that projection into each coordinate space is uniformly continuous.
The family of all sets of the form V={(x, y); x=(a1, a2, · · · ), y=(b1, b2, · · · ):(ai, bi) all elements of a V ∈ Ui} is a
subbase for the product uniformity.

In the next two examples, we define uniform structures on two finite sets and then obtain the subbasis of
the product uniformity on them. The reason that the finite structures are discussed is that in the Section
2.1, theorems will be presented in this field.

Example 2.5. Let X = {a, b, c, d} be a set , then one of the fifteen(The reason for this number is in the Subsection 2.2)
uniform structures on X isUX = {U1, U2, U3, · · · , U256} where

U1 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)},
U2 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c), (a, c)},
U3 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c), (c, a)},
...

the remaining members are added until finally, U256 = X × X.
Let 1 : (X,UX) → (X,UX) that 1(a) := c, 1(b) := d, 1(c) := a, 1(d) := b and h : (X,UX) → (X,UX) that
h(a) := b, h(b) := a, h(c) := d, h(d) := c is uniformly continuous but f : (X,UX) → (X,UX) that f (a) := b, f (b) :=
c, f (c) := d, f (d) := a because ( f × f )−1(U1) = {(d, d), (a, a), (b, b), (c, c), (d, a), (a, d), (b, c), (c, b)} is not element ofUX
hence f is not uniformly continuous.
For uniform space (X,UX) we have U1[a] = {a, b},U1[b] = {a, b},U1[c] = {c, d},U1[d] = {c, d} and U2[a] = {a, b, c},-
U2[b] = {a, b},U2[c] = {c, d},U2[d] = {c, d} and so on. Therefore TU = {∅, {a, b}, {c, d}, {a, b, c, d}}.

Example 2.6. Let Y = {1, 2} be a set. Then one of the two uniform structures on X isUY = {V1,V2,V3,V4} where

V1 = {(1, 1), (2, 2)}, V2 = {(1, 1), (2, 2), (1, 2)},
V3 = {(1, 1), (2, 2), (2, 1)}, V4 = {(1, 1), (2, 2), (1, 2), (2, 1)}.

For uniform space (Y,UY) if we define any map f : (Y,UY)→ (Y,UY), then f is always uniformly continuous. For
uniform space (Y,UY) we have V1[1] = {1},V1[2] = {2} and V2[1] = {1, 2},V2[2] = {2} and so on. Therefore TU =
{∅, {1}, {2}, {1, 2}}.

Example 2.7. IfUX,UY are uniform structures defined in the Examples 2.5 and 2.6, then according to the Definition
2.4 the subbase ofUX ×UY is
B =

{
VU1,V1 ,VU2,V1 ,VU3,V1 , . . . ,VU1,V2 ,VU2,V2 ,VU3,V2 , . . . ,VU256,V4

}
where

VU1,V1 = {((a, 1), (a, 1)), ((b, 1), (b, 1)), ((c, 1), (c, 1)), ..., ((a, 2), (a, 2)), . . .} ,
VU2,V1 = {((a, 1), (a, 1)), ((b, 1), (b, 1)), ((c, 1), (c, 1)), ..., ((a, 1), (c, 1)), . . .} ,
and so on.

In the following, we give definition of IFS which introduced by Hutchinson in [13].

Definition 2.8. Let (X,UX) be a nontrivial uniform space, Γ={0, 1, ...,m − 1}. If F={ fσ:X → X; σ ∈ Γ} that any
fσ:X → X be a uniformly continuous map, then system (X,UX,F ) is an iterated function system on uniform space
which we write as IFSu in short, of course, until the initial space does not change.

We denote Z+ = {0, 1, 2, ...}, Σ+m = ΓZ
+
(Symbolic space) and ω = ω0ω1ω2 · · · ∈ Σ

+
m(Word) and define

f 0
ω := idX, f n

ω = f n
ω0ω1ω2···

:= fωn−1 ◦ f n−1
ω (n ∈N).
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Let A ∈ UX. We say that there is an A -chain from a to b in X if there exists a finite sequence {ak}
m
k=0

such that a0=a . . . , am=b and
(

fσk (ak), ak+1
)
∈ A for every k ∈ Γ and σk ∈ Γ. A sequence {xk}k≥0 is an (A ,

ω)-pseudo-orbit of F if
(

fωk (xk), xk+1

)
∈ A . An (A , ω)-pseudo-orbit to be B-traced by a point y ∈ X if

( f k
ω(y), xk) ∈ B.

Definition 2.9. The IFSu :

• is topologically chain transitive, if for any A ∈ UX and for any a, b ∈ X, there exists an A -chain {ak}
m
k=0 from

a to b.

• is topologically chain mixing , if for any A ∈ UX and for any a, b ∈ X there exists N ∈ N such that for any
n ≥ N, there is an A -chain {ak}

n
k=0 from a to b .

• is topologically transitive, if for any pair of nonempty open sets O1,O2 ⊆ X, there exists an ω ∈ Σ+m and n ∈N
such that f n

ω(O1) ∩ O2 , ∅.

• has topological shadowing property if for any B ∈ UX, there exists an A ∈ UX, ω ∈ Σ+m such that every (A ,
ω)-pseudo-orbit to be B-traced by some point y ∈ X.

In the Example 2.5, we difined two uniformity continuous maps. In next example we examine their
topologically chain transitive.

Example 2.10. System (X,UX, h) where h:(X,UX)→ (X,UX) such that h(a) := b, h(b) := a, h(c) := d, h(d) := c, is
not topologically chain transitive because from a to c there is not U1-chain but system (X,UX,F ) that F = {1, h} as
an IFSu is topologically chain transitive

Remark 2.11. Any metric space X with the metric d can be endowed by a uniform structure. The family Ud =
{U ⊂ X × X : ∃r > 0; Ur ⊂ U } that Ur ={(x, y) : d(x, y) < r for r > 0} is satisfied all condition of uniformity.
Different two-metric may create equal uniformity[14, p. 184].

Example 2.12. Denote by Σ+2 , the set of all possible sequences of 0’s and 1’s. A word or “code” in this space is
therefore an infinite sequence of the form s = (s0s1s2 · · · ). let s = (s0s1s2 · · · ) and t = (t0t1t2 · · · ) be points in Σ+2 . A
distance function or metric on Σ+2 is:

d(s, t) =
{

0 s = t
1

min {i∈Z+:si,ti}+1 s , t.

According to the Remark 2.11 we can defineUΣ+2 =
{
U ⊂ Σ+2 × Σ

+
2 ;∃r > 0 : Ur ⊂ U

}
as an uniformity on the Σ+2 .

Of course, this definition can be generalized to any Σ+m.

We difine the shift map σ2 : Σ+2 → Σ
+
2 by σ(s0s1s2 · · · ) = (s1s2s3 · · · ).

Remark 2.13. The shift map σm : Σ+m → Σ+m is uniformly continuous.

Indeed if U ∈ UΣ+m so there exist r > 0 that Ur ⊂ U , then σ−1
m (U ) Adds a member to the beginning of the

sequence for each point, so the distance between the two points either stays the same or decreases.Thus
Ur ⊂ σ−1

m (U ) ∈ UΣ+m .

2.1. The view of set theory
We know a relation R on a set X is a subset of X × X and use the notation aRb to denote that (a, b) ∈ R.

Therefore an uniform structure on X is a collection of relationes on X. A relation on X is called reflexive if
every element of X is related to itself, so by U1 of the Definition 2.1 all relationes of an uniform structure
are reflexive. A relation on X is called symmetric if bRa whenever aRb and it is called transitive if aRb, bRc,
then aRc.
A relation on a set X is called an equivalence relation if it is reflexive, symmetric and transitive. Two elements
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a and b that are related by an equivalence relation are called equivalent and denote by a ∼ b. The set of
all elements that are related to an element a of X is called the equivalence class of a and denote by [a]. Let
R,S be two relation on X. The composite of two relations is the same as the Definition 1. The powers Rn,
n = 1, 2, 3, ... are difined recursively by

R1 = R and Rn+1 = RnoR.

We note that if R is reflexive, then R ⊆ RoR.

Remark 2.14. The relation R on a set X is transitive if and only if Rn
⊆ R for n = 1, 2, 3, ... [21, Theorem 1.6.1].

2.2. Finite uniform structure

When the number of entourages of a uniform structure is finite, we obtain results that lead to counting
the number of possible structures on a finite set.

Theorem 2.15. If UX is a finite uniform structure on X, then there existes A ∈ UX such that A ⊆ B for all
B ∈ UX and A is an equivalence relation.

Proof. We have V = U ∩U −1
∈ UX, so V having two properties symmetric and reflexive. If we subscribe

all of them, we will reach a relation A that by repeating property U4, must be A n
⊂ A (n = 1, 2, ...).

According to the Remark 2.14, relation A is also transitive and therefore it is an equivalence relation.

From the above theorem, the following results are immediately obtained one after the other:

• The number of uniform structures on a finite set X is equal to the number of equivalence relations on
the same set.

• Definition of uniform structure on finite set X : Family of all relations U on X that A ⊆ U where A
is an equivalence relation.
A partition of a set X is a collection of disjoint nonempty subsets of X that have X their union. We know
that union of the equivalence classes of X is all of X and these equivalence classes are either equal
or disjoint. So an equivalence relation on a set X, partitions the set X and conversely. Therefore, the
number of equivalence relations is equal to the number of partitions of a set. Bell number [3, Theorem
5.6] is the total number of partitions of a set with n members,

B(n) = Σn−1
k=0

(
n − 1

k

)
B(k) for all n ≥ 1, B(0) = 1.

• Number of uniform structure on a set with n members equals of B(n).

• Let f be a map(relation) on the finite space (X,UX). f is uniformly continuous if and only if it has one
of the following conditions :

1. All members to be related only with one member.(Fixed map).
2. The members of each equivalence class to be related with the members of the same class.
3. The members of each equivalence class to be related only to the members of one another class,

so that no class remains unrelated.
4. A combination of type 2 and 3

And this map is a topologically chain transitive when defined in state 1 or 3.

Look at the Example 2.10 once again from this point of view.
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3. Step skew product

Consider product uniformity U = UΣ+m × UX on Σ+m × X where UΣ+m is the uniform structure defined
using the metric of this space (Ex mple 2.12) andUX is uniform structure on X.

The step skew product F : Σ+m × X→ Σ+m × X corresponding to IFSu defined by

F(ω, x) = (σm(ω), fω0 (x)), ∀(ω = ω0ω1ω2 · · · , x) ∈ Σ+m × X.

Remark 3.1. According to the Proposition 2.13 and uniform continuity f , The step skew product F corresponding
to the IFSu is uniformly continuous.

In this section, we study the equivalence of the chain transitive, topologically transitive and topological
shadowing property between IFSu and step skew product F.

The following theorem generalizes [23, Theorem 2.1] from metric spaces to uniform spaces.

Theorem 3.2. The step skew product F corresponding to the IFSu is topologically chain transitive if and only if
IFSu is topologically chain transitive.

Proof. First, we assume thatIFSu is topologically chain transitive. Fix A ∈ U and
(
ω1, x1

)
,
(
ω2, x2

)
∈ Σ+m×X.

According to the Remark 2.11 and product uniformity, there exists r > 0, A ′
∈ UX such that Ur ×A ′

⊆ A
where Ur ={(s, t) ∈ Σ+m × Σ+m : d(s, t) < r}. Let k ∈ N that 1

k <
r
2 . Because IFSu is topologically chain

transitive so there is A ′-chain {zi}
m
i=0 from f k+1

ω1 (x1) to x2. This means that there is ξ = ξ0ξ1 . . . ξm−1 such that
( fξi (zi), zi+1) ∈ A ′. Consider ω=ω1

0ω
1
1ω

1
2 . . . ω

1
kξ0ξ1 . . . ξm−1ω2 and

φi =


(ω1, x1) i = 0(

σi
m(ω), f i

ω(x1)
)

1 ≤ i ≤ k + 1(
σi

m(ω), zi−k−1

)
k + 2 ≤ i ≤ k +m.

We claim {φi}
m
i=0 is the same A -chain desired from

(
ω1, x1

)
to

(
ω2, x2

)
.

For i = 0 we have(
F(φ0), φ1

)
=

(
F(ω1, x1),

(
σm(ω), f 1

ω(x1)
))
=

((
σm(ω1), fω1

0
(x1)

)
,
(
σm(ω), fω1

0
(x1)

))
∈ A .

For 1 ≤ i ≤ k + 1 we have F(φi)=φi+1.
For 1 ≥ k + 2,(

F(φi), φi+1
)
=

(
F(σi

m(ω), zi−k−1),
(
σi+1

m (ω), zi−k

))
=

((
σi+1

m (ω)), fξi−k−1 (zi−k−1)
)
,
(
σi+1

m (ω), zi−k

))
∈ A .

Conversely, for any two arbitrary points of the space X and a constant entourage of UX, we can easily
reach the members of at least one entourage ofU by product uniformity an arbitrary Ur and that constant
entourage. Then from existence of topologically chain transitive in this space, we get the desired chain from
the second components of this chain.

The following theorem generalizes [23, Theorem 2.3], from metric spaces to uniform spaces.

Theorem 3.3. The step skew product F corresponding to theIFSu is topologically chain mixing if and only ifIFSu
is topologically chain mixing.

Proof. According to the process of proving Theorem 3.2 and the relationship between the length of chains
in the two spaces X and Σ+m × X , equivalence of topologically chain mixing is easily obtained.

Definition 3.4. A map f : X → X is semi-open if for any non-empty open subset U of X , f (U) has non-empty
interior.
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The following theorem generalizes [23, Theorem 2.4] from metric spaces to uniform spaces.

Theorem 3.5. Assuming that fσ:X→ X (σ ∈ Γ) be a semi-open, the step skew product F corresponding to the IFSu
is transitive if and only if IFSu is transitive.

Proof. First, we assume that IFSu is transitive. Fix U, V ∈ Σ+m ×X. If (ω, x) ∈ U, (ξ, y) ∈ V, then there exists
k ∈N such that B(ω, 1/k)×Ux ⊂ U and B(ξ, 1/k)×Vy ⊂ V. As fσ are semi-open, then f k+1

ω (Ux) has non-empty
interior so, there is Ux′ ∈ X such that f k+1

ω (Ux) ∈ Ux′ . According to the assumption, there is υ = υ0υ1υ2 . . . υn
such that f n+1

υ (Ux′ ) ∩ Vy , ∅. We define ω′ = ω0ω1 . . . ωkυ0υ1 . . . υnξ0ξ1 . . . then (ω′, x′) ∈ B(ω, 1/k) ×Ux ⊂ U
and we have for it, Fn+k+2(ω′, x′) =

(
σn+k+2(ω′), f n+k+2

ω′ (x′)
)
∈ B(ξ, 1/k) × Vy ⊂ V, therefore F is transitive.

Conversely, if F is transitive Obviously IFSu is transitive.

The following theorem generalizes [4, Theorem 1.3] from metric spaces to uniform spaces.

Theorem 3.6. The step skew product F corresponding to the IFSu has topological shadowing property if and only
if IFSu has topological shadowing property.

Proof. First, we assume that IFSu has topological shadowing property. Fix B ∈ U. There exists U ∈ UΣ+m ,
B′ ∈ UX such that U ×B′ ⊆ B. According to the assumption, there exists A ′

∈ UX, ω ∈ Σ+m such that
{xk}k≥0 is an (A ′, ω)-pseudo-orbit that B′-traced by some point y ∈ X. This means that

(
fωk (xk), xk+1

)
∈ A ′

and
(

f k
ω(y), xk

)
∈ B′. There exists A ∈ U that U ×A ′

⊆ A . We define {φi}i≥0 =
{
(σi(ω), xi)

}
i≥0

. The sequence
{φi}i≥0 is an A -pseudo-orbit, because(

F(φi), φi+1)
)
=

(
F
(
σi(ω), xi

)
,
(
σi+1(ω), xi+1

))
=

((
σi+1(ω), fωi (xi)

)
,
(
σi+1(ω), xi+1

))
∈ A .

The sequence {φi}i≥0 is B-traced by (ω, y) ∈ Σ+m × X, because(
Fn(ω, y), φn

)
=

((
σn(ω), f n

ω(y)
)
,
(
σn(ω), xn

))
∈ B.

And this process is also established for every other A -pseudo-orbit.
Conversely, if F has topological shadowing property Obviously IFSu has topological shadowing prop-
erty.

4. Uniform entropy

Topological entropy was extended by Bowen [5] to uniformly continuous self-maps of a metric space.
Later on, Hood [12] adapted Bowen’s definition to uniformly continuous self-maps on a uniform space.
In this subsection, we extend that definition from a single self-mapping to a finite number of self-
mappings(IFS).
Before the original definitions, we introduce some notations. Let F+m be the set of all finite words of Σ+m.
For any ω,ω′ ∈ F+m, let ωω′ be the concatenation of ω and ω′. We write ω′ ≤ ω if there exists a word
ω′′ ∈ F+m such that ω = ω′ω′′. For ω ∈ F+m, σ = σ0σ1σ2 · · · ∈ Σ

+
m, a, b ∈ Z+ and a ≤ b, we write σ|[a,b] = ω if

ω = σaσa+1 · · · σb−1σb. Now, define the uniform entropy of an iterated function system on uniform space by
using separated sets and spanning sets.

4.1. Uniform entropy on the IFSu

Let IFSu be iterated function system on uniform space (X,UX), K (X) = {K : K is a compact subset of
X}, A ∈ UX, ω ∈ F+m and K ∈ K (X).

- a subset F ⊆ X is said to (ω, A , F )-span K, if for every x ∈ K there is y ∈ F such that ( fω′ (x), fω′ (y)) ∈ A
for each ω′ < ω,
rω(A ,K,F ) = min{|F| :F is (ω, A , F )-spans K};
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- a subset E ⊆ X is said to be an (ω, A , F )-separated set, if for each pair of distinct points x, y ∈ E there
exists ω′ such that ω′ < ω and ( fω′ (x), fω′ (y)) < A ,
sω(A ,K,F ) = max{|E| :E⊆ K and E is (ω, A , F )-separated set}

Since K is compact, the numbers rω(A ,K,F ) and sω(A ,K,F ) are finite. It follows directly from the definition,
that if A ⊂ B, then rω(A ,K,F ) ≥ rω(B, K, F ) and sω(A , K, F ) ≥ sω(B, K, F ).
For brevity from here σ stands either for r or for s. So we define

σn(A , K, F ) =
1

mn

∑
|ω|=n

σω(A , K, F ). (2)

Now define

σ(A , K, F ) = lim sup
n→∞

log σn(A , K, F )
n

, (3)

and

hσ(K, F ) = sup{σ(A , K, F ) : A ∈ UX}. (4)

And finally, we define

hr(F ) = sup{hr(K,F ) : K ∈ K (X)}, (5)

hs(F ) = sup{hs(K,F ) : K ∈ K (X)}. (6)

The next lemma allows us to present each of the two relations as a definition of uniform entropy.

Lemma 4.1. Let IFSu be iterated function system on uniform space (X,UX), ω ∈ F+m and K ∈ K (X).

1. If A ,B ∈ UX such that B ◦B ⊂ A , then

rω(A ,K,F ) ≤ sω(A ,K,F ) ≤ rω(B,K,F ).

2. hr(F ) = hs(F ).

Proof. (1)A maximal (ω,A ,F )-separated subset of K is an (ω,A ,F )-spans K. Hence rω(A ,K,F ) ≤ sω(A ,K,F ).
Suppose E is an (ω,A ,F )-separated subset of K and F is an (ω,B,F )-spans K. Define ϕ :E→F that for
each x ∈ E, there exists ϕ(x) ∈ F such that ( fω′ (x), fω′ (ϕ(x))) ∈ B for all ω′ < ω. If ϕ(x) = ϕ(y), then
( fω′ (x), fω′ (ϕ(x))) ∈ B, ( fω′ (y), fω′ (ϕ(x))) ∈ B. Because B is symmetric so ( fω′ (x), fω′ (y)) ∈ B ◦B−1 = B ◦B ⊂
A . Since E is an (ω,A ,F )-separated subset of K and x, y ∈ E, it follows that ϕ is injective and therefore the
cardinality of E is not greater than of F. Hence sω(A ,K,F ) ≤ rω(B,K,F ).
(2) It immediately results from (1).

Definition 4.2. Let IFSu be iterated function system on uniform space (X,UX). We define uniform entropy hu(F )
of F with respect toUX : hu(F ) = hr(F ) = hs(F ).

4.2. Uniform covering entropy on the IFSu

Topological entropy by open covers of the phase space was first defined by Adler, Konheim and McAn-
drew [1]. In [8] for uniform spaces presented an approach to the uniform entropy similar to the definition
of topological entropy and proved that this definition and the previous one are equivalent and in [22] topo-
logical entropy of free semi-group action was defined. In this subsection,we extend the uniform entropy to
the iterated function system(IFSu).

For structure UX of X, uniform covers CU = {C(U ) : U ∈ UX} defined as C(U ) = {U [x] : x ∈ X} for
U ∈ UX. For ω=ω0ω1 · · ·ωk−1 ∈ F+m, denote f−1

ω = f−1
ω0

o f−1
ω1

o · · · o f−1
ωk−1

. In the following, for A ∈ U, we denote
the corresponding uniform cover by A = C(A ). If K is a compact subset of X, then define the number
N(K,A) = min{|AK| : AK ⊂ A and K ⊂

⋃
AK} and takeA

∨
B = {A ∩ B : A ∈ A,B ∈ B}
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f−1
ω (A) = { f−1

ω (A) : A ∈ A} and Aω(F ) =
∨
ω′≤ω f−1

ω′ (A),

Definition 4.3. LetIFSu be iterated function system on uniform space (X,UX),K (X) = {K : K is a compact subset
of X}, ω ∈ F+m, K ∈ K (X).

cω(A ,K,F ) = N
(
K,Aω(F )

)
, (7)

cn(A ,K,F ) =
1

mn

∑
|ω|=n

cω(A ,K,F ), (8)

c(A ,K,F ) = lim sup
n→∞

log cn(A ,K,F )
n

(9)

and

huc(K,F ) = sup{c(A ,K,F ) : A ∈ UX}.

And finally, we define Uniform covering entropy:

huc(F ) = sup{huc(K,F ) : K ∈ K (X)}.

The next lemma compares the two definitions of uniform entropy and proves that they are the same.

Lemma 4.4. Let IFSu be iterated function system on uniform space (X,UX), ω ∈ F+m and K ∈ K (X).

1. If A ∈ UX, then cω(A ,K,F ) ≤ rω(A ,K,F ).
2. If A ,B ∈ UX such that B ◦B ⊂ A , then sω(A ,K,F ) ≤ cω(B,K,F ).

Proof. (1)Suppose F ={xi}
s
i=1 be a subset of K of minimal cardinality which (ω,A ,F )-spans K. By definition,

given k ∈ K, there exists xi ∈ F such that ( fω′ (k), fω′ (xi)) ∈ A for all ω′ < ω. that’s mean,

k ∈ f−1
ω′

(
A ( fω′ (xi))

)
f or all ω′ < ω. (10)

Hence the family { f−1
ω′

(
A ( fω′ (xi))

)
}
s
i=1 covers K. Now, for each i = 1, 2, ..., s, consider

Bi =
⋂
ω′≤ω

f−1
ω′

(
A ( fω′ (xi))

)
.

Notice that xi ∈ Bi(i = 1, 2, ..., s), so that (10) tells us that the family {Bi}
s
i=1 is a subcover of Aω(F )

⋂
K of

cardinality s. Thus, by the definition of cω(A ,K,F ), we have cω(A ,K,F ) ≤ s.
(2)Suppose E be a subset of K of maximal cardinality which is (ω,A ,F )-separated set. Note that every
member of the coverAω(F ) can contain at most one point of E, and hence sω(A ,K,F ) ≤ cω(B,K,F ).

Theorem 4.5. If IFSu is iterated function system on uniform space (X,UX), then huc(F ) = hu(F ).

Proof. According to Lemma 4.1 and Lemma 4.4 the result is obtained.

In the following, which is an extension of topics [22, Subsection 2.2.2], we need to extend the definition of
uniform entropy from a space to a set. Let Y be a nonempty subset of the space X. IfA is a uniform cover
of X, we denote byA|Y the uniform cover {A∩Y : A ∈ A} of the set Y and denote the any K ∈ K (Y) by K⊆Y,
whereK (Y) = {K ∈ K (X) : K ⊆ Y}. Then, define the uniform entropy on the set Y as

huc(F ; Y) = sup{huc(K⊆Y,F ; Y) : K⊆Y
∈ K (Y)},

where

huc(K⊆Y,F ; Y) = sup{c(A ,K⊆Y,F ; Y) : A ∈ UX},
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c(A ,K⊆Y,F ; Y) = lim supn→∞
1
n log 1

mn

∑
|ω|=n N

(
K⊆Y,Aω(F )|Y

)
.

Obviously, huc(F ; Y) = huc(F ) if Y = X.

Remark 4.6. To prove the following theorem, we need to consider the following equality [2, Lemma 4.1.9]. If k ∈ N
and bn,i be positive numbers, where 1 ≤ i ≤ k,n = 0, 1, 2, ..., Then

lim sup
n→∞

1
n

log
k∑

i=1

bn,i = max
1≤i≤k

lim sup
n→∞

1
n

log bn,i. (11)

Theorem 4.7. If IFSu is iterated function system on uniform space (X,UX), X =
⋃k

i=1 Ki, then

huc(F ) = max1≤i≤k hu(F ; Ki).

Proof. Since huc(F ) = huc(F ; X) ≥ huc(F ; Ki) so huc(F ) ≥ max1≤i≤k huc(F ; Ki). We take a uniform cover A
of X, for any A ∈ UX, ω ∈ F+m, K ∈ K (X). Let {Bi}

k
i=1 be subovers chosen from the covers {Aω(F )|Ki }

k
i=1

respectively. So each element ofB =
⋃k

i=1Bi is contained in some element ofAω(F ) andB is also a uniform
cover of X. Thus

N
(
K,Aω(F )

)
≤

k∑
i=1

N
(
K⊆Ki ,Aω(F )|Ki

)
.

This implies

c(A ,K,F ) = lim sup
n→∞

1
n

lo1
1

mn

∑
|ω|=n

N
(
K,Aω(F )

)
≤ lim sup

n→∞

1
n

lo1
1

mn

∑
|ω|=n

k∑
i=1

N
(
K⊆Ki ,Aω(F )|Ki

)
= max

1≤i≤k
lim sup

n→∞

1
n

log
1

mn

∑
|ω|=n

N
(
K⊆Ki ,Aω(F )|Ki

)
= max

1≤i≤k
c(A ,Ki,F ) ≤ max

1≤i≤k
c(Ki,F ).

Note that the Equation (11) was used above.

A basic statement of topological entropy is the power rule. In the next theorem, an extension of [22, Theorem
2.10] for IFSu is presented.

Theorem 4.8. IfIFSu is iterated function system on uniform space (X,UX) andF k = {11◦12◦...◦1k : 11, 12, ..., 1k ∈

F }, then

hu(F k) ≤ k.hu(F ).

Proof. Consider K ∈ K (X), A ∈ U, ω = ω0ω1 · · ·ωnk−1 ∈ F+m that fω = fω0 o fω1 o · · · o fωnk−1 . Denote 1ui =
fωik o · · · o fω(i+1)k−1 ∈ F

k, for i = 0, 1, ..., n − 1 and u = u0u1 · · · un−1. Let F ⊆ X be an (ω,A ,F )-span K with
minimal cardinality rω(A , K, F ). According to the definition, for any x ∈ X, there exists a y ∈ F such that
( fω′ (x), fω′ (y)) ∈ A for each ω′ < ω. In particular, for any 1u0 , 1u1 , · · · 1un−1 , we have (1u′ (x), 1u′ (y)) ∈ A for
each u′ < u. Therefore, F is also a (u, A , F k)-span K and if ru(A , K, F k) be the minimal cardinality of all
(u, A , F k)-spans K, then

ru(A , K, F k) ≤ rω(A , K, F ).

Therefore

lim sup
n→∞

1
n

log
1

mnk

∑
|u|=n

ru(A , K,F k) ≤ lim sup
n→∞

k
nk

log
1

mnk

∑
|ω|=nk

ru(A , K, F ),

and according to the definition the proof is complete.
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4.3. Uniform entropy of step skew product

We remind the step skew product F : Σ+m×X→ Σ+m×X corresponding to iterated function system IFSu
defined by

F(ω, x) = (σm(ω), fω0 (x)), ∀(ω = ω0ω1ω2 · · · , x) ∈ Σ+m × X.

In the next theorem, an extension of [6, Main Theorem] for IFSu is presented, which actually expresses
the relationship between the uniform entropies of the IFSu and the step skew product F corresponding to
the IFSu.

Theorem 4.9. If F is the step skew product of iterated function system IFSu on uniform space (X,UX), then

hu(F) = log m + hu(F ).

We knowe thatK (X) is all of compact subsets X and Σ+m is a compact space so according to the compactness
of the product of compacts, denote K (Σ+m × X) be all of compact subsets Σ+m × X. As we said,UΣ+m ,UX and
U are uniform structures on Σ+m, X and Σ+m × X, respectively. For each A ∈ U, we can consider U ∈ UΣ+m
and A ′

∈ UX, which is U ×A ′
⊆ A that A ′ can be called the corresponding entourage of A . For proof,

we need a lemma:

Lemma 4.10. Let F be the step skew product of an IFSu on uniform space (X,UX). For any ω ∈ F+m, A ∈ U and
A ′
∈ UX that A ′ is corresponding entourage of A, K′ ∈ K (X), K ∈ K (Σ+m × X),

1. sn(A , K, F) ≥ Σ|ω|=nsω(A ′, K′, F )
2. rn(A , K, F) ≤ Σ|ω|=nrω(A ′, K′, F )

Proof. (1) Let N = mn. There are N distinct words of length n in F+m. Denote these words by ω1, ω2, ..., ωN.
For any i = 1, ..., N, consider ω(i) ∈ Σ+m be an arbitrary sequence such that ω(i)|[0,n−1] = ωi. There exists
U ∈ UΣ+m that sequenceω(i), i = 1, ...,N form a (U , Σ+m, σ+m)-separating subset ofΣ+m. Let si = sωi (A

′, K′, F ).
Therefore, the points xi

1, ..., xi
si

, form a sωi (A
′, K′, F )-separating subset of X. Then the points(

ω(i), xi
j

)
∈ Σ+m × X, i = 1, ..., N, j = 1, ..., Ni,

form a (A , K, F)-separating subset of Σ+m ×X that the number of its elements is exactly Σ|ω|=nsω(A ′, K′, F ).
According to the definition 2 is proved.
(2). The proof is similar to the proof of the first part, only in the end, according to the Definition rn(A , K, F),
which is the cardinal minimum of separating subsets, the inequality is proved.

Proof. (Theorem 4.9). From Equation (2) and inequality (1) of Lemma 4.10 we have

sn(A , K, F) ≥ mn.sn(A ′, K′, F ),

and using the Equations (3), (4) and (6) results

hs(F) ≥ log m + hs(F ).

Similarly Using inequality (2) of Lemma 4.10,

hr(F) ≤ log m + hr(F ).

By Definition 4.2, the proof is complete.
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