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Abstract. In this paper, we study a new problem of random differential equations of Airy type by means
of the stochastic mean square theory. A new perturbation problem is introduced and some existence and

uniqueness results for ”stochastic process” solutions” are established. At the end, an example is discussed
in details.

1. Introduction

Fractional differential equations are important for studying mathematical models in many fields. For
more details, see [2, 8, 11, 14] and the references therein.
Recently, the researchers have bifurcated to investigate another important class of fractional differential
problems which are the random equations [7, 9, 10, 18]. To motivate this new way, we begin by citing the
Airy differential equation which has a great interest in developing the applied mathematics since it appears

when we deal with solving partial differential equations for mathematical physics. The Airy equation has
the following form, see [15]:

7" —t7=0, teR.

For the above equation, in [4], Cortez et al. have constructed power series solutions of random Airy type
differential equations containing uncertainty through the coefficients as well as the initial conditions over
the whole real line. The studied problem is the following

v -Atv=0, teR,

under two random conditions.

To present to the reader other works that have motivated the present paper, we recall the work ([3]), where
the random problem has been investigated:
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‘DLY(t) - BtfY(t) =0, t>0
n-1l<a<n, >0,
YO0)=4;, j=01,---,n-1,

such that “Dg, Y(¢) is the mean square random Caputo fractional derivative of order « of the stochastic
process Y(t).

Also, we find that the paper of R. Spigler [13] is important to cite since the author has been concerned
with the following perturbed fractional differential problem:

DU+ bDIU + ecl = 0
a,b,ceR*, e>0.
Very recently, H. Bedani et al. [1] have investigated the following problem:

2)8‘1 (Z)ng(t)) =aAf(t, Y(t)) + bByg(t, Z)(V)A/(if),fp+ Y(t),te]=10,T]
O<aj,a;p<l,ag+a;>1,a>y >0, and p>0

A,Bel*Q),abeR 1)
Y0)=Y", and Y(T) = ¥ L;Y(C), 0< G <T,
i=1n

where Dgl,l)gf, and D!, are the mean square Caputo derivatives of orders ai,ay,y, and 1, g+ is the
stochastic mean square integral of order p, where 0 < aj,ap < Loy +a, > Lap >y >0,p >0, f:
J X L2(Q) — L*(Q).

In the present work, we study the existence of solutions as well as the existence of unique solutions in the
sense of stochastic mean square calculus for the following regularly perturbed problem of Airy type:

D5, (D). Y1) = aAf(t, Y(t), Dy, Y(H) + bBg(t, Y(1), I, Y (1) + €Y(), t € ] = [0, ]

e>0,Y0) =Y, )
and Y(A) = X LY (G), 0<Ci<A,
i=1n

where D§+ , Df.,and Dg+ are the mean square derivative of Caputo of orders 8, o, y,and 1 g+ The stochastic
mean square non integer order of orders pand 0 <o, <1,a+>1,>y >0,p >0, A,Band Y* are three
bounded random variables, a,b € R, and f,g: ] X L>(Q) x L*(QQ) — L*(Q) are a given functions satisfying
some assumptions that will be specified later.
We find that the above introduced problem is interesting in the sense that it can allow us to obtain some
recent fractional random works as special cases. It allows us also to obtain the classical Airy random
differential equation.

2. Stochastic Mean Square Calculus

In this section, we introduce some notations and definitions of mean square fractional calculus and
present preliminary results needed in our proofs later, for details, see [5, 6].

Definition 2.1. Let a > 0 and Y € C(J,L*(Q)). The stochastic mean square fractional integral T 0. Y(t) is defined by

¢
I3.Y(t) = ﬁ [) (t —s)* 1Y (s)ds.
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Theorem 2.2. Let a > 0and B > 0. If Y € C(J,L*(QQ)), then T 0+ Y(t) exists in mean square sense as a second-order
mean square continuous second-order process 1. Y(t) C(], L*(Q)) with the following properties

*) I§, : C(J L*(Q)) — C(], L*(QY)),

o) 18,10, Y(t) = I, 18, Y(t) = 157 Y (b).

Definition 2.3. The Caputo fractional derivative of order a € (0, 1] of the stochastic process Y, denoted by Dy, Y (t)
is defined by

DY) = I(l):“%Y(t).

where, %Y(t) denotes the mean square differentiation of Y (t).

Theorem 2.4. Let a > 0. If Y is mean square differentiable with mean square integrable second-order derivative, then

) imD5, Y(t) = £Y(t),

*) imD5. Y() = Y(t) - Y(0),
o I‘* Z)‘* Y(t) = Y(t) - Y(0),
o Z)”‘ I“ Y(t) = Y(b).

Lemma 2.5. Let Y € C(J, L2(€2)) and suppose that Y* is a bounded random variable. If G is a continuous function
on |, then the unique solution-stochastic process of the following non-local random problem

D (DY) =G, te]
O<a,ﬁ£1 and a+p>1
Y(0) = Y* 3)
Y(A)= LAY ([G), 0<G<A
i=1,n

is given by

Y(H) -y

— ﬁ+a 1
Y(t) = Gls)ds + =

F(ﬁ+a)

s _ o\Bra-1 *
VT (ﬁ To) fo (A=5) G(s)ds + Y".

Proof. Let 0 <, < 1. Then, thanks to point 2 of Theorem 2.2 and point 3 of Theorem 2.4, we can write

th 4)

105 (DY) = I3G(H)+Ci = DLY(H)=I5.6(t)+C
= 1P DL Y(t) = I8, I8.G(H) + I1,C1 + Cy,
SO,
Y(t) = 151G + I5,C1 + Gy,

where, C1, C, are random variables.
By (3), we get

rg+1)
AB

C, =Y, and C; = (Y() =Y = 15G()).

This completes the proof. [
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3. Main Results

8382

Let CV = C7(J,L2(Q))) = {Y : Y,Z)Z;Y e C(J, Lz(Q))} be the Banach space of all mean square continuous

second order stochastic processes with the norm

)

Yller = maX{IlYllc,

)/
DY

where,

IYllc = sup lY(#)ll,, and ||D].Y
te]

| = sup |25 Y-
te]

3.1. Criteria For Uniqueness Solution-Stochastic Process
Now, we need to consider the assumptions:
e Aj) f,g are continuous functions.

e Ay) A(61,6,) € (R:) such that
£ Y0, X(B) = £t U@, VED||, < 61 (1Y) = U@l + IX(E) = VOL),
and
[lg(t, Y(t), X() = gt U(®), V1)), < 62 (1Y () = U®)ll, + 1X(1) = V(D) ,
forany X, Y, U,V : ] - L%(Q).

e A3) There are continuous functions @; : | = R*(i = 1,4) such that

£ Y®), U@, < er® YOIl + @28) U@, ,

and

gt Y, ||, < @) Y1l + @a(®) U],
such that

@i =sup|pi(t)], (i=1,4).
te]

Now, we define the following constants:

. . ;A7 bl 1Bl
Vi = @ lalllAll + @3 bl IBll, + T+ ¢
Vo = @ylalllAll
bl 1IBlly A
Vs = 2lall|All 61 + [bl 1Bl 62 + Tfnéz te
2Aﬁ+a
A= —— i
S TS R
pta
A = 2A\PFaqy,
rB+a+1)
A o AT TEHDATTY,
P T@+a-y+1) TE-y+DIB+a+l)
nT(B+1)A™ "
—Su i
r-y+1 i=£ l
Aﬁﬂl*}/(vz T (ﬁ + 1) /\ﬁ+a—)’fv2
A4 =

Ttra—y+1) T(B-y+DI(Bratl)
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Theorem 3.1. Assume that the assumptions (A;) and (As) are satisfied and Y* is a bounded random variable. If

max {Yq, Y5} <1,

where,
2ABracy,
= "5 Ai
! F@+a+n+nﬁgll
and
Apra=yey, T (B+1)APrarY;, nl(B+1)A~7
T sup A

“T@ra-y+1) TE-y+DIB+ra+1) TE-y+1) b
then the problem (2) has a unique solution-stochastic process on J.

Proof. A: Let us define the operator L : CV — C” by

Y -y
AP

th A
- _ ‘B+(¥—1 *
VTG a) f; (A-s9) Gy(s)ds + Y*.

_ 1 ' Bra-1
(]LY) (t) = m jo\ (t - S) Gy(S)dS + tﬁ

Then, we have

1 g I
(DgJLY) (t) = m ‘fo‘ (t - S)ﬂ -1 Gy(S)dS
rp+1) t#r ra—1
TE-y+DI( +a)Ff0 (A=) Gyl
TE+1) # *
TEoyen v YW
where,

Gy(t) = aAf(t, Y (1), DL YD) + bBg(t, Y(1), I0, Y (1)) + e Y(t).

We consider the set U, ={Y € C” : ||Y||cr <7}, so that

2 LE+DAY, r
< -
maX{ZHY ”2/ F(ﬁ—y+1) /A1/A3/A2/A4 = 3 (5)
We prove that LY € U,, for any Y € U,.
let Y € U,, so we have
1 ! o Y(A) - Y*
ILY) (DI, = Hm f (t — sy L Gy(s)ds + %tﬁ (6)
0

tf ! .
—m j(: (A - S)'B ! Gy(S)dS +Y

2||Gy(B)ll, TH
r+a+1)

2

+ 2|7 + Y (D, -
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According to (As), we have

Gy (), (7)
< lallAIL || £t Y(8), Dy Y ()|, + BUHIBIL |9t Y(8), I8, Y®)]],
+e Y (Bl
< lalllAllL (@5 1Yllc + @3 D). Y]l) + BHIAIL (93 1Y llc + 93 || 75.Y]l.)
+e[|Yllc
. . @A b1 1Bl
< (<p1 lal 41l + @3 1Bl 1Al + —F——= e eIl
+@3 lal I1All, | 2. Y]
< Vill¥lic + V2|05
Substituting (7) in (6), we get
2A‘B+a
ILY) I, < {(Vlm +nsup Mi|] Y1l (8)
i=1,n
2A[5+a(v2 ) .
FEras D) |95 Y| + 2171l
< A Yl + Az || D) Y| + 217l -

Also, one can observe that

ABra=y (B +1)APray
[(Dhrv)e], < (T(ﬁ Ta—y+D) TB-y+DI(Bra+ 1)) Gy Ol ©
T(B+1)A Y 1y
+W n?:llg| illYlle + 1Yl
ABra=yey, T'(B+1)APrer,
= {F(ﬁ+a—7/+1) "TE-y+DI(Bratl)
nT(B+1)A7 F+1A7IY,
TGE=y+1) fjﬁlhl} IYllc + TG—y+1)
ABra-yay, rg+1) Apra=yqy, ’
+{r(ﬁ+a—y+1) " r(ﬁ—y+1)r(5+a+1)}”D e
. F(+Do Yl
< AsliYlle + Ad[|D3. Y] + TE D) .
By (8) and (9), we state that
YTl (10)
= max {supll(]LY) )l sup ](Z)E;JLY) (t)”z}
te] te]
T(B+1)A~ ,
< max {2, %} IYllp + max {Ay, Ag} [|Yllc + max {Ag, Ag} || D}, Y|

<

That is to say that LY € U,.
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B: We prove that the operator L is a contraction. For any Y, Z € U,, we have the following estimate

(IALY) () — (ILU) ()l (11)
< 1 (= 9 [Gys) - Gue)] d
< F(ﬁ+a)f0( —5) v(s) = Gu(s)] ds
# 1
CMT(B+a)

A
f (1 = 9% [Gy(s) - Gu(s)] ds
0

B
- Y A Y - Ul@)

i=1n

2

Thanks to (A;), we can write
IGy(5) = Gu(s)ll» (12)
lal 1AIL &1 (IY(5) = UB)l + [|D}. (e - u®)l,)

+[B11Bll 62 (IY(8) = U®)ll, + || 75. (x(t) - U®)))
+ellY(H) - U,

IA

b1 1IBll, AP
< (2 ol AL, &1 + BBl 02 + -0 + e) 1Y = Ulle
< VallY = Ulle -
Substituting (12) in (11), we get
2APraqy,
- e £ Y = Ulle 13
100~ MW Ok < | Frgay *sup M IY - Ule (13)
< Yy =Ulle -
Also, we observe that
|25 @) () = D, @) v (14)
Apra=y (B +1) APy
—(rw+a—y+n+r@—y+nr@+a+n'mﬁﬂ_cdﬂb
T(B+1)A7
+————— | nsup |A]||Y - U||
F(ﬁ—7+1)(i:£ ¢
APramyp, + T (B+1) APV
rB+a-y+1) TE-y+DTB+a+1)
nr(B+1)A~7
——"—sup Al 1Y - Ulle
oy el |} 1Y = Ulle
< NllY = Ulle

By (13) and (14), we constat that
ILY — LU||cy < max{Yq, V2}Y = Ullcr -

Therefore, we conclude that IL is contraction..
Thanks to A and B, and by applying Banach fixed point theorem, there exists a unique solution-stochastic
process of the problem (2). O
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3.2. Criteria For Existence of a Solution-Stochastic Process
Theorem 3.2. Assume that (A3) is satisfied. So, the problem (2) has at least one solution-stochastic process Y(t) on

J

Proof. First step: First of all, we show that the operator L is completely continuous on C”.
LetY,,Y € U,, so we have

I0LY,) (£) = (LY) (Bl (15)
< |1 tt fretiG Gy(s)]d
< rgrs | -9 0 - creas

|

A fract
Ry fo (A =9 [Gy, (5) — Gy(s)] ds

B
S Y A=Y@ -

i=1n

Substituting (12) in (15), we get

2

sup I0LY,) () = (LY) (Ol < YYo= Yo (16)
te
Also

sup |25, @Y (1) = D @ B, < Y2 lIYu = Yiler- (17)

By (16) and (17), it yields that

ILY, — LYl < max (Y1, Y2} Yy = Yl -
So, we have

ILY,, —ILY||cy = 0, asn — oo.

Consequently, L is continuous on C.

Second step: I maps bounded sets into bounded sets in C”. Indeed, it is enough to show that for any
r > 0, there exists a positive constant / such that for each

Y € U, one has ||Y]|y < L

Let Z € U,. We put:

rg+1)A7|y
l=max{(A1+Az)r+2||Y*||z,(A3+A4)r+ B+ DA ”2}.

rg-y+1)
By (Ay), (A3), (8) and (9), for all t € |, we obtain,
ILZllc < (A1 + Ag) 7+ 2[[Y

and
AT (B+1)

TGy 1k

D5 LZ]|. < (As + Ag)r +

Hence,
IILZ||cy
< (A1 +A)r +2[[Y |y, (As + Ag) 7 + —1_/\ 3 ¢+1) (1Y
A1+ AN)r+2 ,( A3+ Agr ‘ .
< max 1 2 2, (A3 4 ( 1 2
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Consequently, IL is uniformly bounded on U,.
Third step: IL maps bounded sets into equicontinuous sets of C”. The functions Y, f, g are continuous,
hence the operator IL is continuous. For any Y € U, and t;,t, € [0, A] such that t; < t,, we have

IALY) (£2) = (LY) (t)Il,

1 & pra-1
H—r Gro) f(; (tp — s) Gy(s)ds
—ﬁ f 1 (t — $)PT L Gy(s)ds

tﬁ B tﬁ B+a—1
7 F(ﬁ o) f (A =5s) Gy(s)ds

tg B t1 "
+ T ZAiY(Ci) -Y

i=1n

2

IA

IGYOG)ly  (pra  pra
rB+a+1) (t h )

(Awa@m

— P . By | (= ¢
TGrarn ™ sup [A] r + A ||Y||2](t2 ).

i=1n
By (7), we obtain

IALY) (2) — (LY) ()l
(Vit+ Vo) IWller (pra pra
TB+a+1) (t2 h )
AT (V1 + Vo) Yl
rB+a+1)

+nAPsup [A;|r + AP ||Y*||2J (5-1).

i=1n
Hence,
IILY) (t2) — (LY) (t1)ll, = 0, as t2 — t.
Also

(@) ) - (D) 1)

: _ o\ptra—y-1
H—F Gra=y) fo (tr =)™V Gy(s)ds

1 " +a—y—1
T@B+a-y) fo (t = )77 Gy(s)ds

TB+1) (87 - £7) .
TBE-y+DIT(B+a) AP f (A =) Gy(s)ds

rg+n (B7-47)
+
TG-y+1) AP

(Y(A) = Y7)

2



H. Fettouch et al. / Filomat 38:24 (2024), 8379-8390 8388
By (7), we obtain
|| DJLY) () - (D} LY) (t1)||2

(Vi+ V)Yl (tﬁ+a—y _ tﬁ+a—y>
r+a-y+1)
{/\“T(ﬁ + 1) (Vi + V) IYller
Fr-y+HIrB+a+1)

rg+1 - B
+ L[n)rﬁsupmi|r+ A—ﬁ||Y*||2]} (57 -£7).

rg-y+1)

i=1n

Hence,
(251 1) - (DY) )|, > 0, as 2 - .

As a consequence of the above three steps, together with the Arzela—Ascoli theorem, we conclude that IL is
completely continuous.

Forth step: The set defined by ID = {Y € C” : Y = ¢LY,0 < 0 < 1} is bounded:
let W € D, then W = ¢ILW, hence, we can write

Wller = llolLWlley = o [ILW]|cy
AT (B+1
< omax {(Al + A2+ 2[[Y |, (Az + Ag)r + ﬁlllﬁllz}
< or < +oo.

The set is thus bounded.
As a consequence of Schaefer fixed point theorem, we deduce that IL has a fixed point which is a solution-
stochastic process of (2). The proof of Theorem 3.2 is thus completely achieved. [

3.3. An Example
Example 3.3. Consider the following problem

Y
DY (DY Y(H) = 101(530 TEASE Y (), D Y(t))+—Bg(t Y(b), I2Y(1),t € ] =10,2] (18)
Il = 5 MAlb=g, and Bl =,
Y () 0
Y -
SEYOUW) = Gy T+ YO oA+ Ha+ UL
Y(t) ue
gEYOUD) = A Oh) T Grsnd A+ U0
The two f, g satisfy
Y@, IU®l,
lreyo.unl, < e evs * sasivie) G+ 8
YO, I,

oYU, < Gy ar et T e 6 remp:
For any Y, U € L*(Q) and t € ], we have

¢ Yo, t) - £, X0, Ve, < 5 (V) = UG, + 1X0) - VO,
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and

1
lact, Y(t), u®) = (¢, X0, VO, < 5 (Y0 = U@L +1X(0) = VL)
By Theorem 3.1, and Theorem 3.2, the problem (18) has an unique solution-stochastic process on J.

Example 3.4. Consider the following problem

DY (DFPY () = %Y(f) - % [£t, Y (), DY (1) + g(t, Y (1), T2V (1)t € T = [0,1] (19)
Il = 5 1Al =Bl = g0 =b=4
~ Y(t) u)
JEYOUO) = GG VoL T 70+ M6+ 0L
_ Y(#) u)
g(t, (), Ut) = S MR )
The two f, g satisfy
IY(£)ll Il
v uol, < ey T * 7as e + ey
1Y (B)ll, N ()l

Joce, Yoy, uepll, < 2(1+7) 1 +IVllg) G -cosHA+1VIe)

For any Y, U € L2(Q) and t € ], we have

£, Y, u) - £, X®), V)|, < ; (Y () = U@, +1X(E) = VD),

and

1
loce, (o), ue) - g, X0, VN[, < 7 U@ = UGl +1XH) = V).
By Theorem 3.1, and Theorem 3.2, the problem (18) has an unique solution-stochastic process on J.
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