Filomat 38:24 (2024), 8391-8409

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2424391 A

University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
Wy, @“‘
i axs

2,
%,
e,

¥
5
TIprpor®

Existence results for fractional integrodifferential equations with
infinite delay and fractional integral boundary conditions

K. Shri Akiladevi?, K. Balachandran®*

* Department of Mathematics, Bharathiar University, Coimbatore - 641 046, India

Abstract. In this paper, we study the existence and uniqueness of solutions for the functional and neutral
functional integrodifferential equations of fractional order with infinite delay and multi-point multi-term
fractional integral boundary conditions by using fixed point theorems. The fractional derivative considered
here is in the Liouville-Caputo sense. Examples are provided to illustrate the results.

1. Introduction

The theory of fractional differential equations has emerged as an active area of research motivated
largely by new applications in many areas of science and engineering. Differential and integral equations
involving derivatives of fractional order have proved to be appropriate models for various phenomena
arising in diffusion and transport theory, models of earthquake, mathematical physics and engineering,
fluid-dynamic traffic model, fluid and continuum mechanics, chemistry, acoustics and psychology. Indeed,
it is well known that the analysis of fractional differential equations is more complex than that of classical
differential equations due to the fact that fractional derivatives are nonlocal and have weakly singular
kernels. For a detailed study of the theory and applications of fractional calculus and fractional differential
equations, one can refer to the books [4, 16, 26-28] and the articles [9, 24, 31-33].

In recent years, boundary value problems of fractional differential equations involving a variety of
boundary conditions have been investigated by several researchers [1-3, 11, 13, 14, 25, 29, 30, 36, 38]. In
particular, integral boundary conditions have various applications in applied fields. Also many practically
important problems lead to multi-point boundary value problems which arise in many areas of applied
sciences such as heat conduction, electric power networks, elastic stability, telecommunication lines and
electric railway systems etc. Existence results for various kinds of fractional differential equations can be
found in [5-8, 10, 19-23, 37, 39, 40] and the references therein. However the theory of fractional functional
boundary value problems is not fully explored and many aspects of this theory need to be studied.

Benchohra et al.[10] established the existence and uniqueness of solutions for fractional functional
differential equations with infinite delay by using the nonlinear alternative of Leray-Schauder type and the
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Banach fixed point theorem respectively for

Dyt = f(ty) 0<a<1,te]=[0,b],
y(t) = ¢(t)/ te (_OO/ 0]/
where D{ is the standard Riemann-Liouville fractional derivative, f : | X B — R is a given function,
¢ € B, ¢(0) = 0 and B is a phase space.

Chauhanet al. [12] studied the existence results for an impulsive fractional functional integro-differential
equation with infinite delay and integral boundary condition of the form

Dix(t) = f(t,x,Bx(t), 1<a<2,te]=[0,T], t #t,
Ax(k) = Qr(x(t)), k=1,2,..,m,
Ax'(t) = Lk(x(t)), k=1,2,..,m,
x(f) = ¢(t), t € (=e0,0],

T
ax(0) + bx'(T) = fo g(x(s))ds,

where LCDf‘ is the Liouville-Caputo fractional derivative, a,b € Rsuch thata+b #0, f : X B, x X — X
and g : X — X are given functions with B, to be the phase space. Here 0 =ty <t; < --- < t; < tyy1 =
T, Qx, Ir € C(X, X), (k =1,2,...,m), are bounded functions, Ax(t;) = x(t{) — x(t,) and Ax'(t) = x'(t]) — X' (t})

and Bx(t) = fot K (t,5) x(s)ds. The results are proved by applying the well known fixed point theorems.
Dabas and Gautam [15] investigated the existence results for an impulsive neutral fractional integro-
differential equation with state dependent delays and integral boundary condition of the form

t o a1
D} [x(t) + j(; %9 (S/ xp(s,xs)) ds}

= f(t, X0, BOY®), 1 <a <2, te]=[0,T], T > oo, t # 1y,
Ax(ti) = L(x(t)), Ax'(t) = Qu(x(t)), k=1,2,...,m,
x(t) = o), t € [-d,0],

T
ax(0) + bx'(T) = f g(x(s))ds, a+b#0,b+#0,
0

where f : [XPCyxX — X, g: JXPCy —» X and q : X — X are given continuous functions with
PCy = PC([-d,0],X). Here 0 = to <t; <+ <ty <tys1 =T, Qk, Ik € C(X, X), (k= 1,2, ...,m), are continuous
and bounded functions. Ax(f;) = x(7)—x(t;), Ax'(t) = x'(t;)—x'(t;) and Bx(t) = fotK (t,5) x(s)ds. The results
are proved by using the classical fixed point theorems. Srivastava et al.[34, 35] discussed the solutions of
fractional differential equations with different Laplacian operators.

Motivated by the above works, in the first part of this paper, we study the existence and uniqueness
results for the following fractional functional integrodifferential equation with infinite delay of the form

t
LCD'Zx(t) = f(t, xt,f k(t,s, xs)ds), 1<g<2,te]=][0,T],
0
x(t) = (P(l‘)n; t € (=00,0], 1
x(T) = ;ai(lﬁ’;@(m), O<m<m<..<n,<T,

where the functions f: [ X 8Xx X — X, k: QX 8 — X are continuous with X as a Banach space and ¢ € B,
a phase space to be defined later. Igi+ is the Riemann-Liouville fractional integral of order p; > 0 and 4; are
suitably chosen real constants, fori =1,2,...,m. Here Q = {(f,5) : 0 <s <t < T}.
For any continuous function x defined on (-0, T] and any ¢ € ], we denote by x; the element of 8 defined
by
x¢(0) = x(t + 0), 0 € (—00,0].
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Here x;(-) represents the history of the state from time —co up to the present time t. We assume that the
histories x; belong to some abstract phase space 8.

In the second part of this paper, we consider the fractional neutral integrodifferential boundary value
problem

t t—g)i-1 o
orfao- [ N o [ ncrsdo

=f t,xt,fkz(t,s,xs)ds),1<q32,te], @)
0
x(t) = ¢(t), t € (—o0,0],
x(T) = ;ai(lﬁ’;x)(m), O<m<m<..<nm<T,

where the functions f,g: ] X 8X X — X, ki, ky : QO x 8 — X are continuous.

The paper is organized as follows: In Section 2, some basic definitions, notions and results are recalled in
support of the subsequent sections. In Section 3, we present our main results on existence and uniqueness of
solutions to the fractional functional integrodifferential equation using Krasnoselskii’s fixed point theorem
and Banach contraction principle respectively. In Section 4, existence and uniqueness results for the
fractional neutral integrodifferential equation are discussed. Examples are presented to illustrate the
applicability of the imposed conditions. It is worth mentioning that no contributions exist in the literature
studying fractional functional and neutral integrodifferential equations with infinite delay and multipoint
multiterm fractional integral boundary conditions and hence this paper attempts to fill this gap in the
existing literature.

2. Preliminaries
In this section, we state some basic definitions, notations and lemmas [26] which will be used throughout

the work. Let X be a Banach space with norm || - || and C(J, X) denote the Banach space of all continuous
functions from | — X endowed with the topology of uniform convergence with the norm denoted by || - ||c.

Definition 2.1. The Riemann-Liouville fractional integral of a function f € L'(R") of order q > 0 is defined by

B0 = 7 fo (t — 5 f)ds,

provided the integral exists.

Definition 2.2. The Liouville-Caputo fractional derivative of order n — 1 < q < n is defined by

1 t
LCDIf(1) = f t— )17 FM(5)ds,
where the function f(t) has absolutely continuous derivatives up to order (n — 1). In particular, if 0 < g <1,
1 t ,(S)
LCDif(t) = f ds,

S T(1-q) Jo (=)
where f'(s) = Df(s) = @.

For brevity of notation, I7, is taken as I7 and "““D{ is taken as "“D?.

Lemma 2.3. [26] Let p,q > 0, f € L'[a,b]. Then PIf(t) = I*1f(t) = PP f(t) and “DIIf() = f(t), for all
t € [a,b].
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In this paper, we assume that the state space (8, || - ||g) is a seminormed linear space of functions mapping
(—o0,0] into X and satisfying the following fundamental axioms which were introduced by Hale and Kato
[18].

(A) Ifx : (=00, T] = X,is continuous on [0, T] and xq € B, then, forevery ¢ € [0, T], the following conditions
hold:
(i) x¢isin B,
@ii) Ilx®)Il < Hllxlls,
(iff) Ilxills < Ma(t) sup(lx(s)ll : 0 < s < ) + Ma(B)llxolls,
where H > 0 is a constant, M; : [0,00) — [0, 00) is continuous, M, : [0,00) — [0, 0) is locally
bounded and H, M;, M, are independent of x(-).
(B) For the function x(:) in (A), x; is a B-valued continuous function on [0, T].
(C) The space B is complete.

Let M] = sup M;(t) and Mj = sup Mx(t).
0<t<T 0<t<T

3. Boundary Value Problem of Fractional Order
Let the space Q = {x 1 (=00, T] = X : X [cw0)€ Band x 077 is continuous} and take
Kx(t):fot k(t, s, xs)ds.
Definition 3.1. A function x € Q) is said to be a solution of (1) if it satisfies the equation
LCDIx(t) = f (t, x;, Kx(t))
on | and the boundary conditions
xX(t) = ¢(b), t € (=e0,0],

x(T) =

ngE

ai(lPix)(n;), 0<m <M <..<nu <T.

1

I
—_

To study the nonlinear problem (1), first we consider the linear problem and obtain its solution.

Lemma 3.2. For f(t) € C(J, X), the unique solution of the fractional boundary value problem

LCDix(t) = f(t), 1<q<2,te],
x(t) = ¢(t)r:1 t € (=00,0], 3)
X(T) = L ailPx)(n:), 0<m < <. < < T,
i=1

is given by
(P(t)/ te (_OO/ 0]/

D=\ p(ry+ £ ()"f ail () = I"ﬂT))W(O)
i=1

m ; Pi 4
i )] e ¢

+1
a,-nf’

m
where A=T -, o * 0-
iz

Proof. For some vector constants c, c1 € X, the general solution of (3) can be written as [26]

x(t) = If(t) + co + c1t. ®)
Using the boundary condition x(t) = ¢(t) in (5), we have

0 = $(0). (6)
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Next, using the boundary condition x(T) = }_ a;(I"x)(1;), we have
i=1

1 < . i EliT]F.]i
= i[Pr*'fi ; i _ 1 ‘
a [ ~ mp,ﬂ]{Za f(n)+¢(0){; o 1] If(T)}

Substituting the above values of ¢y and ¢; in (5), we get

m

x(t) = FIf(t) + % [Z Gl f(n;) - I f(T)] +o(0) |1+

i=1

m Pi
t an;
A ;r(piﬂ) 1]}
|

3.1. Main Results

In addition to the conditions stated for the problem (1) we assume that the following conditions:

(A1) There exist positive constants Ly and Ly such that
@) [If(t, P1,x1) = f(t, P2, x2)llx < Ly (||¢1 - @ollg + lIx1 — x2||x), te] ¢1,P2€ 8B,
x1,% € X,
(i) [[k(t, s, 1) = k(t, s, 2)|| < Lillpr = olls, t,s € T, 1,2 € B,
(A2) Forp; € L'(J,R"),i=1,2,3, we have
@ ¢ P, 0lx < pr®Oliglls + p2D)lIxllx, (¢, P, x) € [ X BXX,
@ii) lIk(t, s, Y)lx < ps@llPllg, (ts,¢) € QX B.
(A3) Let A =LgM; {01 + LyO,} < 1 where
. G +1
91:(1 + %)yl + %7/3 and 82:(1 + ‘l;'))/z + %m with yq = %, Y2 = %,

Pitq pi+q+1

m
1, 1,
V3= 21 |al|r(p +g+1) and y; = 21 |”7|F(p ++2)”
=

We prove the existence of solutions to (1) by applying Krasnoselskii’s fixed point theorem.

8395

Lemma 3.3 (Krasnoselskii Theorem). [17]. Let S be a closed, convex, nonempty subset of a Banach space X. Let

P, Q be two operators such that
(i) Px + Qy € S whenever x,y € S,
(ii) P is compact and continuous,
(iii) Qis a contraction mapping.
Then there exists z € S such that z = Pz + Qz.

Theorem 3.4. Suppose that the assumptions (A1) and (A2) hold with

T
L= mLfMi {(y1+y3) +Le (2 +ya)} <1

Then the boundary value problem (1) has at least one solution on (—oo, T].

(8)

Proof. Inview of Lemma 3.2, we transform (1) into a fixed point problem. Consider the operator N : Q — Q

defined by
P(h), t € (=00,0],
5 -1 m i i— i+q-1
fo tr(;q) f(s,xs, Kx(s))ds + %(;1 aif()] (nr(;)‘:qz f(s, x5, Kx(s))ds

— i R (s, s, Kas) )ds)+<p(0)[1+ ( r”;”’ﬂ)—l)],te].

(Nx)(t) =

©)
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Let y(-) : (oo, T] — X be the function defined by

wn:{g@gfewﬁL

Then yo = ¢. For each z € C(J, X) with z(0) = 0, we denote

o _ ] 0, t€(=00,0],
2t = { Z(t), te .

If x(-) satisfies (9), then we can decompose x(-) as x(t) = y(t) + z(t), for t € ], which implies x; = y; + Z; for

t € | and the function z(-) satisfies
i f (i — syt
a- —
= 1 0 L(pi +9)

T _ -1
Xf(s, Ys + ZS/ K(]/(S) + Z(S)))ds - jov %

zT]l
Z T'(pi+1) H

Set Ey = {z € C(J, X) : zo = 0} and let || - ||g, be the seminorm in E, defined by

t _
z(t) = fo : ;(sq))q 1f (s, ys + 25, K(y(s) + 2(5)))ds +%

f(8, ys + 25, K(y(s) + 2(s)))ds

+¢(0) 1+

lIzllg, = sup llz(t)llx + llzolls = supllz(t)llx, z € Eq.
te] te]

Thus (Eo, || - l|g,) is @ Banach space. Let the operator P : Ey — Ej be defined by

/ -1 " i (n; — s)Pita1
(P2)(t) = f ( 1"(2)) f(s,ys + Zs, K(y(s) + 2(s)))ds + —[Z f %

Xf(s, ys + 25, K(y(s) + 2(s)))ds — f (T;(—;)f (s, ys + Zs, K(y(s) + Z(S)))dS)

1771
Zr(pl+1 H’te]'

It is clear that the operator N has a fixed point if and only if P has a fixed point. So we prove that P has a
fixed point.
Define B, = {z € Ey : ||zl|g, < 7}, then B, is a bounded, closed, convex subset of Eq. For any positive constant

mn |ﬂ,|1
1+ Z oD T 1

h,leth < r where h = ||pll.7* [(1 + IAI) (r1+y2)+ 5 7 ()/3+7/4)]+||qb(0)|| . Now, fort € ], we

decompose P as P; + P, on B, where

f o -1
(Pr2)(t) = 1:97%?—f64ﬁ+2mKWS)+ﬂﬂDdS

ni _ Qyitg-1
2 f (ni = s) (s, ys + Zs, K(y(s) + Z(s)))ds

(P20 = or

f (T;(;)q : (s, ys + Zs, K(y(s) +Z(s)))ds)

1+— Z p1+1) 1”

+$(0)
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Now for z,z* € B, and t € |, we find that

(t—s)!
I'(g)

Z|a|

t
(P12)(#) + (P2z")(Dllx < j(; £ (s, ys + 25, K(y(s) + 2(5)))llxds + — Al

T (i = )Pt 7 K o d
Xfo TR e g MY+ 2 KO + Z©)lxds

T(T - sy
I(q)

£ (s, ys + 25, K(y(s) + z*(s)))||de)

1Al (Zm: r(lpz@ D H

oy 1
sfo CoI [p1@lys + 2l + pa(IK(y(s) + ] ds

+lPO)II|1 +

@)
i — p+q 1
T Zlallf “Torr g PO+ Zilas + pa(o)
Tor_ o1
<K+ @l ds+ [ ELI— [l + o200
T

X[IK(y(s)+2"(s)llx] ds)+lIp(O)Il | 1 T

- |‘1i|777i 1
I“(pl + 1)

< lpllp: [(1 + M%)(Vl +72)+% (y3+7/4)]

T (& lailn?
1+ — — +1||:=h,
Al ( = T'(pi+1)

HioOl

i=

which implies that ||[P1z + P>z||g, < h. Here p(t) = max{p1(t), p2(t)ps(t)} and

llys + Zlls < llyslls + 11Zslls
< M;(s) sup |ly(0)ll + Ma()llyollg + Mi(s) sup [1z(7)]] + Ma(s)l|Zollz

0<1<s 0<7<s

Mir + M;|lpllg < 7.

IA

Thus Pz + P»z" € B,. Next we prove that P, is a contraction. For z,z* € B, and t € |, we have

I(P22)(t) — (P2z")(D)lx

IA

pi+qg-1
| A|(Z|l| s+ 2, K + 26)

(T —s)"!
I'(9)
X|If (s, ys+2Zs, K(y(s)+2(s))) — f (s, ys + 25, K(y(5)+2*(5)))llxds)
m 1 (nz_s)p i+q— 1 NS .
al L [ AL e+ 2) = 0+ Dl
+|IK(y( s) + Z(s)) — K(y(s) +2*(s))lIx] ds

T i _ o\q-1
+f0 %Lf (1 (ys +25) = (ys + 2 lls

—f(5, s + 2, K(y(5) + 2'(3)))lxds + f

IA

8397
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+IK(y(s) + 2(s)) — K(y(s) + 2°(s))lIx] ds]

1_S)pl+q 1 % = —%
" Z| 1 [ -l + L2 o] o

IN

T( T-sy ' -
+ [ 2T e - 2l + Ll — 2 lss] d)
0 T@

m i (nl _ S)p,+q 1
———L¢|M] sup |lz(s) — z'(s
i Z' e Lo e el

IA

-t
LM, - d
LM sup [E(T) - Ol + [

XLy [M; sup Ilz(s) - z'(s)ll + LM sup ||z(7) - z*(T)us]ds}
s€[0,t] 7€[0,5]
p +q m pi+q+1

T
MWM§3%<+H>LZWFTWB

IN

T T )
T+ By [ Flk

T
< |A|LfM O +7y3) + Le(y2 + vl iz = Z'llg,-

Thus ||P2z — P2z*||g, < Lllz — z*||E,.
Hence P, is a contraction. Continuity of f and k implies that the operator P; is continuous. Also P; is
uniformly bounded on B, as

I(P12)(!)llx <f (-

_ (- )
—Jo I'(q)
< pllpr (1 +72) -

+ 25, K(y(s) + 2(9)))l1xds

[P15)llys + Zslls + p2(s)IIK(y(s) + 2(s))lIx] ds

To prove that P; is compact, it remains to show that P; is equicontinuous. Now, for any #;, t, € Jwitht; < t,
and z € B,, we have

(=51 = (=57

t
I(P12)(t2) — (P12)(t1)llx < fo [ If (s, ys + Zs, K(y(s) + 2(s)))llxds

I'(q)
. : %n £G5, s + 2, K(y(5) + 2(9)lxdls
sﬁq@_wiahﬂqu@Wﬁzw
+p2OIK(Y(E) + 2] ds + : % Pr©lys + Zlls

+p2()lIK(y(s) + z(s))llx] ds

[ (=)™ = (t — S)q_l] 2 () — 5171
f @ (1+5s)ds , —F(q) (1+s)ds].

< lIpllpr
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As t; — 11, the right hand side of the above inequality tends to zero independent of x € B,. Thus P; is
equicontinuous. By Arzela-Ascoli’s Theorem, P; is compact on B,. Hence, by the Krasnoselskii fixed point
theorem, there exists a fixed point z € Eg such that Pz = z which is a solution to the fractional boundary
value problem (1). O

The next uniqueness result is based on Banach contraction principle.

Theorem 3.5. Assume that the hypotheses (A1) and (A3) hold. Then the boundary value problem (1) has a unique
solution on (—oo, T1.

Proof. Consider B, = {z € Eg : ||zl|g, < 1}. Letz, z* € Eg. For t € |, we have

1P — (P)D)lx < f o 6, g+ 20 K(y(s) + 26))

-y

6,y + 5, KOO + Ol Z| 1 e
1G5+ 2 KO+ ZOD =63+ 5K + Tl

-1
f T 6, e + 20 K(y(s) + 2(5))

I(q)
~f6 ¥+ 2 KO + 26k
t -1
(=9 L
< ———L¢|[llzs — Zillg + Lillz: — Z;llgs] ds + — ai|
T Lr 1 =2l + Lillze = Zilas] ds + Z|
M (n; — s)Piti-t L, L
><f0 WL]C [I12s — Zillg + Lillz: — Z;lIgs] ds
T —s)1!
o [ - 2l Ll -2l
t_s 1 * * * *
< j; %Lf [M3llz = 2°llg, + LM llz - 2'llg, 5] s

i (n; _Spl+q1
+o Zuf L M - e

-1
+LM ||z — 27|lg,s ]ds " f . F(Z;q

XLy [M3lz = 2'le, + LM Iz - 2*lys] ds)

< LfM* {

T+ an+ﬂ+1 0+
Mo+ Al l z—z"
k{r(q+2) |A] ;l |F(Pz +q+2) |A|F(¢1+2)G” ”EO

< LM {61 + LiO2} ||z — 2|k, -

pit+q

Tq T] Tq+1
Tq+1) Al Z' o D) AT D)

Thus [IP(z) - P, < Allz = 2l

Here A depends only on the parameters involved in the problem. By assumption (A3), A<1 and therefore
the map P is a contraction. Hence, by the Banach contraction principle, the problem (1) has a unique
solution on (=0, T]. O
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3.2. Example
Consider the following fractional functional integrodifferential equation

—yt t Lyt ;
LC3/2p € || 1f eVts  sin(xs)
D™= *3 ds, te[0,1],

*(0 Gt+321+x 9 Jy 151 +s) 1+ sin(xs) s tel0 ]

x(t) = ¢(t), t € (—00,0], (10)
5

x(1) = X aPx)m), 0 < <112 <13 <14 <15 < 1.
i=1

Let y be a positive real constant and

B, = {x € C((~o0,01,R) : lim °x(5) exists in IR}.

The norm of B, is given by

6
lixll, = sup elx(5)l.
—00<0<0

Let x : (=00, T] — R be such that xo = ¢ € B,. Then
6lim e"x,(6) = 5lim ex(t +6) = 6lim e’ Dx(5) = e 6lim e"%x(8) < oo.
Hence x; € B,. Take M; = M, = 1 and H = 1 and then prove that

llxelly < Mi(t) supilx(s)] - 0 < s < £} + Ma(B)llxoll,.,

We have |x;(0)] = |x(t + 0)].
If 6+t <0, weget
[x:(8)] < supf{lx(s)| : —o0 <5 < 0.
For t + 6 > 0, then we have
[x:(0) < supf{lx(s)|: 0 <s < t}.
Thus, for all t + 6 € [0, T], we get

lx:(0)| < sup{|x(s)| : —co <5 < 0} + sup{|x(s)| : 0 < s < t}.

Then
[Ixelly, < llxoll, + sup{lx(s)| : 0 < s < t}.

It is clear that (B, || - ||,) is a Banach space. We conclude that B, is a phase space. Here g = %, m=>5,

1 _1 _ _ 1 _ 1

al_gr a2_7/ ﬂ3—3, a4_ﬁ/ HS_ﬁ/

_1 _1 _ 3 _1 _3

m=3g, M2=3, M=5 Ma=35 15=7%,
1 3 5

Pr=3%, P2=1%4r P3= 14, P4=%, P5=§-
From the above data, we see that

A=0.7949, y; = 0.75225, y, = 0.3009, y3 = 0.07702, y4 = 0.00889, 6; = 1.79549 and 6, = 0.69062.
(i) From (10), we have

—yt 1
£ Kty = ——— L 1
we have

Gt+321+ x| 9
lk(t, s, x5) = k(t, s, ys)|

ets  sin(xs)
15(1 + s) 1 + sin(x;)

t
Kx(t) where Kx(t) = f ds. Now, for x;, y; € B,
0

eMts  sin(x)  ets  sin(ys)
15(1 +s) 1 +sin(x;)  15(1 +5) 1 + sin(ys)

IA

Loy
TER
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and
et

| — ]/t|

0 Kx0) = 6y KON < 30 e <ol

IA

1[nx— o+ = - I
9 yV 15 y?” .

1 [t evts sin(ys)
9 Jo 15(1+s) 1+sin(1)s)

e'” |<77t‘
5t+3)2 1+|¢[\

t—t

Also |f(t, ¢, )| =

Taking f (¢, x;, Kx(t)) =

Xt, Yt € B}/r

+ 2= and [k(t, s, )| =

fte‘” x|
o 2 1+

ds|£1
eV
26 + et

sin 27tx;

(i) 41

5—4Kx(t) where Kx(t) =

1
(e, 5, %) = (e, 5, )] < Sl = il

and

(b, 31, Kx(B) = f(E, yi, Ky(8)] < —[nx ylly + = ||x—y||y .

8401

+ IKx(t) - Ky(o)

eVts _sin(gs) | <
5(1+s) T+sin(ps) ' — 15

ds in (10), we have, for

The condition (A1) is satisfied with Ly = & and Ly = 3. Computing the value of A, we have
A = 0.03964 < 1 thereby satisfying the condition (A3). Thus all the assumptions of the Theorem
3.5 are satisfied. Hence the problem (10) with the given function f has a unique solution on (—oo, T].

4. Neutral Boundary Value Problem of Fractional Order

Let Q) be the space as defined in Section (3).

Definition 4.1. A function x € Q is said to be a solution of (2) if it satisfies the equation

LCpa [x(t) - j: %g(s,xs,lﬁx(s)) ds| = f (¢, x¢, Kox(t))

on | and the boundary conditions
x(t) O(t), t € (—0,0],

x(T) ai(I"x)(n;), 0 < <mp < ...

i=1

< <T,

where Kjx(f)
integral equation

B(b), t € (o0, 0],

L tr?;i 1f(s xs,KZX(S))dS + ](‘) (t=s)1!

I'(q)

g(s, x5, Kyx(s))ds + ﬁ( f a
i=1

= fot ki (t,s,x5) ds and Kyx(f) = fot ko (t,s,xs)ds. Equation (2) is equivalent to the following

i (ni—s)Vi n i (ni—s)Pi*1-1
x(t) = X f 10i (nr(;)+q) f(s, xs,sz(s))ds+Z a; fo g (nr(:jm) g(s, x5, Kyx(s))ds an
T (T—s)i- T _
- (TF(S;: f(5, %5, Kax(s))ds — (TF(S;I q(s, xS,le(s))ds)

Jres

+$(0) [1 +4 (z r(,;”;l)

p,+1

where A =T - Z rp+2) #0.
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4.1. Existence Results

Assume that the following conditions hold:

(A4) There exist positive constants L¢, L, Ly, and Ly, such that
@) ILf(E 1, x1) = f(t, P2, x2)lIx < Ly (||¢1 - @ollg + lIx1 — x2||x), te] ¢1,P2€ 8B,

x1,% € X,

@) llgt, 1, x1) — g(t, P2, 2)llx < Ly (||¢)1 - Pallg + X1 — x2||x), te] ¢1,02€ 8,

X1,X2 € X,
(i) [[k1 (£ 5, 1) = Ka(t s, 90) ||y < Lillr = yalls, ts € ], 1, 42 € B,
(iv) ”kz(f,S/ 1) —ka(t, s, le)HX < Lillyr —ollg, t,s € ], 1,2 € B.

(A5) Forp; € LY(JJR"),i=1,2,...,6, we have
@ IfE @, lx < pr®liglls + p2(D)lIxllx, (¢, ¢, x) € [ X BXX,
@) llg(t, ¢, 2)llx < psllpllg + pa®)llxllx, (¢, ¢, x) € [ X Bx X,
(iii) |lk1(t, s, ¥)llx < ps(DIYlls, (t,s,P) € QX B,
(iv) llk2(t, s, P)lix < peDlIYllg, (¢,5,1) € QX B.

(A6) Let A* = LfM* [91 + Lkz 92] +L M* [91 + Lk1 92] < 1 where
+1
0 —(1 + )71+ fiyys and 92—(1 + ) y2 + fpys withyn = w02 = gy

p,+q+1

p +q
Z |az|r(p 90 and y4 = Z |az|r(p 72
We prove the existence of solutions to (2) by applying Krasnoselskii’s fixed point theorem.

Theorem 4.2. Suppose that the assumptions (A4) and (A5) hold with

T™;
I = W{Lf [(71 +73) + Liy (2 + )] + Ly [(71 +73) + Liy (2 + y4)] } <1 (12)

Then the boundary value problem (2) has at least one solution on (—oo, T].

Proof. Consider the operator F : QO — Q defined by

qﬁ(t), te ( o 0]/
k55 6 5 Kax(ods + g6 %, Kix(@)ds + 4 L

i (ni—s)Pit17! i (n=s)Pi
x J O £, xs,sz(s))ds+Za I\ <”r(p>+q) (s, x5, Kyx(s))ds
— Jy EEE (s, s, Kax(s))ds - fo (Trfq)j a6, xs,le(s))ds)

+¢(0) [1+ (’" rfp”il )],te].

(Fx)(t) = (13)
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In analogy with Theorem 3.4, we consider the operator Q : Eg — E defined by,

Eop oyl
@0 = [ CE=Fs e+ 2 Kaly) + 29

f(t—s)r!
o T

m i (n. — q)Pitg—1
o [Zf o [ 2 Kalye) + )

9(5/ Ys + Zs, Kl (y(S) + Z(S)))ds

7li _ g)ritg-1
+ Z a; f (”r (pS)—l- 045 + 20 K49 + )

T(T - s)11
I'(9)
(T -t
I'(q)

m pi
t a1
2 ;T(p,-+1) 1]],1‘6].

f(s,ys + 25, Ka(y(s) + 2(s)))ds

965, o + 2, Ko (y(6) + z<s>>>ds)

+(0)|1

Define By = {z € Ey : ||zl|z, < 7}. For any positive constant #*, let h* < 7 where h* = 2||p*||i 7 [61 + 02] +

m
llp(0)]| [1 + 0 (2 rlfplzl )] Now, for t € ], we decompose Q as Q; + Q» on B; where

@20 = [ 26y + 2 Ka(yle) + 26)) ds
1 - F(q) /]/S Ss 2]/
t _ o)1
o [ g 2 K + ),
ot (i — st _ }
Qu2)(t) = 7\[1 . f O 6 e 2 Kl + 26

771 - S)P i+q-1
’ alf T JE Y+ 2 Ky +2(E)ds

_ 1
[ I 2 Koty 2
— )1
(T r(;; 9(s,ys + Z5, K1 (y(s) + Z(s)))ds)
¢ m amfi
+9(0) |1+~ ; ot D —1]].
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Now, for z,z* € B; and t € |, we find that

Tt

@) (s, ys + 2, Ko (y(s) + 2(9)))lIxds

1(Quz)(#) + (R2)(B)lx < i

(t—s! _ T
[T s+ 2K+ H i Z'“'

i (1. — g)Pitq-1
x [ v 2R + 2 s

_ c\pitg-1
+Z|al| [Tt 4 2 K9+ 2Ol

" fo . ;(q)q G5 e+ 25 Ka(y(9) + Z(6)lds

T i _ -1
- [ 5 ||g<s,ys+z;1<1<y<s>+z*<s>>>||xds)

I'(q)
HioO)] 1+1 LG/
a1 | & T+ 1)
< f bl 1[pl $)llys + Z:lls + P2(S)IKa(y(s) + 26)lIx
=) T@ s
@y + 2l + PO (6) + 26l s+ o Z o
10i (771 _ S)p,+q—1 » X B
< [ B O+l + K + T Ol
H(T—s)1!
1p3®llys + Zls + pa@IK: (1(6) + Z(©)llx] ds +
o T

X [P1©)llys + Zillz + p2)NIKa(y(s) + Z'6)llx + pa(s)llys + Zills
+P4(S)|IK1(y(s)+z"(s))||X]ds}

T (& lailn” 1
IAI —T(pi+1)

< 2/p N7 (61 + 62) + IpO) {1

+HlPO)lI[1+

T
Al

which implies that [|Q1z + Q»z"||g, < h*. Thus Q1z + Q22" € Br. Here

lys + zsllg < M7+ Myrllgllg < 7.

& |ﬂ1|77f1 .
Zr(pi+1)+l =h".

8404
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Next we prove that Q; is a contraction. For z,z* € B; and t € ], we have

i ( ._s)wq 1 B B
1(Q22)(f) — (Q2z2)(B)lIx < — o A| Ial f ot LI (s, ys + 2, Ka(y(s) + 2(s)))
—f(s, ys+zs,l<z(y(5)+z EMIx+g(s, ys+2s, Ki(y(s)+2(s)))
i} } (T-sy" )q !
(5, v+ 2, Ka(y(9)+ 27 G)lx] ds + f
[ (s, ys+2s, Ka(y(s)+2(5))) - f(s,ys+zS,Kz(y(S)+z Mlx

+llg(s, ys+2s,K1(y(s)+2(s))) —g(s, ys+Z§J<1(y(8)+Z*(s)))llx]d5}

IN

T m ni ( ;— S)pi+q—1 B . B .
IVl [ L (12 - 2l + Liglize — Zollss)
ANG ™ ), T+ g)

N(T-s)1-!
I'(g)

+LllEc=2:l5) + Ly (152l + Lig |2~ llgs) | ds|

4L, (||zs—z;||fg+Lkl||zf—z:||3s)]ds+ [Lf (lz—Z:lls
0

%

M
i {LA10 475+ Ly (24 70 + Ly [ +79)

IN

+Li, (y2 + y4)] }Ilz —2'||g,.

Thus [|Q2z — Q2z*|lg, < L*|lz — z*||g,- Hence Q; is a contraction.
Continuity of f, g, ki and k, implies that the operator Q; is continuous on Br. Also Q; is uniformly bounded
on B; as

e+ 20 Ka(y(s) + 26l
0 I'(q) R
F(t syt
o T
- Lt —s)t
~Jo T
Lt —s)1!
I'(q)
<2l N7 (y1 +y2),

1(Qi2)(Dllx <

9(s, ys + Zs, Ka(y(s) + Z(s)))lIxds

[P1(S)llys + Zslls + p2(s)IIK2(y(s) + Z(s))lIx] ds

[P3(6)llYs + Zslls + pa()IIKi (y(s) + Z(s))l1x] ds

where p*(t) = max{p1(t), p2(H)ps(t), p3(t), pa(t)ps(t)}. To prove that Q; is compact, it remains to show that Q;
is equicontinuous. Now, for any #;, t, € ] with t; < t; and z € By, we have

2 =) —(t - )17

ty (t
|I(QlZ)(tz)—(QlZ)(tl)IIXSf0 [ £ (s, ys+Zs, Ka(y(s)+2(5)))lIxds

T(q)
153 (fz _ S)q—l ) i
v T e A Kaly6) + ZE)likds
S e e L PP
+fo T() 19(5, ys+25, K (y(s)+2(5)))lIxdls
5] (l’z _ S)q—l

T v+ 2 K + 26)lxds
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[p1(5)7* + pa(s)pe(s)F's

2 [(tz =8)1 = (h - S)q_l]
<

I'(q)

+p3(s)7" + pa(s)ps(s)7's] ds +

fy

+p2(S)pe(S)7's + p3(s)F* + pa(s)ps(s)7's] ds

f|(ty —s)T7t = (1 — )77
< 2||p*||L1?*[£ [ ’ @ ! ](l + s)ds

CED

Tq) [pl(s)f‘

"ty - 51 |
+ \ @) (1+s)ds].

As t, — t1, the right hand side of the above inequality tends to zero independent of x € B;. Thus Q; is
equicontinuous. By Arzela-Ascoli’s Theorem, Q; is compact on Br. Hence, by the Krasnoselskii fixed point
theorem, there exists a fixed point z € Ey such that Qz = z which is a solution to the fractional boundary
value problem (2). O

The next uniqueness result is based on the Banach contraction principle.

Theorem 4.3. Assume that the hypotheses (A4) and (A6) hold. Then the boundary value problem (2) has a unique
solution on (—oo, T1.

Proof. Consider Br = {z € Ey : ||zllg, < 7}. Letz, z* € Eg. For t € ], we have
)
I'(q)
6+ 2 Kalw®) + Z s + [ QUsDi
’ o T
Xllg(s ys + 2, K1 (y(s) + 2(9))) — g(s, ys + Z, Ka(y(s) + 2°(5)))lIxds

_ Qyitg-1
- Zm [T 4 2Kt + 269

1(Q2)(H) = (Qz)(Bllx < f ¢ = lf (s, ys + 25, Ka(y(s) + 2(9)))

(i — st

v K9+ Z O+ L [
Xlg(s, ys + Zs, K1 (y(s) + 2(5))) — 9(s, ys + Z, Ka(y(s) + 2'(s)))llxds

f (T ;(S))q 1 ||f(5, Ys + Zs, KZ(y(S) + Z(S)))

T _ -1
(s, ys + 23, Ka(y(s) + 2'(6))llxds + fo %

X[1g(s, ys + Zs, K1 (y(s) + 2(8))) —g(s, ys + Z, K1 (y(s) + z*(s)))||de}

Lt —s) 1
I'(9)

1],( i—s pitq— 1
+Lk1||zf—z:||3s]}ds+w Z| e D (R

+Li,l12: — Z2llss) + Ly 112 = Zills + Li, Iz zzngs)]ds

IA

Lf 2 = Zlllg + Li, |12 — Zillws] + Ly Iz - 2l
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(T = =% = =%
f r() Lf(||zs—zs||B+Lk2||zT—zTuBs)

+Lo(2 = 2l + L 1 - 2 las) s}

g 7 T
S{LfMl[(r(qH) |A|Z| 'r(p,+q+1) |A|F(q+1))

Ta+1 T m nf’+q+1 TI+2
kz(— + Z lai + )]
I'g+2) |Al — [(pi+q+ 2) |AIC(g + 2)

) T4 T m nz Tq+1
*Lng[(—r@, RV Z g+ 1) T AT+ 1>)

pi+q+1

TW+1 n Tq+2 )
Lkl(r(q M Z' N 1052 TATG+2) |-z

< {LM; [61 + Li, 0] + LM [0 + Ly, 021} =2,

Thus [Q(z) - Q@)llg, < A'llz—ll.

Here A* depends only on the parameters involved in the problem. By assumption (A6), A*<1 and therefore
the map Q is a contraction. Hence, by the Banach contraction principle, the problem (2) has a unique
solution on (-0, T]. O

4.2. Example

Consider the following fractional neutral integrodifferential equation

LC3/2 " 1 e
P [x(t) f V' (16(1+x 16f 3 )ds]

_(@+e) eVl
YT + = j{; et s1n( )ds te[0,1], (14)
x(f) = P(b), t 65(—00, 0],
x(1) = ;lai(ﬂ"'x)(m), O<m<m<mn<l

We consider the phase space B, as defined in Section 3.2.
Hereq=3, m=3,

a=5, =3, az=

NI
il
~

Il
o=

NI=

171 7 TIZ 7 773 =

~

=10

_ 1
P1—9r P2—5r ps = 3-

From the above data, we see that
A=0.84473, y1 = 0.75225, y, = 0.3009, y5 = 0.04238, y4 = 0.00245, 61 = 1.69295 and 6, = 0.66001.

(i) From (14), we have

(L+e™) el f t ( )
t, x, Kox(t —K t) where Kox(t ~y
f(tx, Kox(t)) = G5+e) 1+ 2x(t) where Kpx(t) = Oe sin ds and
—)/tx% 1 t—)/t
t,x;, Kix(t)) = ———— + —Kjx(t) where Kyx(t) = In(1 + x5)ds . Now, for x;, y; € B, we
90,5, Kix) = e+ qeox() where Kix = [ 5 in(1 ) v B,
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have
1
it 5,20) = kalt,s, 35| < 3l =yl
1
kot 5,x0) = kalt, s, 35)| < 5l =yl

A

3 Ko@) = £t 31, Koy < 2 [ = ol + Sl = il .
6,5, Kie) — 9y Koy < = [ =yl + 5=yl |

Also [f(t, 01,91l < 35 + 5gllgally, it s, 1)l < Sllgally, 19(t d2, Y2)l < 7 + ggllall, and

lka(t, s, p2)lx < %I(pzl),. The condition (A4) is satisfied with Ly = %8, L, = %6, Ly, = % and Ly, = % The
condition (A5) is satisfied with p1(£) = 1, |1 ll, = 11—8, p2(t) = 31—6, p3(H) =1, ligall, = 11—6, pa(t) = 4l8, ps(t) =
1 and ps(t) = 3. Computing the value of L*, we have L* = 0.1285 < 1 thereby satisfying the condition
(12). Thus all the assumptions of the Theorem 4.2 are satisfied. Hence the problem (14) has at least

one solution on (—oo, T].

(if) Taking f (t,x:, Kox(t)) = /(12 + 5sin2t) + % tan™ x; + 5K2x(t) where
YRV —yt 2 3
eV (ts)” _x ert+1)y x; 1
Kox(t) = ————¢ 5d d g (t, x;, Kix(t)) = + —Kyx(t
2x(t) ; (1+52)e sds and g (, x:, Kix(t)) @+5F 1+2 ' 25 1x(f)

t
where Kjx(t) = f et % sin(x;)ds in (14), we have for x;, y; € By,
0

1
et s,0) = kats, ya)| < 51—yl
1
ot 5,%5) = kalt,,9e)| < 5l =yl
1 1
£t 01, Kax(E) = £y Koy < g [l =l + 3l = il |

1 1
9,30, Kox(®) = gty Kay®) < oz [l = il + 51l =yl |-

The condition (A4) is satisfied with Ly = %, L, = %5, Ly, = $and Ly, = %5 Computing the value of

A, we have A* = 0.42831 < 1 thereby satisfying the condition (A6). Thus all the assumptions of the

Theorem 4.3 are satisfied. Hence the problem (14) with the given function f has a unique solution on
(=00, T].
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