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Abstract. In this paper, we present a new concept of the core orthogonality for two core invertible elements
a and b in rings with involution. a is said to be core orthogonal to b, if a #Ob = 0 and ba #O = 0, where a #O is
the core inverse of a. The characterizations of the core orthogonality and the core additivity are provided.
By using the matrix representations of the core orthogonal elements, the connection between the core
orthogonality and the core partial order is also given. Moreover, the strongly core orthogonality is defined
and characterized.

1. Introduction

As we all know, there are two forms of the orthogonality: one-sided or two-sided orthogonality. Let
R(A) and R(B) denote the ranges of A and B, respectively. It is called that R(A) and R(B) are orthogonal if
A∗B = 0. If AB = 0 and BA = 0, then A and B are orthogonal, denoted as A ⊥ B. Notice that, when A# exists
and AB = 0, where A# is the group inverse of A, we have A#B = A#AA#B = (A#)2AB = 0. And it is obvious
that A#B = 0 implies AB = 0. Thus, when A# exists, A ⊥ B if and only if A#B = 0 and BA# = 0 (i.e. A and B
are #-orthogonal, denoted as A ⊥# B).

In [1], Hestenes gave the concept of ∗-orthogonality: let A,B ∈ Cm×n, if A∗B = 0 and BA∗ = 0 hold, then
A is ∗-orthogonal to B, denoted by A ⊥∗ B. For matrices, Hartwig and Styan proved in [2] that if A,B satisfy
the dagger additivity (i.e. (A + B)† = A† + B†, where A† is the Moore-penrose inverse of A) and the rank
additivity (i.e. rank(A + B) = rank(A) + rank(B)), then A is ∗-orthogonal to B.

Ferreyra and Malik introduced the core and strongly core orthogonal matrices by using the core inverse
in [3]. Let A,B ∈ Cm×n with Ind(A) ≤ 1, where Ind(A) is the index of A, if A #OB = 0 and BA #O = 0, then A is core
orthogonal to B, denoted as A ⊥ #O B. The notion of the strongly core orthogonality also has been given by
Ferreyra and Malik in [3]. A,B ∈ Cm×n with Ind(A) ≤ 1 and Ind(B) ≤ 1 are strongly core orthogonal matrices
(denoted as A ⊥s, #O B) if A ⊥ #O B and B ⊥ #O A. In [3], we can see that A ⊥S, #O B implies (A+B) #O = A #O +B #O (core
additivity).

In [4], Liu et al. proved that A,B ∈ Cm×n with Ind(A) ≤ 1 and Ind(B) ≤ 1 are strongly core orthogonal
if and only if (A + B) #O = A #O + B #O and A #OB = 0 (or BA #O = 0) instead of A ⊥ #O B. The proof is more concise
than Theorem 7.3 in [3]. And Ferreyra and Malik in [3] have proved that if A is strongly core orthogonal to
B, then rank(A + B) = rank(A) + rank(B) and (A + B) #O = A #O + B #O. But whether the reverse holds is an open
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question. In [4], Liu, Wang and Wang solved the problem completely. Furthermore, they also gave some
new equivalent conditions for the strongly core orthogonality, which are related to the minus partial order
and some Hermitian matrices.

On the basis of the core orthogonal matrix, Mosić et al. extended the concept of the core orthogonality
and present the new concept of the core-EP orthogonality in [5]. Let A and B be two Drazin invertible
operators in a bounded linear Hilbert space. A is said to be core-EP orthogonal to B if ADOB = 0 and BADO = 0,
where ADO is the core-EP inverse of A. A number of characterizations for core-EP orthogonality were proved,
including simultaneous canonical forms, connections with the core partial order and core additivity in [5].
Applying the core-EP orthogonality, the concept and characterizations of the strong core-EP orthogonality
were introduced in [5].

Motivated by these reserches, we give the concept of the core orthogonality to rings with involution
by using the core inverse in this paper. We discuss their characterizations. We also study the equivalent
conditions of the core additivity and give their matrix representations when a and b are core orthogonal.
The connection between the core partial order and the core orthogonality has been given. And we study
some characterizations of the core orthogonal element when a is EP. Moreover, we study that two arbitrary
complementary projections are strongly core orthogonal.

2. Preliminaries

Throughout this paper, R is a unital ring with involution, i.e. all a, b ∈ R satisfy (a∗)∗ = a, (ab)∗ = b∗a∗ and
(a + b)∗ = a∗ + b∗. R(1) = {a ∈ R : a ∈ aRa} denotes the set of all regular elements.

For a, x ∈ R, we consider the following equations:
1. axa = a;
2. xax = x;
3. (ax)∗ = ax;
4. (xa)∗ = xa;
5. ax = xa;
6. xa2 = a;
7. ax2 = x;
8.(8) a2x = a;
9. ax2 = x;
10. xam+1 = am for some positive integer m.
The set of all elements x ∈ R which satisfies equations i, j, ..., k in equations 1-10 are denoted as a

{
i, j, ..., k

}
.

If there exists

a† ∈ a {1, 2, 3, 4} ,

then a is said to be Moore-Penrose invertible, in this case, a† is unique and called the Moore-Penrose inverse
of a. It is introduced by Moore [6] and improved by Bjerhammar [7] and Penrose [8]. If there exists

a#
∈ a {1, 2, 5} ,

then a is said to be group invertible, in this case, a# is unique and called the group inverse of a [9]. In [10],
Rakić, Dinčić and Djordjević considered the core inverses in the setting of arbitrary ∗-ring, which is shown
that x is the core inverse of a if and only if

axa = a, xR = aR,Rx = Ra∗, (1)

in this case, x is unique. If there exists

a #O
∈ a {1, 2, 3, 6, 7} ,
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then a is said to be core invertible, in this case, a #O is unique and called the core inverse of a [11]. And if there
exists

adO
∈ a {3, 9, 10} ,

then a is said to be pseudo-core invertible, in this case, adO is unique and called the pseudo-core inverse of
a [12]. R†, R#, R #O and RdO denote the sets of all Moore-Penrose, group, core and core-EP invertible elements
of R, respectively.

Based on this, we review the definition of the partial order.

Definition 2.1. [13] Let a, b ∈ R,
(1) if there exists a(1)

∈ a{1} such that,

aa(1) = ba(1), a(1)a = a(1)b.

then a is below b under the minus partial order (written as a <− b).
(2) a is below b under the star partial order (written as a <∗ b) if

aa∗ = ba∗, a∗a = a∗b.

(3) if a, b ∈ R#, then a is below b under the sharp partial order (written as a <# b) if

aa# = ba#, a#a = a#b.

(4) if a, b ∈ R #O, then a is below b under the core partial order (written as a < #O b) if

aa #O = ba #O, a #Oa = a #Ob.

We denote aR and Ra as the right and left ideals generated by a, respectively, that is, aR = {ax : x ∈ R}
and Ra = {xa : x ∈ R}. Also aRb = {axb : x ∈ R}. The right annihilator of a is denoted by a◦ and is defined
by a◦ = {x ∈ R : ax = 0}. Similarly, the left annihilator of a is the set ◦a = {x ∈ R : xa = 0}. In [14],
Koliha and Patrı́cio introduced the concept of the EP element in rings with involution.

Definition 2.2. [14] Let a ∈ R†, a is an EP element if and only if a∗R = aR.

Lemma 2.3. [15] Let a ∈ RdO, p = aadO, and a = a1 + a2 be the core-EP decomposition of a, where a2 is the nilpotent.
Then,

a1 =

[
t s
0 0

]
p×p

and a2 =

[
0 0
0 a2

]
p×p
,

where t ∈ pRp is invertible.

3. The core orthgonality and its consequences

Firstly, we give the concept of the core orthogonality in rings with involution.

Definition 3.1. Let a, b ∈ R #O. If

a #Ob = 0, ba #O = 0,

then a is core orthogonal to b, denoted as a ⊥ #O b.
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If a, b ∈ R, then

ab = 0⇔ bR ⊂ a◦ ⇔ Ra ⊂ ◦b. (2)

We explore the relations between the right ideal and right cancellable elements of core orthogonal
elements in rings with involution, and the relations between the left ideal and left cancellable elements of
core orthogonal elements can be obtained similarly.

Lemma 3.2. [10] Let a, b ∈ R.
(1) aR ⊂ bR implies ◦b ⊂ ◦a and the converse is valid whenever b is regular; (2) Ra ⊂ Rb implies b◦ ⊂ a◦ and the
converse is valid whenever b is regular.

Remark 3.3. By 1, we have a #OR ⊂ aR and Ra #O
⊂ Ra∗, and it follows from Lemma 3.2 that

(a #O)◦ = (a∗)◦ (3)

and

◦ (a #O) = ◦a. (4)

Theorem 3.4. Let a, b ∈ R #O, then the following are equivalent:
(1) a ⊥ #O b ;
(2) bR ⊂ (a #O)◦, a #OR ⊂ b◦ ;
(3) bR ⊂ (a∗)◦, aR ⊂ b◦ ;
(4) aR ⊂ (b∗)◦, b∗R ⊂ (a∗)◦ ;
(5) aR ⊂ (b #O)◦, b∗R ⊂ (a #O)◦ ;
(6) a #OR ⊂ (b∗)◦, b∗R ⊂ (a #O)◦ ;
(7) a∗b = 0, ba = 0;
(8) b∗a = 0, a∗b∗ = 0;
(9) b #Oa = 0, a #Ob∗ = 0;
(10) b∗a #O = 0, a #Ob∗ = 0.

Proof. (1)⇔ (2) From (2), we have

a #Ob = 0, ba #O = 0⇔ bR ⊂ (a #O)◦ , a #OR ⊂ b◦.

(2)⇔ (3) From (3) and (1), we have (a #O)◦ = (a∗)◦ and a #OR = aR. Then

bR ⊂ (a #O)◦ , a #OR ⊂ b◦ ⇔ bR ⊂ (a∗)◦ , aR ⊂ b◦.

(3)⇔ (7) From (1), we have

bR ⊂ (a∗)◦ , aR ⊂ b◦ ⇔ a∗b = 0, ba = 0.

(7)⇔ (8) Transposition of (7) and (8).
According to (1), (2) and (3), we can prove (4)⇔ (5), (5)⇔ (6), (8)⇔ (6), (5)⇔ (9) and (6)⇔ (10).

Theorem 3.5. Let a, b ∈ R #O, then a ⊥ #O b if and only if a ⊥ #O b∗.

Proof. It follows from (10) in Theorem 3.4.

Theorem 3.6. Let a, b ∈ R #O, and e = a #Oa, e′ = aa #O, f = b #Ob, f ′ = bb #O. Then a ⊥ #O b if and only if e′ ⊥ f ′ and f e = 0.



Y. Liu et al. / Filomat 38:24 (2024), 8411–8432 8415

Proof. Only if: If a ⊥ #O b, i.e. a #Ob = 0, ba #O = 0, then

f e = b #Oba #Oa = b #O (ba #O) a = 0,
e′ f ′ = aa #Obb #O = a (a #Ob) b #O = 0.

By (9) in Theorem 3.5, we have b #Oa = 0. Then

f ′e′ = bb #Oaa #O = b (b #Oa) a #O = 0.

Consequently, we get e′ ⊥ f ′.
If: If f e = b #Oba #Oa = 0, then pre-multiplying by b and post-multiplying by a #O, we obtain ba #O = 0. Since

e′ ⊥ f ′, e′ f ′ = aa #Obb #O = 0. And pre-multiplying by a #O and post-multiplying by b, we obtain a #Ob = 0. Then
we get a ⊥ #O b.

Lemma 3.7. Let a, b ∈ R #O. If ab = 0, then
(1) aR ∩ bR = {0} ;
(2) a∗R ∩ b∗R = {0};
(3) (a + b)◦ = a◦ ∩ b◦ ;
(4) (a∗ + b∗)◦ = (a∗)◦ ∩ (b∗)◦ .

Proof. (1) From (1), we have ab = 0⇔ bR ⊂ a◦. Then

aR ∩ bR ⊂ aR ∩ a◦ = {0} .

(2) Let ab = 0, we have b∗a∗ = 0. By (1), we can prove (2).
(3) Obviously, a◦ ∩ b◦ ⊂ (a + b)◦. Let x ∈ (a + b)◦, then (a + b) x = 0, i.e. ax = −bx. Since ax = a #Oa2x =
a #Oa (−bx) = −a #Oabx = 0, i.e. bx = 0, we get x ∈ a◦∩b◦ , which implies (a + b)◦ ⊂ a◦∩b◦. Then (a + b)◦ = a◦∩b◦.
(4) Let ab = 0, we have b∗a∗ = 0. By (3), we can prove (4).

Theorem 3.8. Let a, b ∈ R #O. If a ⊥ #O b, then
(1) aR ∩ bR = {0} ;
(2) a∗R ∩ b∗R = {0};
(3) aR ∩ b∗R = {0} ;
(4) a∗R ∩ bR = {0};
(5) (a + b)◦ = a◦ ∩ b◦ ;
(6) (a∗ + b∗)◦ = (a∗)◦ ∩ (b∗)◦;
(7) (a + b∗)◦ = a◦ ∩ (b∗)◦ ;
(8) (a∗ + b)◦ = (a∗)◦ ∩ b◦.

Proof. Let a ⊥ #O b. It follows from (7), (8) in Theorem 3.5 that we get a∗b = 0, ba = 0, b∗a = 0 and a∗b∗ = 0.
And by Lemma 3.7, we can get Theorem 3.8.

When a is an EP element, we have a more refined result which reduces to the well-known characteriza-
tions of the orthogonality in the usual sense.

Theorem 3.9. Let a ∈ R. If a is an EP element, then the following are equivalent.
(1) a ⊥ #O b;
(2) a ⊥∗ b;
(3) a ⊥ b;
(4) a ≤ #O a + b;
(5) a ≤∗ a + b;
(6) a ≤# a + b.
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Proof. (1) ⇔ (2) When a ∈ R #O is an EP element, we have aa #O = a #Oa. Let a ⊥ #O b, then by (7) in Theorem 3.4,
i.e. a∗b = 0 and ba = 0, we have

ba∗ = b(aa #Oa)∗ = b(a #Oa)∗a∗ = b(aa #O)∗a∗ = baa #Oa∗ = 0.

Then, a ⊥∗ b.
On the contrary, if a ⊥∗ b, i.e. a∗b = ba∗ = 0, then we have

ba = b(aa #Oa) = b(aa #O)∗a = b(a #Oa)∗a = ba∗(a #O)∗a = 0.

By (7) in Theorem 3.4, we have a ⊥ #O b.
(2)⇔ (3) Let a ⊥∗ b, we have a∗b = ba∗ = 0. Then

ab = (aa #Oa)b = a(aa #O)b = a(aa #O)∗b = a(a #O)∗a∗b = 0

and

ba = b(aa #Oa) = b(aa #O)∗a = b(a #Oa)∗a = ba∗(a #O)∗a = 0.

Thus, a ⊥ b.
On the contrary, if a ⊥ b, i.e. ab = ba = 0, then we have

a∗b = (aa #Oa)∗b = a∗(aa #O)∗b = a∗aa #Ob = a∗a #Oab = 0

and

ba∗ = b(aa #Oa)∗ = b(a #Oa)∗a∗ = b(aa #O)∗a∗ = baa #Oa∗ = 0.

Then a ⊥∗ b.
(1)⇔ (4) Let a ≤ #O a + b, then

(a + b) a #O = aa #O + ba #O = aa #O,

and

a #O (a + b) = a #Oa + a #Ob = a #Oa.

Thus, we have a #Ob = 0 and ba #O = 0, i.e. a ⊥ #O b.
On the contrary, if a ⊥ #O b, i.e. a #Ob = 0 and ba #O = 0, then we have

(a + b) a #O = aa #O,

a #O (a + b) = a #Oa.

Then a ≤ #O a + b.
(2)⇔ (5) It can be proved similarly with (1)⇔ (4).
(1) ⇔ (6) Let a ∈ R is an EP element, and by [16], we have a #O = a#. Then, it can be proved similarly with
(1)⇔ (4).

Remark 3.10. In Theorem 3.9, we give a condition that a ∈ R #O is an EP element instead of b, which is more concise
than Corollary 4.8 in [3]. If a ⊥ #O b, by (4) in Theorem 3.4, we have aR ⊂ (b∗)◦ and b∗R ⊂ (a∗)◦. When a, b ∈ R #O are
EP elements, aR = a∗R and bR = b∗R hold. Thus, a∗R ⊂ (b∗)◦ and bR ⊂ (a∗)◦, i.e. b∗a∗ = 0 and a∗b = 0. Therefore, by
(8) in Theorem 3.4, b ⊥ #O a. In other words, when a, b ∈ R #O are EP elements, a ⊥ #O b is equivalent to that b ⊥ #O a.

Theorem 3.11. Let a, b ∈ R. If a, b are EP elements with a ⊥ #O b, then a + b is the EP element.
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Proof. Let a, b ∈ R be EP elements, we have that a◦ = (a∗)◦ , b◦ = (b∗)◦. Since a ⊥ #O b, by (5) and (6) in Theorem
3.9, we have

(a + b)◦ = a◦ ∩ b◦ = (a∗)◦ ∩ (b∗)◦ = (a∗ + b∗)◦ = ((a + b)∗)◦ .

Then a + b is an EP element.

Furthermore, we study the matrix forms of the two elements that are core orthogonal. At first, we
review the ring factorization. An equation 1 = e1 + e2 + · · · + en, where ei, i = 1, 2, · · · n are idempotents
from R such that eie j = 0 for i , j is called the decomposition of the identity of the ring R. And we denote
e : {e1, e2, · · · , en}. If 1 = e1 + e2 + · · · + en and 1 = f1 + f2 + · · · + fn are two decompositions of the identity of
the ring R, then for any x ∈ R, we have

x = 1 · x · 1 = (e1 + e2 + · · · + en) x
(

f1 + f2 + · · · + fn
)
=
∑n

i, j=1eix f j.

We may write x as a matrix

x =


x11 · · · xn1
...
. . .

...
xn1 . . . xnn


e× f

,

where xi, j = eix f j.

Lemma 3.12. Let a ∈ R #O, p = aa #O, then

a =
[
t s
0 0

]
p×p

is the core-EP decomposition of a, where t ∈ pRp is invertible.

Proof. Let a ∈ R #O and p = aa #O, then t = pap = a2a #O is invertible, s = pa(1−p) = a−a2a #O, and a2 = (1−p)a(1−p) =
0. Thus,

a1 =

[
t s
0 0

]
p×p

and a2 =

[
0 0
0 a2

]
p×p
= 0.

From Lemma 2.3, we have

a = a1 + a2 =

[
t s
0 0

]
p×p

is the core-EP decomposition of a, where t ∈ pRp is invertible.

Theorem 3.13. Let a, b ∈ R #O. Then, the following are equivalent.
(1) a ⊥ #O b;
(2) a ≤ #O a + b;
(3) there exists 1 = e1 + e2 + e3 which is a decomposition of identity of the ring R, where e1 = p = p2 = p∗,
e2 = q = q∗,e3 = 1 − p − q, and then

a =

t1 r s
0 0 0
0 0 0


e×e

, b =

0 0 0
0 t2 s2
0 0 0


e×e

,

where t1 ∈ pRp and t2 ∈ qRq are invertible, respectively.
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Proof. (1)⇒ (2) Let a ⊥ #O b. Then

(a + b) a #O = aa #O + ba #O = aa #O

and

a #O (a + b) = a #Oa + a #Ob = a #Oa.

Thus we have a ≤ #O a + b.
(2)⇒ (3) Let

a =
[
t1 s1
0 0

]
p×p

be the core-EP decomposition of a, where t1 ∈ pRp is invertible, p = aa #O. Since

x =
[
t−1
1 0
0 0

]
p×p

satisfies xax = x, axa = a, (ax)∗ = ax, ax2 = x and xa2 = a, we get x = a #O. And let the decomposition of b be

b =
[
b11 b12
b21 b22

]
p×p
.

By (2), we have that a ≤ #O a + b if and only if a #Ob = 0 and ba #O = 0. Then, by

a #Ob =
[
t−1
1 0
0 0

]
p×p

[
b11 b12
b21 b22

]
p×p
=

[
t−1
1 b11 t−1

1 b12
0 0

]
p×p
= 0,

we get b11 = 0 and b12 = 0. And by

ba #O =

[
0 0

b21 b22

]
p×p

[
t−1
1 0
0 0

]
p×p
=

[
0 0

b21t−1
1 0

]
p×p
= 0,

we get b21 = 0. Then b =
[
0 0
0 b22

]
p×p

.

Let the core-EP decomposition of b22 be

b22 =

[
t2 s2
0 0

]
q×q

where t2 ∈ qRq is invertible, q = b22b #O

22. Then

b =

0 0 0
0 t2 s2
0 0 0


e×e

.

Let 1 − p = q + (1 − p − q), we get 1 = p + (1 − p) = p + q + (1 − p − q). And there exits s1 = r + s with r ∈ pRq
and s ∈ pR(1 − p − q). So, we have

a =

t1 r s
0 0 0
0 0 0


e×e

.
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(3)⇒ (1) We know that

y =

t
−1
1 0 0
0 0 0
0 0 0


p×p

is core inverse of a =

t1 r s
0 0 0
0 0 0


e×e

, i.e. y = a #O. Then a #Ob = 0 and ba #O = 0, i.e. a ⊥ #O b.

In Theorem 5.1 and Corollary 5.1 of [19], Xu, Chen and Benı́tez pointed out the conditions for (B−A) #O =
B #O
− A #O, where A,B ∈ Cm×n. Using the core-EP decomposition of a which is core orthogonal, we apply a

different method to prove that this theorem and corollary also hold in rings with involution as follows.

Theorem 3.14. Let a, b − a ∈ R #O
∩ R† and a ≤ #O b. Then, b is core invertible. In this case,

b #O = a #O + (b − a) #O
− a #Oa(b − a) #O.

Moreover, if (aa† − aa#)b(1 − aa†) = 0, then
(1) (b − a) #O = b #O

− a #O;
(2) (b − a) ≤ #O b.

Proof. From a ≤ #O b = a+ (b− a) and (3) in Theorem 3.13, we have that there exists 1 = e1 + e2 + e3, which is a
decomposition of identity of the ring R, where e1 = p = p2 = p∗, e2 = q = q∗ and e3 = 1 − p − q. Then,

a =

t1 r s
0 0 0
0 0 0


e×e

, b − a =

0 0 0
0 t2 s2
0 0 0


e×e

, (5)

where t1 and t2 are invertible in the ring eRe and qRq, respectively. Thus,

a #O =

t
−1
1 0 0
0 0 0
0 0 0


e×e

, (b − a) #O =

0 0 0
0 t−1

2 0
0 0 0


e×e

(6)

and

b = (b − a) + a =

t1 r s
0 t2 s2
0 0 0


e×e

. (7)

Let

x = a #O + (b − a) #O
− a #Oa(b − a) #O =

t
−1
1 −t−1

1 rt−1
2 0

0 t−1
2 0

0 0 0


e×e

.

Then

bx =

t1 r s
0 t2 s2
0 0 0


e×e

t
−1
1 −t−1

1 rt−1
2 0

0 t−1
2 0

0 0 0


e×e

=

1 0 0
0 1 0
0 0 0


e×e

,
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which implies

bxb =

1 0 0
0 1 0
0 0 0


e×e

t1 r s
0 t2 s2
0 0 0


e×e

=

t1 r s
0 t2 s2
0 0 0


e×e

= b.

In the same way, we can prove that xbx = x, (bx)∗ = bx, bx2 = x and xb2 = b also hold. Then b is core
invertible and

b #O = x = a #O + (b − a) #O
− a #Oa(b − a) #O =

t
−1
1 −t−1

1 rt−1
2 0

0 t−1
2 0

0 0 0


e×e

. (8)

Let

a† =
[
a11 a12
a21 a22

]
p×p
.

Then

aa† =
[
t1 s1
0 0

]
p×p

[
a11 a12
a21 a22

]
p×p
=

[
t1a11 + s1a21 t1a12 + s1a22

0 0

]
p×p
.

From (aa†)∗ = aa†, we have t1a12 + s1a22 = 0, i.e.

aa† =
[
t1a11 + s1a21 0

0 0

]
p×p
.

And from aa†a = a, we have[
t1a11t1 + s1a21t1 t1a11s1 + s1a21s1

0 0

]
p×p
=

[
t1 s1
0 0

]
p×p
,

which implies t1a11t1 + s1a21t1 = t1, i.e. t1a11 + s1a21 = 1. Then

aa† =

1 0 0
0 0 0
0 0 0


e×e

.

Let

a# =

[
y11 y12
y21 y22

]
p×p
.

Then

aa# =

[
t1 s1
0 0

]
p×p

[
y11 y12
y21 y22

]
p×p
=

[
t1y11 + s1y21 t1y12 + s1y22

0 0

]
p×p

and

a#a =
[
y11 y12
y21 y22

]
p×p

[
t1 s1
0 0

]
p×p
=

[
y11t1 y11s1
y21t1 y21s1

]
p×p
.
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From aa# = a#a, we have y11s1 = t1y12 + s1y22 and y21 = 0, i.e.

y12 = t−1
1 y11s1 + t−1

1 s1y22 (9)

and

aa# =

[
t1y11 t1y12 + s1y22

0 0

]
p×p
. (10)

From aa#a = a and a#aa# = a#, we have[
t1y11t1 t1y11s1

0 0

]
p×p
=

[
t1 s1
0 0

]
p×p

and [
y11t1y11 y11t1y22 + y11s1y22

0 0

]
p×p
=

[
y11 y12
0 y22

]
p×p
,

which imply y11 = t−1
1 and y22 = 0. Then from (9), we have

y12 = t−1
1 y11s1 + t−1

1 s1y22 = t−2
1 s1.

From (10), we obtain that

aa# =

[
1 t−1

1 s1
0 0

]
p×p
,

i.e.

aa# =

1 t−1
1 r t−1

1 s
0 0 0
0 0 0


e×e

.

Then we have

(aa† − aa#)b =

0 −t−1
1 rt2 −t−1

1 rs2
0 0 0
0 0 0


e×e

(11)

and

(aa† − aa#)baa† =

0 −t−1
1 rt2 −t−1

1 rs2
0 0 0
0 0 0


e×e

1 0 0
0 0 0
0 0 0


e×e

= 0. (12)

If (aa† − aa#)b(1 − aa†) = 0, i.e. (aa† − aa#)b = (aa† − aa#)baa†, from (11) and (12), we have0 −t−1
1 rt2 −t−1

1 rs2
0 0 0
0 0 0


e×e

= 0.

Then we have −t−1
1 rt2 = 0 and −t−1

1 rs2 = 0, which imply r = 0. And from (7) and (8), we have

b =

t1 0 s
0 t2 s2
0 0 0


e×e

, b #O =

t
−1
1 0 0
0 t−1

2 0
0 0 0


e×e

. (13)
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And

(b − a) #O =

0 0 0
0 t−1

2 0
0 0 0


e×e

(14)

=

t
−1
1 0 0
0 t−1

2 0
0 0 0


e×e

−

t
−1
1 0 0
0 0 0
0 0 0


e×e

= b #O
− a #O.

Since

(b − a) #O(b − a) =

0 0 0
0 t−1

2 0
0 0 0


e×e

0 0 0
0 t2 s2
0 0 0


e×e

=

0 0 0
0 1 t−1

2 s2
0 0 0


e×e

and

(b − a) #Ob =

0 0 0
0 t−1

2 0
0 0 0


e×e

t1 0 s
0 t2 s2
0 0 0


e×e

=

0 0 0
0 1 t−1

2 s2
0 0 0


e×e

,

we get (b − a) #O(b − a) = (b − a) #Ob. In the same way, we get (b − a)(b − a) #O = b(b − a) #O. Then (b − a) ≤ #O b.

Corollary 3.15. Let a, b − a ∈ R #O. If a ≤ #O b, then a2 = ab if and only if (b − a) #O = b #O
− a #O.

Proof. Let the decompositions of a, b − a, a #O, (b − a) #O, b and b #O be as in (5), (6), (7) and (8), respectively.
Only if: Let a2 = ab, we have

a2 =

t
2
1 t1r t1s
0 0 0
0 0 0


e×e

=

t
2
1 t1r + rt2 t1s + rs2
0 0 0
0 0 0


e×e

= ab.

Then we get t1r = t1r+ rt2, which implies rt2 = 0. Since t2 is nonsingular, we have r = 0. From (13) and (14),
we get (b − a) #O = b #O

− a #O.
If: Let (b − a) #O = b #O

− a #O, we have0 0 0
0 t−1

2 0
0 0 0


e×e

=

t
−1
1 −t−1

1 rt−1
2 0

0 t−1
2 0

0 0 0


e×e

−

t
−1
1 0 0
0 0 0
0 0 0


e×e

=

0 −t−1
1 rt−1

2 0
0 t−1

2 0
0 0 0


e×e

,

which implies −t−1
1 rt−1

2 = 0. Since t1 and t2 are nonsingular, we have r = 0. Then

a =

t1 0 s
0 0 0
0 0 0


e×e

.

From (13), we have

a2 =

t
2
1 0 t1s
0 0 0
0 0 0


e×e

=

t1 0 s
0 0 0
0 0 0


e×e

t1 0 s
0 t2 s2
0 0 0


e×e

= ab.



Y. Liu et al. / Filomat 38:24 (2024), 8411–8432 8423

4. The strongly core orthgonality and its consequences

A special orthogonality is mentioned in Remark 3.2 in the previous section, that is, a ⊥ #O b and a ⊥ #O b.
Now we give the definition.

Definition 4.1. Let a, b ∈ R #O. If

a ⊥ #O b, b ⊥ #O a,

then a and b are said to be strongly core orthogonal, denoted as

a ⊥s, #O b.

Remark 4.2. a ⊥s, #O b if and only if a #Ob = 0, ba #O = 0, b #Oa = 0 and ab #O = 0. By (9) in Theorem 3.4, a #Ob = 0 is
equivalent to b #Oa = 0. Then, a ⊥s, #O b if and only if a #Ob = 0, ba #O = 0 and ab #O = 0, i.e. a ⊥ #O b and ab #O = 0, or b ⊥ #O a
and ba #O = 0.

Theorem 4.3. Let a, b ∈ R #O. Then, the following statements are equivalent.
(1) a ⊥s, #O b;
(2) a ⊥ #O b, ab = 0;
(3) a ⊥ b, a∗b = 0;
(4) a∗ ⊥ b∗, b∗a = 0.

Proof. (1) ⇔ (2) According to (7) in Theorem 3.5, we have that ab #O = 0 is equivalent to ab = 0. Then, by
remark 4.3, we have that a ⊥s, #O b if and only if a ⊥ #O b and ab = 0.
(2) ⇔ (3) From (2), we have ab = 0. According to (7) in Theorem 3.5, we get that a ⊥ #O b is equivalent to
a∗b = 0 and ba = 0, which imply that a ⊥ b and a∗b = 0.
(3)⇔ (4) Take the conjugate transpose of a and b.

Theorem 4.4. Let a, b ∈ R #O. Then, a ⊥s, #O b if and only if a #O
⊥s, #O b.

Proof. From (3) in Theorem 4.3, a #O
⊥ #O b if and only if a #O

⊥ b and (a #O)∗b = 0. Then, by Lemma 3.7, we get
a #OR ∩ bR = {0} and (a #O)∗R ∩ bR = {0}. And by a #OR = aR, we have aR ∩ bR = {0} and a∗R ∩ bR = {0}, i.e. a ⊥ b
and a∗b = 0. From Theorem 4.3, we have a ⊥s, #O b.

Theorem 4.5. Let a, b, c ∈ R #O, a ≤ #O c and c ⊥s, #O b. Then, a ⊥s, #O b.

Proof. From Theorem 2.3 in [4], a ≤ #O c if and only if ca #Oc = a and a #Oca #O = a #O. By (3) in Theorem 4.3 and
c ⊥s, #O b, we have c ⊥ b and c∗b = 0. Then

ab = ca #Ocb = 0, ba = bca #Oc = 0, a∗b = c∗(a #O)∗c∗b = 0,

which implies a ⊥s, #O b.

Theorem 4.6. Let a, b ∈ R #O, e = a #Oa, e′ = aa #O, f = b #Ob and f ′ = bb #O. Then, a ⊥s, #O b if and only if e′ ⊥ f ′ and
e ⊥ f .

Proof. From Theorem 3.6, a ⊥ #O b if and only if e′ ⊥ f ′ and f e = 0. And b ⊥ #O a if and only if e ⊥ f and
e′ f ′ = 0. Then a ⊥s, #O b if and only if e′ ⊥ f ′ and e ⊥ f .

From the above theorems, it can be seen that the condition of the strong core orthogonality is stronger
than that of the core orthogonality and usual orthogonality. Next, we explore the relationship between the
strongly core orthogonality and various kinds of orthogonality when a, b ∈ R are EP elements. In fact, it
has been proved in Remark 3.10 that b ⊥ #O a, when a, b ∈ R are EP elements and a ⊥ #O b. So the corollary is
as follows.
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Corollary 4.7. Let a, b ∈ R. If a, b are EP elements, Then the following statements are equivalent.
(1) a ⊥ b;
(2) a ⊥∗ b;
(3) a ⊥ #O b;
(4) a ⊥s, #O b.

In [4], Liu, Wang and Wang pointed out that A ⊥s, #O B if and only if BA #O = 0 (or A #OB = 0) and
(A + B) #O = A #O + B #O. Based on the result, we prove these theorems also hold in rings with involution and
give a different way to prove these theorems as follows.

Theorem 4.8. Let a, b ∈ R #O. a ⊥s, #O b if and only if ba #O = 0 and (a + b) #O = a #O + b #O.

Proof. If: Let ba #O = 0 and (a + b) #O = a #O + b #O. Then

(a + b)(a + b) #O = (a + b)(a #O + b #O) = aa #O + bb #O + ab #O.

From ((a + b)(a + b) #O)∗ = (a + b)(a + b) #O, it follows that

aa #O + bb #O + (ab #O)∗ = aa #O + bb #O + ab #O,

which implies (ab #O)∗ = ab #O.
Since ba #O = 0, we get ba = ba #Oa2 = 0. From (a+b)(a+b) #O(a+b) = a+b, it follows that aa #Ob+ab #Oa+ab #Ob+bb #Oa = 0.
Left multiplying by b, we obtain bbb #Oa = 0, which implies b #O(bbb #Oa) = bb #Oa = 0. Then

b #Oa = b #O(bb #Oa) = 0.

From (a + b)((a + b) #O)2 = (a + b) #O, it follows that aa #Ob #O + ab #Ob #O = 0. Then

(aa #Ob #O + ab #Ob #O)∗ = (aa #Ob #O)∗ + (ab #Ob #O)∗ = (b #O)∗aa #O + (b #O)∗ab #O,

which implies (b #O)∗aa #O+(b #O)∗ab #O = 0. Right multiplying by a, we obtain (b #O)∗a = 0. Then (b #O)∗aa #O = (aa #Ob #O)∗ =
0, i.e. aa #Ob #O = 0. Therefore, we have

a #Ob = a #O(aa #Ob #O)b2 = 0.

From (a + b) #O(a + b)(a + b) #O = (a + b) #O, it follows that a #Oab #O = 0. Then

ab #O = a(a #Oab #O) = 0.

Above all, we have ba #O = a #Ob = ab #O = 0, i.e. a ⊥s, #O b.
Only if: Let a ⊥s, #O b and x = a #O + b #O. Then ba #O = 0. And

(a + b)x(a + b) = (a + b)(a #O + b #O)(a + b) = (aa #O + bb #O)(a + b) = a + b.

In the same way, we can also get x(a + b)x = x, ((a + b)x)∗ = (a + b)x, x(a + b)2 = a + b and (a + b)x2 = x. Then
x is the core inverse of a + b, i.e. (a + b) #O = x = a #O + b #O.

Theorem 4.9. Let a, b ∈ R #O. a ⊥s, #O b if and only if a #Ob = 0 and (a + b) #O = a #O + b #O.

Proof. If: Let a #Ob = 0 and (a + b) #O = a #O + b #O. Then, from (a + b) #O(a + b)(a + b) #O = (a + b) #O, we have
a #Oab #O + baa #O + b #Oab #O + b #Oba #O = 0. Lift multiplying by a #O,we obtain (a #O)2ab #O = 0, which implies a #Oab #O =
a((a #O)2ab #O) = 0. Then

ab #O = a2(a #Oab #O) = 0.
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And

(a + b)(a + b) #O = (a + b)(a #O + b #O) = aa #O + bb #O + ba #O.

From ((a + b)(a + b) #O)∗ = (a + b)(a + b) #O, it follows that

aa #O + bb #O + (ba #O)∗ = aa #O + bb #O + ba #O,

which implies (ba #O)∗ = ba #O.
From (a + b)((a + b) #O)2 = (a + b) #O, it follows that b(a #O)2 + bb #Oa #O = 0. Then

(b(a #O)2 + bb #Oa #O)∗ = (b(a #O)2)∗ + (bb #Oa #O)∗ = (a #O)∗ba #O + (a #O)∗bb #O,

which implies (a #O)∗ba #O + (a #O)∗bb #O = 0. Right multiplying by b, we obtain (a #O)∗b = 0, which implies that
(a #O)∗bb #O = (bb #Oa #O)∗ = 0, i.e. bb #Oa #O = 0. Then, we have

b #Oa = b #O(bb #Oa #O)a2 = 0.

From (a + b)(a + b) #O(a + b) = a + b, it follows that b #Oa #Oa = 0. Then

ba #O = (b #Oa #Oa)a #O = 0.

Based on the above results, we have a #Ob = ab #O = b #Oa = ba #O = 0, i.e. a ⊥s, #O b.
Only if: Let a ⊥s, #O b and x = a #O + b #O. Then a #Ob = 0. Following the proof of Theorem 4.8, we get x is the

core inverse of a + b, i.e. (a + b) #O = x = a #O + b #O.

Remark 4.10. We extend Theorem 3.8 in [4] in a different way and give two new equivalent conditions for the
strongly core orthogonality in rings with involution, which is more comprehensive than Theorem 3.8 in [4].

Theorem 4.11. Let a, b ∈ R #O. Then, the following statements are equivalent.
(1) a ⊥s, #O b;
(2) ab #O = 0 and a #Ob = ba #O;
(3) ba #O = 0 and b #Oa = ab #O;
(4) a #Ob = 0 and ab #O = ba #O.

Proof. (1)⇒ (2) It is obvious.
(2)⇒ (3) Let ab #O = 0. Then ab = ab #Ob2 = 0. From a #Ob = ba #O, it follows that

a #Ob = a #Oaa #Ob = a #Oaba #O = 0.

Then, we have

bb #Oaa #O = (bb #O)∗(aa #O)∗ = (aa #Obb #O)∗ = 0,

which implies that b #Oa = b #O(bb #Oaa #O)a = 0. Then, ba #O = 0 and b #Oa = ab #O.
(3)⇒ (4) Let ba #O = 0. Then ba = ba #Oa2 = 0. From b #Oa = ab #O, it follows that

b #Oa = b #Obb #Oa = b #Obab #O = 0.

Then, we have

aa #Obb #O = (aa #O)∗(bb #O)∗ = (bb #Oaa #O)∗ = 0,

which implies that a #Ob = a #O(aa #Obb #O)b = 0. Then, a #Ob = 0 and ab #O = ba #O.
(4)⇒ (1) Let a #Ob = 0 and ab #O = ba #O, it follows that

ab #O = ab #Obb #O = ba #Obb #O = 0.

Then, b #Oa = a #Ob = ab #O = 0. Applying Remark 4.2, we have a ⊥s, #O b.
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Theorem 4.12. Let a, a #O
∈ R #O be two projections. Then, a is strongly core orthogonal to its complementary idempotent

element 1 − a, i.e. a ⊥s, #O 1 − a.

Proof. Let p = a and q = a #O. Then b = p − qp = a − a #Oa. If x = a #O
− aa #O, we have

bxb = (a − a #Oa)(a #O
− aa #O)(a − a #Oa) = (aa #O

− a #O)(a − a #Oa) = a − a #Oa = b

and

xbx = (a #O
− aa #O)(a − a #Oa)(a #O

− aa #O) = (a #Oa − a)(a #O
− aa #O) = a #O

− aa #O = x.

Since a, a #O
∈ R #O are two projections, we have a #O = a(a #O)2 = aa #O and a = a #Oa2 = a #Oa. Then

bx = (a − a #O)(a #O
− aa #O) = aa #O

− a #O = 0

and

xb = (a #O
− aa #O)(a − a #O) = a #Oa − a = 0.

We have bx = xb, (bx)∗ = bx and (xb)∗ = xb. Then, b = p − qp = a − a #Oa ∈ REP.
From Theorem 4.1 in [20], we have pq = qp, i.e. aa #O = a #Oa. Then

a #O(1 − a #Oa) = a #O
− a #Oa #Oa = a #O

− a #Oaa #O = 0.

Obviously, (1 − a #Oa)a #O = 0. Then, a ⊥s, #O 1 − a #Oa. From Theorem 4.1 in [20], we have

1 − a #Oa = (1 − aa #O) #O = 1 − aa #Oa = 1 − a.

Then a ⊥s, #O 1 − a.

Theorem 4.13. Let a, b ∈ R #O. Then, the following statements are equivalent.
(1) a ⊥s, #O b;
(2) a ≤ #O a + b, b ≤ #O a + b;
(3) there exist 1 = e1 + e2 + e3 which is a decomposition of the identity of the ring R, where e1 = p = p2 = p∗,
e2 = q = q∗ and e3 = 1 − p − q, and then

a =

t1 0 s
0 0 0
0 0 0


e×e

, b =

0 0 0
0 t2 s2
0 0 0


e×e

,

where t1 and t2 are invertible in the ring eRe and qRq, respectively.

Proof. (1)⇒ (2) It is obvious.
(2)⇒ (3) By Theorem 3.13, we have that a ≤ #O a + b if and only if

a =

t1 r s
0 0 0
0 0 0


e×e

, b =

0 0 0
0 t2 s2
0 0 0


e×e

,

where t1 and t2 are invertible in the ring eRe and qRq respectively.
Since b ≤ #O a + b, we have b ⊥ #O a. From (7) in Theorem 3.4, we get ab = 0 and b∗a = 0. Then,

ab =

t1 r s
0 0 0
0 0 0


e×e

0 0 0
0 t2 s2
0 0 0


e×e

=

0 0 0
0 rt2 rs2
0 0 0


e×e

= 0,
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which implies that r = 0. And b∗a = 0 is obvious. Then,

a =

t1 0 s
0 0 0
0 0 0


e×e

, b =

0 0 0
0 t2 s2
0 0 0


e×e

,

where t1 and t2 are invertible in the ring eRe and qRq, respectively.
(3)⇒ (1) Let

z =

t
−1
1 0 0
0 0 0
0 0 0


e×e

.

We can check that z satisfies zaz = z, aza = a, (az)∗ = az, az2 = z and za2 = a. Then z = a #O. Thus, we have

a #Ob =

t
−1
1 0 0
0 0 0
0 0 0


e×e

0 0 0
0 t2 s2
0 0 0


e×e

= 0,

ba #O =

0 0 0
0 t2 s2
0 0 0


e×e

t
−1
1 0 0
0 0 0
0 0 0


e×e

= 0

and

ab =

t1 0 s
0 0 0
0 0 0


e×e

0 0 0
0 t2 s2
0 0 0


e×e

= 0.

Then a ⊥s, #O b.

Lemma 4.14. Let a, b ∈ R #O, and a ≤− b. If b =
[
t s
0 0

]
p×p

, then a =
[
a1 a2
0 0

]
p×p

, where a1 = a1t−1a1 and a2 = a1t−1s.

Proof. By a ≤− b, we have

bb #Oa = bb #Oaa†a = bb #Oba†a = ba†a = aa†a = a, (15)

ab #Ob = aa†ab #Ob = aa†bb #Ob = aa†b = aa†a = a (16)

and

ab #Oa = aa†ab #Oaa†a = aa†bb #Oba†a = aa†ba†a = aa†aa†a = a. (17)

Let the core-EP decomposition of a be

a =
[
a1 a2
a3 a4

]
p×p
.

If b =
[
t s
0 0

]
p×p

, then

b #O =

[
t−1 0
0 0

]
p×p
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and

bb #Oa =
[
t s
0 0

]
p×p

[
t−1 0
0 0

]
p×p

[
a1 a2
a3 a4

]
p×p
=

[
a1 a2
0 0

]
p×p
.

From (15), we have[
a1 a2
0 0

]
p×p
=

[
a1 a2
a3 a4

]
p×p
,

which implies a3 = a4 = 0. Then

a =
[
a1 a2
0 0

]
p×p
.

And it follows from (16) that

ab #Ob =
[
a1 a2
0 0

]
p×p

[
t−1 0
0 0

]
p×p

[
t s
0 0

]
p×p
=

[
a1 a1t−1s
0 0

]
p×p
=

[
a1 a2
0 0

]
p×p
,

which implies a2 = a1t−1s. Furthermore, from (17), we get

ab #Oa =
[
a1 a1t−1s
0 0

]
p×p

[
t−1 0
0 0

]
p×p

[
a1 a1t−1s
0 0

]
p×p

=

[
a1t−1a1 a1t−1a1t−1s

0 0

]
p×p

=

[
a1 a1t−1s
0 0

]
p×p
,

which implies a1 = a1t−1a1. Then

a =
[
a1 a2
0 0

]
p×p
,

where a1 = a1t−1a1 and a2 = a1t−1s.

Theorem 4.15. Let a, b ∈ R #O. Then, the following statements are equivalent:
(1) a ⊥s, #O b;
(2) a ≤− a + b and (a + b) #O = a #O + b #O.

Proof. (1)⇒ (2) It follows from Theorem 4.9 and Theorem 4.13.
(2)⇒ (1) Let the core-EP decomposition of a + b be

a + b =
[
t s
0 0

]
p×p
.

From a ≤− a + b and Lemma 4.14, we get

a =
[
a1 a2
0 0

]
p×p
,
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where a1 = a1t−1a1 and a2 = a1t−1s. Then

b =
[
t − a1 s − a2

0 0

]
p×p
, b #O =

[
(t − a1)−1 0

0 0

]
p×p
.

Furthermore, let

a1 =

[
t1 s1
0 0

]
p×p

be the core-EP decomposition of a1. Then

a #O

1 =

[
t−1
1 0
0 0

]
p×p
.

And let the core-EP decomposition of t−1 be

t−1 =

[
f1 f2
f3 f4

]
p×p
.

By a1 = a1t−1a1, we have

a1t−1a1 =

[
t1 s1
0 0

]
p×p

[
f1 f2
f3 f4

]
p×p

[
t1 s1
0 0

]
p×p

=

[
t1 f1t1 + s1 f3t1 t1 f1s1 + s1 f3s1

0 0

]
p×p
=

[
t1 s1
0 0

]
p×p
,

which implies t1 f1t1 + s1 f3t1 = t1. Then

t1 f1 + s1 f3 = 1. (18)

By (a + b) #O = a #O + b #O, we get[
a #O

1 0
0 0

]
p×p
+

[
(t − a1) #O 0

0 0

]
p×p
=

[
t−1 0
0 0

]
p×p
,

which implies

(t − a1) #O = t−1
− a #O

1 . (19)

Write

x := t1 f2 + s1 f4. (20)

By (t − a1)(t − a1) #O(t − a1) = t − a1, we have

(t − a1)(t − a1)−1(t − a1) = (t − a1)(t−1
− a−1

1 )(t − a1)
= t − 2a1 − ta #O

1 t + ta #O

1 a1 + a1a #O

1 t

= t − a1.

Then

−a1 − ta #O

1 t + ta #O

1 a1 + a1a #O

1 t = 0.
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Pre-multiplying the above equation and post-multiplying the above equation by t−1, we have

−t−1a1t−1
− a #O

1 + a #O

1 a1t−1 + t−1a1a #O

1 = 0,

i.e. [
0 t−1

1 x − f1x
0 f3x

]
p×p
= 0.

Then

t−1
1 x = f1x, f3x = 0. (21)

By (t − a1)((t − a1) #O)2 = (t − a1) #O, we have

−a1 − ta #O

1 t−1 + t(a #O

1 )2
− a1(t−1)2 + a1t−1a #O

1 − a1a #O

1 t−1 = 0.

Pre-multiplying the above equation by t−1, we have

−t−1a1 − a #O

1 t−1 + (a #O

1 )2
− t−1a1(t−1)2 + t−1a1t−1a #O

1 − t−1a1a #O

1 t−1 = 0,

i.e. [
−t−1

1 f1 − f1x f3 + (t−1)2
−t−1

1 f2 − f1x f4
0 0

]
p×p
= 0.

Then

−t−1
1 f1 − f1x f3 + (t−1)2 = 0,−t−1

1 f2 − f1x f4 = 0.

From (21), we have

−t−1
1 f1 − f1x f3 + (t−1)2 = −t−1

1 f1 − t−1
1 x f3 + (t−1)2 = t−1

1 (− f1 − x f3 + t−1),

which implies

− f1 − x f3 + t−1 = 0.

Then

f1 = t−1
− x f3, t−1

1 f2 = f1x f4. (22)

Applying ((t − a1)(t − a1) #O)∗ = (t − a1)(t − a1) #O, we have

(ta #O

1 + a1t−1)∗ = ta #O

1 + a1t−1. (23)

Since

ta #O

1 + a1t−1 = t(a #O

1 + t−1a1t−1)(t−1)∗t∗,

we get ((a #O

1 + t−1a1t−1)(t−1)∗)∗ = (a #O

1 + t−1a1t−1)(t−1)∗ by (23). Then,

(a #O

1 + t−1a1t−1)(t−1)∗ =
[
t−1
1 f ∗1 + f1 f ∗1 + f1x f ∗2 t−1

1 f ∗3 + f1 f ∗3 + f1x f ∗4
f3 f ∗1 f3 f ∗3

]
p×p
= 0,

which implies

t−1
1 f ∗3 + f1 f ∗3 + f1x f ∗4 = ( f3 f ∗1 )∗.



Y. Liu et al. / Filomat 38:24 (2024), 8411–8432 8431

So,

f3 = − f4x∗ f ∗1 t∗1. (24)

From (21) and (22), we have

− f3x = f4x∗ f ∗1 t∗1x = f4x∗(t−1
− x f3)∗t∗1x = f4x∗x = 0.

When f4 , 0, it implies x = 0. Then from (18) and (20), we get

a #O

1 (t − a1) = (a #O

1 − a #O

1 a1t−1)t

= (
[
t−1
1 0
0 0

]
p×p
−

[
t−1
1 0
0 0

]
p×p

[
t1 s1
0 0

]
p×p

[
f1 f2
f3 f4

]
p×p

)t

= (
[
t−1
1 0
0 0

]
p×p
−

[
t−1
1 0
0 0

]
p×p

[
t1 f1 + s1 f3 t1 f2 + s1 f4

0 0

]
p×p

)t

= (
[
t−1
1 0
0 0

]
p×p
−

[
t−1
1 0
0 0

]
p×p

[
1 0
0 0

]
p×p

)t

= 0.

When f4 = 0, it implies f2 = f3 = 0 and f1 = t−1 by (21), (22) and (24). And from (18), we have t1t−1 = 1.
Then

a #O

1 (t − a1) = (a #O

1 − a #O

1 a1t−1)t

= (
[
t−1
1 0
0 0

]
p×p
−

[
t−1
1 0
0 0

]
p×p

[
t1 s1
0 0

]
p×p

[
t−1 0
0 0

]
p×p

)t

= (
[
t−1
1 0
0 0

]
p×p
−

[
t−1
1 0
0 0

]
p×p

[
t1t−1 0

0 0

]
p×p

)t

= (
[
t−1
1 0
0 0

]
p×p
−

[
t−1
1 0
0 0

]
p×p

[
1 0
0 0

]
p×p

)t

= 0.

Therefore, by Lemma 4.14, we get

a #Ob =
[
a #O(t − a1) a #O(s − a2)

0 0

]
p×p

=

[
a #O(t − a1) a #O(t − a1)t−1s

0 0

]
p×p

= 0.

From Theorem 4.9, we have a ⊥s, #O b.
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