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An interior-point algorithm for P∗(κ)-LCPs based on a new kernel
function with a double barrier term
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Abstract. In this paper, new search directions and proximity measures are proposed for P∗(κ)-linear
complementarity problem. The new method is based on a new class of kernel function which differs
from the existing kernel functions in which it has a double barrier term. We prove that the interior-point
algorithm has the same complexity bound as the best known interior-point algorithms for solving these types

of problems. The corresponding algorithm has O((1 + 2κ) q
√

n(log
√

n)
q+1

q log
n
ϵ

) iteration complexity for

large-update methods and we match the best known iteration bounds with special choice of the parameter

q for P∗(κ)-linear complementarity problem that is O((1 + 2κ)
√

n log n log
n
ϵ

).We illustrate the performance

of the proposed kernel function by some comparative numerical results that are derived by applying our
algorithm to an other kernel function.

1. Introduction

In this paper, we consider the following linear complementarity problem (LCP):
s =Mx + q,
xs = 0,
x ≥ 0, s ≥ 0.

(1.1)

where M ∈ Rn×n is a P∗(κ)-matrix and q, x, s ∈ Rn, and xs denotes the componentwise product (Hadamard
product) of vector x and s.

Note that (1.1) is a feasibility problem, and not an optimization problem. However,it is well-known that
is can easily be writen as an optimization problem:

min xTs
−Mx + s = q,
x ≥ 0, s ≥ 0.

(1.2)
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LCPs arises in many areas such as variational inequalities, economic equilibrium problems and bimatrix
games. It is known that this problem trivially includes the two important domains in optimization: the
linear programming (LP) and the convex quadratic programming (CQP) in their usual formulations, then
this problem becames the subject of many research interest. The aim of researchers is to extend all results
obtained in LP and QP to a more general class of problems known as monotone LCPs, i.e., P∗(0)-LCP, and
vice versa [26]. Feasible path-following algorithms are the most attractive interior point methods (IPMs)
for solving a large wide of optimization problems. These algorithms achieved beautiful results such as
polynomial complexity and numerical efficiency [21], [26]. They start with a strictly feasible centered
starting point and maintain feasibility during the solution process. However, in practice these algorithms
do not have always a strictly feasible centered starting point.The choice of the barrier function plays an
important role not only in the analysis but also for the performance of the algorithm. Peng et al. [18]
introduced primal-dual IPMs for linear optimization (LO) based on a new class of barrier functions that is
defined by so-called self-regular kernel function. They significantly improved the theoretical complexity
and obtained the best known theoretical iteration bound for LO with large-update primal-dual IPM, namely,

O(
√

n log n log
n
ϵ

). Bai et al. [2] proposed a new class of kernel functions which is not necessarily self-regular.
The class is called eligible kernel function which greatly simplifies the analysis of primal-dual IPMs for LO.
For some of them are matched the best iteration bounds for large update IPMs. Later, Bai et al. [3], Wang
and Bai [22] generalized primal-dual IPMs for LO to sufficient LCP based on some specific eligible kernel
functions. Cho et al. [4], [5], [6] extended the complexity analysis for LO problems to P∗(κ)-LCPs. Amini et
al. [1] and Lee et al. [15] generalized versions of the kernel functions in [2] and improved the complexity
results for large-update methods for P∗(κ)-LCPs. Recently, Lesaja et al. [16], [17] provided a unified
approach and comprehensive analysis of IPMs for P∗(κ)-LCP and Cartesian P∗(κ))-LCP over symmetric
cones (SCLCP), respectively. Wang and Bai [23] presented a new class of polynomial IPMs for the Cartesian
P-matrix SCLCP based on a parametric kernel function, which matched the currently best known iteration
bounds for large- and small-update methods. Very recently, S. Fathi-Hafshejani et al. [11], [12], M. El Ghami
et al. [10] presented a large-update IPM for P∗(κ)-LCP based on new trigonometric kernel function and

showed that the iteration complexity is O
(
(1 + 2κ)

√
n log n log

n
ϵ

)
. For more studies with P∗(κ)-LCP you

can refer to [7], [15], [19], [24], [25], [27].
In this paper, we focus on the complexity analysis of large-update IPMs for P∗(κ)-LCP based on a new

kernel function with a double barrier term (combination of the classic kernel function and a barrier term),
defined by:

ψ(t) =
t2
− 1 − log t

2
+

e
1
tq −1
− 1

2q
for t > 0, q ≥ 1. (1.3)

This work constitute an extension of the work presented for linear and semidefinite optimization by the
same authors L. Derbal et al. in [8], [9].

Since P∗(κ)-LCP is a generalization of LO, we lose the orthogonality of the search direction dx and
ds.Therefore, the analysis is more complicated than the linear optimization case.

With this kernel function new search directions and the proximity function to measure the distance
between the iterate and the center path are determined for the proposed algorithm.

We prove that the proposed interior-point algorithm has the same complexity bound as the best known
interior-point algorithms for solving these types of problems. Using some conditions, we show that the
worst-case iteration complexity of the new algorithm is

O((1 + 2κ) q
√

n(log
√

n)
q+1

q log
n
ϵ

).

which becomes O((1 + 2κ)
√

n log n log
n
ϵ

) with a special choice of the parameter q. It is currently the best
known result for large-update primal-dual IPM.
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Furthermore, by providing numerical results we also show the efficiency of the proposed interior-
point algorithm (IPA). We implemented the theoretical version of the IPA. We compared our IPA to the

interior-point algorithm using the functionψ1(t) =
(

t2
− 1
2
+

4
πp

[
tanp

(
π

2t + 2

)
− 1

]
, p ≥ 2

)
proposed in [10].

In the theoretical analysis, the step size is usually given a value that is very small during each inner
iteration. In practice, this leads to very large inner iteration number. So, to accelerate the iteration process
we propose a dynamic and practical choices for the step size [8].

The paper is organized as follows. In the next section, we give some basic concepts and useful results
about the P∗(κ)-LCP and P∗(κ)-matrices. Furthermore, we decribe the primal-dual interior point method
for solving the LCP. The new IPA for P∗(κ)-LCP is introduced, which is based on a new search directions
by using the new kernel function. In Section 3, we present the new kernel function and its properties. In
Section 4, we evaluate a default step size which not only keeps the iterates feasible but also leads the barrier
function to have a sufficiently large decrease of the value in each inner iteration. Section 5 contains the
complexity analysis of the introduced IPA with the new search directions. While, in Section 6 numerical
computations are presented and compared to the computational performance of an other kernel function
introduced in 2017 by M. El Ghami and Wang, [10]. In Section 7, some concluding remarks are presented.

The following notations are used throughout the paper. The nonnegative orthant and positive orthant
are denoted as Rn

+ and Rn
++, respectively. For x = (x1, x2, ..., xn)T

∈ Rn, xmin denotes the smallest value of
the components of x, X is the diagonal matrix whose diagonal elements are the coordinates of vector x, i.e.,
X = dia1(x). e denotes the all-one vector of length n, i.e., e = (1, 1, ..., 1)T . The index set I is I = {1, 2, ...,n}.

Furthermore, ∥x∥ =
√

xTx denotes the 2-norm of the vector x. xT y =
n∑

i=1
xiyi for x, y ∈ Rn. Finally, we say

f (t) = O(1(t)) if there exists a positive constant ω such that f (t) ≤ ω1(t) holds for all t > 0, and f (t) = Θ(1(t))
if there exists some positive constants ω1 and ω2 such that ω11(t) ≤ f (t) ≤ ω21(t) holds for all t > 0, where f
and 1 are two positive real-valued functions.

2. Preliminaries

In this section we introduce the definition of P∗(κ)-matrix and its properties [14].

Definition 2.1. [14] Let κ ≥ 0 be a nonnegative number. A matrix M ∈ Rn×n is called a P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)

xi (Mx)i +
∑

i∈I−(x)

xi (Mx)i ≥ 0,

for all x ∈ Rn, where

I+(x) =
{
i ∈ I : xi (Mx)i ≥ 0

}
, I−(x) =

{
i ∈ I : xi (Mx)i < 0

}
.

The class of all P∗(κ)-matrices is denoted by P∗(κ), and the class P∗ is defined by P∗ =
⋃
κ≥0

P∗(κ), i.e., M is

a P∗ -matrix if M ∈ P∗(κ) for some κ ≥ 0. Obviously, P∗(0) is the class of positive semidefinite matrices.

Proposition 2.1. [14] If M ∈ Rn×n is a P∗(κ)-matrix, then

M̄ =
(
−M I

S X

)
is a nonsingular matrix for any positive diagonal matrices X, S ∈ Rn×n.

The following corollary is used to prove that the modified Newton-system has a unique solution.



L. Derbal, Z. Kebbiche / Filomat 38:24 (2024), 8461–8479 8464

Corollary 2.1. [14] Let M ∈ Rn×n be a P∗(κ)- matrix and x, s ∈ Rn
++.Then for all ω ∈ Rn the system{

−M∆x + ∆s = 0
S∆x + X∆s = ω,

has a unique solution (∆x,∆s), where X and S are the diagonal matrices obtained from the vectors x and s.

The basic idea of IPMs for P∗(κ)-LCP is to replace the second equation in P∗(κ)-LCP by the parameterized
equation xs = µe, µ > 0. This replacement leads us to consider the following parameterized system:


s =Mx + q,
xs = µe,
x ≥ 0, s ≥ 0.

(2.1)

Without loss of generality, we assume that (1.1) satisfies the interior point condition (IPC), i.e., there exists
(x0, s0) > 0 such that s0 = Mx0 + q. Since M is a P∗(κ)-matrix and (1.1) satisfies the IPC, the parameterized
system (2.1) has a unique solution for any µ > 0 (Lemma 4.3 of [14]) and it is denoted as

(
xµ, sµ

)
. We call it

µ-center for µ > 0 and the solution set
{(

xµ, sµ
)
\ µ > 0

}
is called the central path of (1.1). As goes to zero,

the limit of the central path exists and it naturally yields the optimal solution for (1.1) (Theorem 4.4 of [14]).
Moreover, assuming that we have an initial point (x, s) := (x0, s0) which is in a certain neighborhood of some
µ-center. Then we decrease µ to µ := (1 − θ)µ for some θ ∈ (0, 1). Using Newton’s method to the system
(2.1), we have

{
−M∆x + ∆s = 0
S∆x + X∆s = µe − xs. (2.2)

According to Corollary 1, we get the unique search direction (∆x,∆s). This direction approximates the
next µ-center. By taking a step along the search direction (∆x,∆s), we get a new iteration (x+, s+), where

x+ := x + α∆x, s+ := s + α∆s,

for some step size 0 < α ≤ 1.
For the formulation and analysis of the generic interior point method for the P∗(κ)-LCP, the introduction

of the following vectors is critical:

v =
√

xs
µ
, p =

√
x
s
, dx :=

υ∆x
x

and ds :=
υ∆s

s
. (2.3)

Then we have the scaled Newton system as follows{
−Mdx + ds = 0
dx + ds = v−1

− v,
(2.4)

where M := PMP with P = dia1(p). Note that the second equation in (2.4) is called the scaled centering
equation, which equals the negative gradient of the classical logarithmic barrier functionΨc(v), i.e.,

dx + ds = −∇Ψc(v), (2.5)

whereΨc(v) :=
n∑

i=1
ψc(vi), ψc(t) =

t2
− 1
2
− log t, t > 0.
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We call ψc(t) the kernel function of the classical logarithmic proximity function Ψc(v). The key idea in
the new variant of IPMs based on kernel functions is to replace Ψc(v) by a proximity function Ψ(v), such
that

Ψ(v) = 0⇔ ∇Ψ(v) = 0⇔ v = e.

Hence, the value of Ψ(v) can be considered as a proximity measure for closeness with respect to the
µ-center

(
xµ, sµ

)
. In what follows, we define the norm-based proximity measure δ(v)

δ(v) :=
1
2
∥∇Ψ(v)∥ =

1
2
∥dx + ds∥ . (2.6)

We can easily verify that

δ(v) = 0⇔ v = e⇔ xs = µe.

From the solution dx and ds, the vectors ∆x and ∆s can be calculated using (2.3). The algorithm works as
follows. Suppose that we give a strictly feasible point (x0, s0) in a τ-neighborhood of the current µ-center,
i.e., Ψ(v) < τ. Then the value of µ is reduced by the factor 1 − θ with some fixed θ ∈ (0, 1), which changes
the value of v and obtains a new µ-center

(
xµ, sµ

)
. Hence the value of the proximity function will likely

exceed the threshold value of τ , i.e.,Ψ(v) ≥ τ. Now we start the inner iteration by solving the system (2.4)
and (2.3) to obtain the unique search direction. In order to reduce the value of the proximity functionΨ(v),
the step size α should choice appropriately. If necessary, we repeat this process until we find the iterate
that again belongs to the τ -neighborhood of the corresponding µ-center, i.e., Ψ(v) < τ. Next, a new outer
iteration starts by reducing the value of µ again. This procedure is repeated until µ is small enough, say
until nµ ≤ ϵ.

The algorithm1 considered in this paper is described in Figure 1.

Generic interior-point algorithm for P∗(κ)-LCP
Input:
A proximity functionΨ(v);
a threshold parameter ϵ > 0;
a barrier update parameter θ, 0 < θ < 1;
a strictly feasible point (x0, s0) and µ0 = 1 such thatΨ

(√
x0s0⧸µ0

)
< τ;

begin
x := x0; s := s0; µ = µ0;
while nµ > ϵ do

µ := (1 − θ)µ; v :=
√

xs
µ

;

whileΨ(v) ≥ τ do
find search directions (dx, ds) by solving system (2.4)
compute (∆x,∆s) from (2.2)
determine a step size α;
update x := x + α∆x; s := s + α∆s;

end while
end while

end.

Figure1. Generic algorithm.

Remark 2.1. If τ = O(n) and θ = Θ(1), then the method is called a large-update method. When τ = O(1) and θ =

Θ(
1
√

n
), we call the method a small-update method.
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3. Properties of the new kernel function

In this section,we study the basic properties of ψ(t) and Ψ(v). For ease of reference, we give the first
three derivatives of ψ(t) with respect to t as follows



ψ′(t) = t −
1
2t
−

e
1
tq −1

2tq+1 ,

ψ′′(t) = 1 +
1

2t2 +
1
2

(
(q + 1)tq + q

t2q+2 )e
1
tq −1

,

ψ′′′(t) =
−1
t3 −

1
2

(q2t−(3q+3) + 3q(q + 1)t−(2q+3) + (q + 1)(q + 2)t−(q+3))e
1
tq −1

.

(3.1)

It is quite straightforward to verify


ψ(1) = 0, ψ′(1) = 0;
ψ′′(t) > 0, ψ′′′(t) < 0, t > 0;
lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.
(3.2)

Moreover, from (3.2) ψ(t) is strictly convex and ψ′′(t) is monotonically decreasing in t ∈ (0,∞).
The following lemmas are used to prove the eligibility of the kernel function.

Lemma 3.1. [8] For ψ(t), we have the following
ψ(t) is exponentially convex for all t > 0; that is

(a) ψ
(√

t1t2

)
≤

1
2
(
ψ (t1) + ψ (t2)

)
,

(b) ψ′′(t) is monotonically decreasing for all t > 0,
(c) tψ′′(t) − ψ′(t) > 0 for all t > 0,
(d) ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) > 0, t > 1, β > 1.

Lemma 3.2. [8] For ψ(t), we have

1
2

(t − 1)2
≤ ψ(t) ≤

1
2
[
ψ′(t)

]2 , t > 0 (3.3)

ψ(t) ≤
2 + q

2
(t − 1)2, t > 1. (3.4)

Let ψ (t) be as defined in (1.3), one has

tψ′(t) ≥ ψ(t), t > 1.

Let ϱ : [0,∞)→ [1,∞) be the inverse function ofψ(t) for t ≥ 1 and ρ : [0,+∞[→ ]0, 1] be the inverse function

of −
1
2
ψ′(t) for all t ∈ ]0, 1]. In the next lemma we use the so-called barrier term ψb(t) of ψ(t), which is

defined by

ψ(t) =
t2
− 1
2
+ ψb(t), t > 0.

ρ : [0,∞) → (0, 1] be the inverse function of the restriction of −ψ′b(t) in the interval (0, 1] and sb = −ψ′b(t).
Then one has



L. Derbal, Z. Kebbiche / Filomat 38:24 (2024), 8461–8479 8467

Lemma 3.3. [8] For ψ (t), we have

1 +

√
2s

q + 2
≤ ϱ(s) ≤ 1 +

√

2s. (3.5)

ρ(s) ≥ ρ(1 + 2s), (3.6)

ρ(sb) ≥
1

(log(2sb) + 1)

1
q

.sb >
1
2
. (3.7)

Lemma 3.4. [8] Let δ be defined in (2.6). So, we get :

δ(v) ≥

√
1
2
Ψ(v). (3.8)

Remark 3.1. In the following, we assume thatΨ(v)≥ τ ≥ 1. According to the previous lemma we have: δ(v) ≥
1
√

2
.

3.1. Growth behavior of the barrier function

During the algorithm, the largest values of Ψ(v) occur just after the updates of µ. In this section, we
obtain an estimate of the effect of an update of µ on the value ofΨ(v). We start with an important theorem
which is valid for all kernel functions ψ which are strictly convex, and satisfy Lemma 3.1 (c).

Theorem 3.1. [14] Let ϱ : [0,+∞) → [1,+∞) be the inverse function of ψ(t), t ≥ 1. Then for any positive vector v
and any β ≥ 1,

Ψ(βv) ≤ nψ(βϱ(
Ψ(v)

n
)).

Proof. Using Lemma 3.1(d), and Theorem 3.2 in [2], we can get the result. This completes the proof.

Lemma 3.5. Let 0 ≤ θ ≤ 1, v+ =
v

√
1 − θ

. If Ψ(v) ≤ τ, then

Ψ(v+) ≤
nθ + 2τ + 2

√
2nτ

2(1 − θ)
.

Proof. Since
1

√
1 − θ

≥ 1 and ϱ(
Ψ(v)

n
) ≥ 1, then

ϱ(
Ψ(v)

n
)

√
1 − θ

≥ 1, and for t ≥ 1, we have ψ(t) ≤
t2
− 1
2

.



L. Derbal, Z. Kebbiche / Filomat 38:24 (2024), 8461–8479 8468

Using Theorem 3.1 with β =
1

√
1 − θ

, (3.5), andΨ(v) ≤ τ , we have

Ψ(v+) ≤ nψ(
1

√
1 − θ

ϱ(
Ψ(v)

n
))

≤
n
2

[ 1
√

1 − θ
ϱ(
Ψ(v)

n
)
]2

− 1


≤

n
2(1 − θ)


1 +

√
2
Ψ(v)

n

2

− (1 − θ)


=

n
2(1 − θ)

1 + 2
Ψ(v)

n
+ 2

√
2
Ψ(v)

n

 − (1 − θ)


≤

nθ + 2τ + 2
√

2nτ
2(1 − θ)

.

Denote

Ψ0 =
nθ + 2τ + 2

√
2nτ

2(1 − θ)
= L(n, θ, τ), (3.9)

as an upper bound ofΨ, during the process of the algorithm.

4. A default value for the step size

In this section, we evaluate a default step size which not only keeps the iterates feasible but also leads
the barrier function to have a sufficiently large decrease of the value in each inner iteration. Since P∗(κ)-LCP
is generalization of LO, we lose the orthogonality of the search direction dx and ds. Therefore, the analysis
is more complicated than the LO case.

After a step with size α the new iterates are x+ = x + α∆x, s+ = s + α∆s.
Using (2.3), we get

x+ = x
(
e + α

∆x
x

)
= x

(
e + α

dx
υ

)
=

x
υ

(υ + αdx),

s+ = s
(
e + α

∆s
s

)
= x

(
e + α

ds
υ

)
=

s
υ

(υ + αds).

Recall that during an inner iteration the parameter µ is fixed. Hence, after the step the new v-vector is given
by

υ+ =

√
x+s+
µ
=

√
(υ + αdx)(υ + αds),

then

υ2
+ =

x+s+
µ
= (υ + αdx)(υ + αds).

By Lemma 3.1(a), one easily verifies that

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds)) ≤
1
2

(Ψ(v + αdx) +Ψ(v + αds)).
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Therefore, we have f (α) ≤ f1(α), where

f1(α) =
1
2

(Ψ(v + αdx) +Ψ(v + αds)) −Ψ(v).

Obviously,

f (0) = f1(0) = 0.

Taking the first two derivatives of f1(α) with respect to α, we have

f
′

1(α) =
1
2

n∑
i=1

(ψ′(vi + αdxi)dxi + ψ
′(vi + αdsi)dsi),

f
′′

1 (α) =
1
2

n∑
i=1

(ψ′′(vi + αdxi)d2
xi + ψ

′′(vi + αdsi)d2
si).

Using (2.5) and (2.6), we have

f
′

1(0) =
1
2
∇Ψ(v)T(dx + ds) = −

1
2
∇Ψ(v)T

∇Ψ(v) = −2δ(v)2.

For convenience, we denote

δ := δ(v), σ+ :=
∑
i∈I+

dxi dsi , σ− := −
∑
i∈I−

dxi dsi .

Since M is a P∗(κ)−matrix and M∆x = ∆s, we have

(1 + 4κ)
∑
i∈I+

∆xi∆si +
∑
i∈I−

∆xi∆si ≥ 0,

where I+ = {i ∈ I : ∆xi∆si ≥ 0} , and I− = I− I+. Since

dxds =
υ2∆x∆s

xs
=
∆x∆s
µ

,

and µ > 0, hence

(1 + 4κ)
∑
i∈I+

dxi dsi +
∑
i∈I−

dxi dsi = (1 + 4κ)σ+ − σ− ≥ 0. (4.1)

The following technical lemmas give the upper bound of σ+, σ−, ∥dx∥ and ∥ds∥ , respectively.
From Lemmas 4.1−4.2 in [6]. We have the following Lemmas 4.1−4.2.

Lemma 4.1. σ+ ≤ δ2 and σ− ≤ (1 + 4κ)δ2.

Lemma 4.2.
n∑

i=1

(
d2

xi
+ d2

si

)
≤ 4(1 + 4κ)δ2, ∥ dx ∥≤ 2

√
1 + 2κδ and ∥ ds ∥≤ 2

√
1 + 2κδ.

The subsequent lemmas lead to obtaining the default step size. Using the above Lemmas 4.1, 4.2 and
our kernel function, their proofs are easy modification of the similar Lemmas 4.3−4.4 stated in [6].
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Lemma 4.3. f ′′1 (α) ≤ 2 (1 + 2κ) δ2ψ′′
(
vmin − 2α

√
1 + 2κδ

)
.

Lemma 4.4. f ′1 (α) ≤ 0 if α is such that

−ψ′
(
vmin − 2α

√

1 + 2κδ
)
+ ψ′ (vmin) ≤

2 δ
√

1 + 2κ
. (4.2)

From Lemmas 4.5 − 4.6 in [6], we have the following lemmas 4.5, 4.6 gives an upper bound of (α) in
terms of δ and ψ′′.

Lemma 4.5. Let ρ : [0,+∞)→ (0, 1] be the inverse function of −
1
2
ψ′(t) for all t ∈ (0, 1]. Then the largest step size

ᾱ satisfying (4.2) is given by

α :=
1

2 δ
√

1 + 2κ

[
ρ (δ) − ρ

((
1 +

1
√

1 + 2κ

)
δ

)]
, (4.3)

Lemma 4.6. Let ρ and ᾱ be as defined in Lemma 4.5. then

ᾱ ≥
1

(1 + 2κ)ψ′′(ρ((1 +
1

√
1 + 2κ

)δ))
. (4.4)

Lemma 4.7. Let ρ and ᾱ be as defined in Lemma 4.5. IfΨ(v) ≥ τ ≥ 1, then we have

ᾱ ≥
1

(1 + 2κ)

1 + (2q + 1)(1 + 4δ)
[
log(2 + 8δ) + 1

]q + 1
q


,

Proof. Using Lemma 4.6 and (3.6), we get

ᾱ ≥
1

(1 + 2κ)ψ′′(ρ((1 +
1

√
1 + 2κ

)δ))
≥

1

(1 + 2κ)ψ′′(ρ(1 + 2(1 +
1

√
1 + 2κ

)δ))
.

Hence, putting t = ρ(1 + 2(1 +
1

√
1 + 2κ

)δ), 0 < t ≤ 1, it follows that

ᾱ ≥
1

(1 + 2κ)
(
1 +

1
2t2 +

[1
2

(q + 1)t−(q+2) +
1
2

qt−(2q+2)
]

et−q−1
)

=
1

(1 + 2κ)
(
1 +

1
2t2 +

[
(q + 1)t−1 + qt−(q+1)] (−ψ′b(t) −

1
2t

)
=

1

(1 + 2κ)
(
1 −

q
2t2 (1 + t−q) +

[
(q + 1)t−1 + qt−(q+1)] (−ψ′b(t))

)
>

1

(1 + 2κ)
(
1 + (2q + 1)t−(q+1)(−ψ′b(t))

)
>

1

(1 + 2κ)

1 + (2q + 1)(1 + 2(1 +
1

√
1 + 2κ

)δ)
[
log(2 + 4(1 +

1
√

1 + 2κ
)δ) + 1

]q + 1
q


.
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Using that 1 + 1
√

1+2κ
≤ 2 for all κ ≥ 0, we get

ᾱ >
1

(1 + 2κ)

1 + (2q + 1)(1 + 4δ)
[
log(2 + 8δ) + 1

]q + 1
q


.

Denoting

α̃ =
1

(1 + 2κ)

1 + (2q + 1)(1 + 4δ)
[
log(2 + 8δ) + 1

]q + 1
q


, (4.5)

we have that α̃ is the default step size and that α̃ ≤ ᾱ.

5. Iteration complexity

In the present section, we derive worst-case iteration complexity of Algorithm 1. The following result
serves to get an estimate value of f (α̃), for its proof we refer to Lemma 4.5 in [2].

Lemma 5.1. If the step size α is such that α ≤ ᾱ, then f (α) ≤ −αδ2.

Theorem 5.1. Let ρ be as defined in Lemma 4.5, α̃ as defined in (4.5) andΨ(v) ≥ 1. Then

f (α̃) ≤ −
δ2

(1 + 2κ)

1 + (2q + 1)(1 + 4δ)
[
log(2 + 8δ) + 1

]q + 1
q


(5.1)

≤ −

√
Ψ(v)

(1 + 2κ)

2 + (2q + 1)(1 + 4
√

2)
[
log(2 + 4

√
2Ψ0) + 1

]q + 1
q


(5.2)

Proof. Using Lemma 5.1 and α̃ defined in(4.5), the first inequality follows. Since the right hand side of
expression in (5.1) is monotonically decreasing in δ. The last inequality follows from (5.1) andΨ0 ≥ Ψ(v) ≥
τ ≥ 1. This result holds the theorem.

Lemma 5.2. (Lemma 14 in [17]) Let t0, t1, ..., tk be a sequence of positive number such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, ...,K − 1,

where β > 0, and 0 < γ ≤ 1. Then K ≤

 tγ0
βγ

.
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Lemma 5.3. If K denotes the number of inner iterations in the outer iterations. Then we have

K ≤ (1 + 2κ)

4 + (2q + 1)(4 + 8
√

2)
[
log(2 + 4

√
2Ψ0) + 1

]q + 1
q

Ψ 1
2
0 .

Proof. The definition of K implies ΨK−1(v) > τ and ΨK(v) ≤ τ . According to Theorem 5.1, we obtain that
the sequenceΨk(v) satisfies

Ψk+1(v) ≤ Ψk(v) −

√
Ψk(v)

(1 + 2κ)

2 + (2q + 1)(1 + 4
√

2)
[
log(2 + 4

√
2Ψ0) + 1

]q + 1
q


,

by Lemma 5.2, we can find the appropriate values of β , t0, and γ

β =
1

2 + (2q + 1)(2 + 4
√

2)
[
log(2 + 4

√
2Ψ0) + 1

]q + 1
q

, γ =
1
2

, t0 = Ψ0.

This completes the proof.

Theorem 5.2. Given that τ = O(
√

n) and θ = Θ(1), which are characteristics of large-update methods, Algorithm

1 will obtain an ϵ-approximate solution of P∗(κ)-LCP in at most O((1 + 2κ) q
√

n(log
√

n)

q + 1
q log

n
ϵ

) iterations.

Proof. It is well known that the number of outer iterations is bounded above by
1
θ

log
n
ϵ

(Theorem 5.4 of [4]).
By multiplying this number with the upper bound for the number of inner iterations per outer iteration,
We get the upper bound for the total number of iterations, namely

K
θ

log
n
ε
≤ (1 + 2κ)

4 + (2q + 1)(4 + 8
√

2)
[
log(2 + 4

√
2Ψ0) + 1

]q + 1
q

Ψ
1
2
0 log

n
ϵ
.

For large-update methods withτ = O(
√

n) andθ = Θ(1), we haveΨ0 = O(n) andO((1 + 2κ) q
√

n(log
√

n)

q + 1
q log

n
ϵ

)
iterations complexity.

Remark 5.1. Note that the iteration bound related to the selection of parameter q. Especially, if taking q = log log
√

n,
we have the complexityO((1 + 2κ)

√
n log n log

n
ϵ

) for P∗(κ)-LCP. This is matches the currently best known iteration
bound for P∗(κ)-LCP.

6. Numerical Results

We present in this chapter some comparative numerical tests between a kernel function studied recently
in 2017 defined in [10] by:

ψ1(t) =
(

t2
− 1
2
+

4
πp

[
tanp

(
π

2t + 2

)
− 1

]
, p ≥ 2

)
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with O
(
(1 + 2κ) pn

p+2
2(p+1) log

n
ϵ

)
complexity results that correspond to large-update methods, in order to

examine the influence of the choice of the new kernel function on the behavior of Algorithm 1. The
algorithm is coded in MATLAB (R2009b) and executed on a PC with 2.40 GHz processor speed. We have
taken: ϵ = 10−6, θ = 0, 99 and τ = 10 for examples of fixed size and τ = n for examples with a variable size.
The choice of the step size α, (0 < α ≤ 1) is another crucial issue in the analysis of the algorithm. In the
theoretical analysis, the step size α is usually given a value that is very small during each inner iteration. In
practice, this leads to very large inner iteration number. So, to accelerate the iteration process we propose
a dynamic and practical choices defined bellow:

Dynamic choice: [20] We take α = pα̃, when p ≥ 1 is a fixed scalar according to the the size of the
increment of x or s and α̃ is the default step size (the theoretical choice). In our numerical tests, we set:

α =


p1α̃ if ∥∆x∥ ≥ n
p2α̃ if 1 ≤ ∥∆x∥ ≤ n
p3α̃ if ∥∆x∥ ≤ 1.

Practical choice : It should be noted that the step size selected during each inner iteration is small
enough for analyzing the algorithm, while in practice the step size during each inner iteration should be
large enough for the efficiency of the algorithm. Then the step sizes αx and αs during each inner iteration
in this experiment are chosen according to the following strategy. First, compute the maximum allowable
step sizes by the following strategy:

αx = β
{
1,min

i∈I
(−

xi

dxi
)
}

, αs = β

{
1,min

i∈J
(−

s j

ds j
)
}

,

such as 0 < β < 1, I = {i : dxi < 0} and J =
{
j : ds j < 0

}
.

In this paper, we choose β ∈ {0.6, 0.9, 0.98, 0.995} . The new iteration point is defined by

x := x + αx∆x ; s := s + αs∆s

Theoretical choice:
For our kernel function ψ,we take the default step-size α̃ defined in the formula (4.5) and for the kernel

function ψ 1, the default step-size is defined below:

α =
1

(1 + 2κ)
(
9 + 4πp

)
(8δ + 2)

p + 2
p + 1

=
1

(1 + 2κ) (9 + 8π) (8δ + 2)
4
3

, (p = 2)

6.1. Examples of fixed size

We consider the following p∗(0)-LCP:

Example 6.1.

M =


2 1 1 1
1 2 0 1
1 0 1 2
−1 −1 −2 0

 and q =


−8
−6
−4
3

 .
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The starting point is:

(x0)T =
(

1.5 0.4 0.2 7
)
.

The solution is:

( x∗)T =
(

2.5 0.5 0 2.5
)
.

Example 6.2.

M =



4 −1 0 0 0 0 0
−1 4 −1 0 0 0 0
0 −1 4 −1 0 0 0
0 0 −1 4 −1 0 0
0 0 0 −1 4 −1 0
0 0 0 0 −1 4 −1
0 0 0 0 0 −1 4


and q =



−1
−1
−1
−1
−1
−1
−1


.

The starting point is:

(x0)T =
(

0.65 0.65 0.65 0.65 0.65 0.65 0.65
)
.

The solution is:

(x∗)T =
(

0.3660, 0.4639, 0.4897 0.4948 0.4897 0.4639 0.3660
)

.

Example 6.3. We consider the following matrix:

M =



0 0 0 0 0 3 0.8 0.32 1.128 0.0512
0 0 0 0 0 0 1 0.8 0.32 0.128
0 0 0 0 0 0 0 1 0.8 032
0 0 0 0 0 0 0 0 1 0.8
0 0 0 0 0 0 0 0 0 1
−3 0 0 0 0 0 0 0 0 0
−0.8 −1 0 0 0 0 0 0 0 0
−0.32 −0.8 −1 0 0 0 0 0 0 0
−1.128 −0.32 −0.8 −1 0 0 0 0 0 0
−0.0512 −0.128 −0.32 −0.8 −1 0 0 0 0 0


and q =



−0.0256
−0.064
−0.16
−0.4
−1
1
1
1
1
1


.

The starting point is:

(x0)T =
(

0.18 0.18 0.18 0.18 0.25 3 4 5 6 9
)

.

The solution is:

(x∗)T =
(

0 0 0 0 1 0 0 0 0 1
)

.

In the results tables, n represents the size of the example, (Inner) represents the number of inner
iterations and (Cpu)) represents the calculation time in seconds. In our computational study, we compared

our algorithm using the function ψ(t) =
t2
− 1 − log t

2
+

e
1
tq −1
− 1

2q
(q ≥ 1) with the algorithm proposed in

[10], which is based on the function

ψ1(t) =
(

t2
− 1
2
+

4
πp

[
tanp

(
π

2t + 2

)
− 1

]
, p ≥ 2

)
.
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We summarize our results in the following tables:

Table 1: Theoretical choice of the step size α.

Exp
ψ

Inner Cpu
ψ1

Inner Cpu
1
2
3

19416 12.955010
21739 13.521766
23920 33.156218

66055 36.528270
37124 31.188794
47813 97.466112

In this table 1, we have implemented the theoretical version of our proposed algorithm (Algorithm1)
and the algorithm based on the kernel function ψ1 proposed by El Ghami et al. on examples of fixed size.

Table 2: Dynamic choice of the step step size α.

Exp
ψ

Inner Cpu
ψ1

Inner Cpu
1
2
3

1936 2.637886
2163 2.670526

2376 28.235506

6599 6.518613
3710 5.164342

4777 67.021835

Table 2 contains the number of iterations and times in case of the two aformentioned algorithms using
the dynamic choice of the step size α.

In these two cases our algorithm (Algorithm1) provided better results in number of iterations and CPU
times.

Table 3: Practical choice of the step size α.

Exp
ψ

Inner Cpu
ψ1

Inner Cpu
Exp1/β = 0.995
Exp1/β = 0.98
Exp1/β = 0.9
Exp1/β = 0.6
Exp2/β = 0.995
Exp2/β = 0.98
Exp2/β = 0.9
Exp2/β = 0.6
Exp3/β = 0.995
Exp3/β = 0.98
Exp3/β = 0.9
Exp3/β = 0.6

2 0.078766
3 0.104999
3 0.082444
6 0.081271
2 0.007927
2 0.006171
3 0.081675
6 0.084934
1 0.126247

2 0.087238
3 0.065264
6 0.100081

2 0.081290
2 0.087865
3 0.082052
5 0.091480
4 0.118633
3 0.089546
3 0.077614
6 0.079696
1 0.550030
3 0.070101
3 0.092191
7 0.098438

Table 3 In this table, we present the results that are related to the two algorithms using the practical
choice of the step size α with different values of the parameter β .

It can be observed that in these cases the two algorithmes using different values of β provide usually
similar results.
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6.2. Examples of variable size

We consider the following p∗(0)-LCP with

mij =


1 si i = j
2 si i < j
0 si i > j

and q =


−1
.
.
−1

 for
{

1 ≤ i ≤ n.
1 ≤ j ≤ n.

The starting point is:

(x0)T =
(

0.05, ..., 0.05, 1.05
)
.

The solution is:

(x∗)T =
(

0, ..., 0, 1
)
.

We have the results below:

Table 4: Theoretical choice of the step size α.

n
ψ

Inner Cpu
ψ1

Inner Cpu
7

15
20
25
50
75

21887 16.328076
27006 30.057157
29741 88.326291
32223 412.491091
42714 864.884538

51385 1767.782094

39456 52.682240
60968 80.536014
72260 105.006885

826353 926.069324
126763 2173.910673

− −

In table 4, we present numerical results of the theoretical version of Algorithm1 and the algorithm
proposed by El Ghami et al. on examples of variable size. The obtained results are in favor with our
algorithm mainly when the size of the example n exceeds 50 (the algorithm proposed in [10] fails).

Table 5: Dynamic choice of the step size α.

n
ψ

Inner Cpu
ψ1

Inner Cpu
7
15
20
25
50
75

2190 2.666289
2699 6.314768
2952 25.132520
3207 41.092595
4262 89.855016

5131 125.561089

3937 4.468487
6083 30.590187
7226 74.879697
8252 15.425989

12658 214.390439
16375 392.228273

Table 5 contains the number of iterations and times in case of the two algorithms using the dynamic
choice of the step size α. In this case, we can see that Algorithm1 provided better results.

Remark 6.1. There is a parameter β involved in the definition of the practical choice, we used several values of this
parameter as indicated above. These values were chosen after some preliminary experiments that showed that these
values gave the most promising iteration counts. The value β = 0.995 gives the lowest iteration count in all cases.
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Table 6: Practical choice of the step size α.

n
ψ,

(
β = 0.995

)
Inner Cpu

7
15
30
50
75
100
150
300

2 0.004540
2 0.006865
2 0.169280
2 0.212657
2 0.229522
2 0.294217
2 0.525282
2 3.454890

In this table 6, we present the results that are related to Algorithm1 using the practical choice of the step
size α with β = 0.995.

we obtained promising results when using the practical choice of the step size.

6.3. Example of a nonmonotonic LCP
Example 6.4. We consider a P∗(κ)-LCP, with

M =

 0 1 + 4κ 0
−1 0 0
0 0 c

 and q =

 0.01
0.501
−0.49

 with c = 1 and κ = 0, 0.5, 0.9.

The starting point is:


κ = 0 we have (x0)T =

(
0.2506, 0.0674, 0.5284

)
κ = 0.5 we have (x0)T =

(
0.2506, 0.0323, 0.5260

)
κ = 0.9 we have (x0)T =

(
0.2506, 0.0220, 0.5241

)
Table 7: Theoretical choice of the step size α.

κ

ψ

Inner Cpu
ψ1

Inner Cpu
0

0.5
0.9

18594 8.770145
37048 17.077971
51713 23.587909

62837 28.334632
112711 43.963327
113218 54.193052

Table 7, represents the theoretical version of Algorithm1 and the algorithm proposed by El Ghami et al.
on nonmonotonic LCP example with different values of κ. For this case,The results obtained are in favor
with our algorithm.

Table 8: Dynamic choice of the step size α.

κ

ψ

Inner Cpu
ψ1

Inner Cpu
0

0.5
0.9

1856 1.382202
3693 2.604641
5163 3.434282

6278 4.048021
11259 5.986296
11262 7.124869
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In table 8, we compare our algorithm to the algorithm proposed in [10] applying to a nonmonotonic
LCP example using the dynamic choice of the step size .

We observe that Algorithm1 provided better results in number of iterations and times.

Table 9: Practical choice of the step size α.

κ

ψ

Inner Cpu
ψ1

Inner Cpu
0

0.5
0.9

2 0.113189
2 0.083952
2 0.012251

2 0.341297
2 0.078926
2 0.039677

Table 9 Here, we present the results that are related to the algorithms previously mentioned using the
practical choice of the step size with different value of κ. We obtained promising results when using the
practical choice of the step size. It seems that the practical choice is significantly better than the theoretical
and dynamic choices.

Remark 6.2. The results of these nine tables show that the algorithm based on our new kernel function ψ is efficient
and that the number of iterations of the algorithm depends on the values of the step size α. It was noted that the
theoretical value of the step size α is very small in each iteration, which requires a very large number of iterations and
more calculation time. For that, we have proposed other procedures to improve the numerical behavior of our algorithm
namely: the dynamic choice and the practical choice which replace the theoretical choice. The results obtained are in
favor of these two choices. The number of iterations and the calculation time are reduced considerably.

7. conclusion

In this paper, a new parametric kernel function with a double barrier term (combination of the classic
kernel function and a barrier term) is introduced. Based on this function, a class of large and small-
update primal–dual interior-point algorithms for P∗(κ)-linear complementarity problem is proposed. The
complexity analysis shows that the iteration bounds for the small and large-update primal–dual IPMs
based on this function coincide to the so far best known iteration complexities. Finally, we present some
numerical results to show the efficiency and the validity of the new proposed kernel functions for this class
of problems. As further research, it would be interesting to extend this work to the more general classes
of problems such as the horizontal linear complementarity problem (HLCP), nonlinear complementarity
problem (NCP), convex problems and second-order cone optimization (SOCO).
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