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Abstract. In this paper, we give a new characterization of Browder’s theorem by means of the generalized
Drazin-g-meromorphic Weyl spectrum and the generalized Drazin-g-meromorphic spectrum. Also, for

operators A and B satisfying A*B¥A* = A**! for some positive integer k, we generalize Cline’s formula to
the case of generalized Drazin-g-meromorphic invertibility.

1. Introduction and Preliminaries

Throughout this paper, let IN and C denote the set of natural numbers and complex numbers, respec-
tively. Let B(X) denote the Banach algebra of all bounded linear operators acting on a complex Banach
space X. For T € B(X), we denote the adjoint of T, null space of T, range of T and spectrum of T by
T*, N(T), R(T) and o(T), respectively. For a subset A of C, the set of interior points of A and the set of
accumulation points of A are denoted by int(A) and acc(A), respectively. For T € B(X), let a(T) be the nullity
of T, defined as the dimension of N(T) and (T) be the deficiency of T, defined as codimension of R(T). An
operator T € B(X) is called a lower semi-Fredholm operator if f(T) < co. An operator T € B(X) is called
an upper semi-Fredholm operator if a(T) < oo and R(T) is closed. The class of all lower semi-Fredholm
operators (upper semi-Fredholm operators, respectively) is denoted by ¢_(X) (¢+(X), respectively). An
operator T is called semi-Fredholm if it is upper or lower semi-Fredholm. For a semi-Fredholm operator
T € B(X), the index of T is defined by ind (T) = a(T) — (T). The class of all Fredholm operators is defined by
P(X) = P (X)NP-(X). The class of all lower semi-Weyl operators (upper semi-Weyl operators, respectively)
is defined by W_(X) = {T € ¢_(X) : ind (T) > 0} (W(X) = {T € ¢.(X) : ind (T) < 0}, respectively). An
operator T € B(X) is said to be Weylif T € ¢(X) and ind (T) = 0. The spectra for upper semi-Fredholm operator,
lower semi-Fredholm operator, Fredholm operator, upper semi-Weyl operator, lower semi-Weyl operator and Weyl
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operator are defined by

0uf(T) := {A € C: AI - Tis not upper semi-Fredholm},
01¢(T) := {A € C : Al - T is not lower semi-Fredholm},
0¢(T) := {A € C: Al - Tis not Fredholm},

ouw(T) := {A € C : AI = T'is not upper semi-Weyl},
o(T) :={A € C: AI - Tis not lower semi-Weyl},
0u(T) := {A € C: AI = T'is not Weyl}, respectively.

A bounded linear operator T is said to be bounded below if R(T) is closed and T is injective. The approximate
point and surjective spectra are defined by

04(T) :={A € C: Al — Tis not bounded below},
0s(T) := {A € C: AI — Tis not surjective}, respectively.

For an operator T € B(X), the ascent p(T) is the smallest non negative integer p such that N(TP) = N(T**!).
If no such integer exists, we set p(T) = co. For an operator T € B(X), the descent ¢(T) is the smallest non
negative integer g such that R(T%) = R(T7*). If no such integer exists, we set g(T) = co. By [1, Theorem 1.20]
we know that if both p(T) and g(T) are finite, then p(T) = q(T).

An operator T € B(X) is said to have the single-valued extension property (SVEP) at u € C if for every
neighborhood U of y the only analytic function f : U — X satisfying (uI — T) f(1) = 0is the function f = 0.
An operator T is said to have SVEP if T has SVEP at every u € C. It is known that if p(ul — T) is finite, then
T has SVEP at u and if q(ul — T) is finite, then T* has SVEP at u.

An operator T € B(X) is said to be Drazin invertible if there exist S € B(X) and a positive integer n such
that

ST =TS, T"*'S = T"and STS = S.

By [1, Theorem 1.132] T is Drazin invertible if and only if p(T) = g(T) < co. An operator T € B(X) is said
to be left Drazin invertible if p(T) < oo and R(TP*!) is closed. An operator T € B(X) is said to be lower
semi-Browder if it is a lower semi-Fredholm and g(T) < co. An operator T € B(X) is said to be right Drazin
invertible if g(T) < oo and R(TY) is closed. An operator T € B(X) is said to be upper semi-Browder if it
is an upper semi-Fredholm and p(T) < co. We say that an operator T € B(X) is Browder if it is lower
semi-Browder and upper semi-Browder. The spectra for lower semi-Browder operator, upper semi-Browder
operator and Browder operator are defined by

op(T) : ={A € C: Al — Tis not lower semi-Browder},
ouw(T) : = {A € C: Al — T'is not upper semi-Browder},
op(T) : = {A € C: AI - Tis not Browder}, respectively.

Clearly, every Browder operator is Drazin invertible.

An operator T € B(X) is said to be semi-regular if R(T) is closed and N(T) c R(T") for every n € IN.
An operator T € B(X) is said to be nilpotent if T" = 0 for some n € IN. An operator T € B(X) is said to be
quasi-nilpotent if AI — T is invertible for all A € C \ {0}. An operator T € B(X) is said to be Riesz if AI — T is
Browder for all A € C\ {0}. An operator T € B(X) is said to be meromorphic if AI — T is Drazin invertible for
all A € C\ {0}. Clearly, every Riesz operator is meromorphic.

A subspace M of X is said to be T-invariant if T(M) C M. For a T-invariant subspace M of X, we define
Tyv : M — Mby Tp(x) = T(x),x € M. We say that T is completely reduced by the pair (M, N) (denoted by
(M,N) € Red(T)) if M and N are two closed T-invariant subspaces of X such that X = M & N.

An operator T is said to possess a generalized Kato decomposition (GKD) if there exists a pair (M, N) € Red(T)
such that Ty is semi-regular and Ty is quasi-nilpotent. Here, if we assume that Ty to be nilpotent, then T is
said to be of Kato type. An operator is said to possess a Kato-Riesz decomposition (GKRD), if there exists a pair
(M, N) € Red(T) such that Ty is semi-regular and Ty is Riesz (see [20]). Zivkovié-Zlatanovi¢ and Duggal
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[22] introduced the notion of generalized Kato-meromorphic decomposition. An operator T € B(X) is said
to possess a generalized Kato-meromorphic decomposition (GKMD), if there exists a pair (M, N) € Red(T) such
that Ty is semi-regular and Ty is meromorphic. Zivkovié-Zlatanovi¢[19] generalized Kato-g-meromorphic
decomposition and introduced the notion of g-meromorphic operators. An operator T € B(X) is called
g-meromorphic if every nonzero spectral point is an isolated point. Clearly, every meromorphic operator
is g-meromorphic. An operator T € B(X) is said to possess a generalized Kato-g-meromorphic decomposition
(GK(gM)D), if there exists a pair (M, N) € Red(T) such that Ty is semi-regular and Ty is g-meromorphic. For
T € B(X), the generalized Kato spectrum, generalized Kato Riesz spectrum, generalized Kato meromorphic spectrum
and generalized Kato-g-meromorphic spectrum are defined by

ogxp(T) : = {A € C: AI - T does not admit a GKD},

ogkrp(T) : = {A € C: AI - T'does not admit a GKRD},

ogxmp(T) : = {A € C: Al - T does not admit a GKMD},

agxgmy(T) : = {A € C: AI - T does not admit a GK(gM)D}, respectively.

For T € B(X) and a non negative integer n, define Ty, to be the restriction of T to T"(X). If for some non
negative integer n, the range space T"(X) is closed and T}, is Fredholm (an upper semi Fredholm, a lower
semi Fredholm, an upper semi Browder, a lower semi Browder, Browder, respectively) then T is said to be
B-Fredholm (an upper semi B-Fredholm, a lower semi B-Fredholm, an upper semi B-Browder, a lower semi
B-Browder, B-Browder, respectively). For a semi B-Fredholm operator T (see [8]), the index of T is defined
as index of Ty,. The spectra for upper semi B-Fredholm operator, lower semi B-Fredholm operator, B-Fredholm
operator, upper semi B-Browder operator, lower semi B-Browder operator and B-Browder operator are defined by

ousbf(T) := {A € C: AI - Tis not upper semi B-Fredholm},

o1s5f(T) := {A € C: Al - T'is not lower semi B-Fredholm},
0pf(T) := {A € C : AI - Tiis not B-Fredholm},

ouskh(T) := {A € C : AI = T'is not upper semi B-Browder},

o1sp(T) := {A € C: AI — T'is not lower semi B-Browder},
om(T) := {A € C: Al — Tis not B-Browder}, respectively.

By [1, Theorem 3.47] we know that an operator T € B(X) is upper semi B-Browder (lower semi B-Browder,
B-Browder, respectively) if and only if T is left Drazin invertible (right Drazin invertible, Drazin invertible,
respectively).

An operator T € B(X) is said to be an upper semi B-Weyl (a lower semi B-Weyl, respectively) if it
is an upper semi B-Fredholm (a lower semi B-Fredholm, respectively) having ind (T) < 0 (ind (T) > O,
respectively). An operator T € B(X) is said to be B-Weyl if ind (T) = 0 and T is B-Fredholm. The spectra for
upper semi B-Weyl operator, lower semi B-Weyl operator and B-Weyl operator are defined by

Ouskw(T) :={A € C : AI = T'is not upper semi B-Weyl},
oisbw(T) := {A € C : AI = T'is not lower semi B-Weyl},
op(T) := {A € C : Al — Tis not B-Weyl}, respectively.

By [8, Theorem 2.7], it is known that T € B(X) is B-Fredholm (B-Weyl, respectively) if there exists (M, N) €
Red(T) such that Ty is Fredholm (Weyl, respectively) and Ty is nilpotent.

An operator T € B(X) is called Drazin invertible if there exists a pair (M, N) € Red(T) such that Ty is
invertible and Ty is nilpotent. This definition aligns with the assertion that there exists S € B(X) such that
TS = ST, STS = Sand TST — T is nilpotent. Koliha [17] replaced the third condition with TST — T is quasi-
nilpotent and generalized this concept. An operator is called generalized Drazin invertible if there exist a
pair (M, N) € Red(T) such that Ty, is invertible and T is quasi-nilpotent. Cvetkovi¢ and Zivkovié¢-Zlatanovi¢
[11] introduced the concept of operators which are direct sum of a quasi-nilpotent and a bounded below
(surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl). An operator T € B(X)
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is said to be generalized Drazin bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper
(lower) semi-Weyl, Weyl, respectively) if there exists a pair (M, N) € Red(T) such that Ty is bounded below
(surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and
T is quasi-nilpotent. The generalized Drazin, generalized Drazin bounded below, generalized Drazin surjective
spectra, generalized Drazin lower (upper) semi-Fredholm, generalized Drazin Fredholm, generalized Drazin upper
(lower) semi-Weyl and generalized Drazin Weyl spectra are defined by

o4p(T) := {A € C: Al - Tis not generalized Drazin invertible},
ospg(T) := {A € C: Al — Tis not generalized Drazin bounded below},
ospQ(T) := {A € C: Al — T'is not generalized Drazin surjective},
040, (T) := {A € C: Al - Tis not generalized Drazin upper semi-Fredholm},

{
{
{
{
ogp¢_(T) := {A € C: A - Tis not generalized Drazin lower semi-Fredholmj},
ong,(T) = {A € C: Al - Tis not generalized Drazin Fredholm},
agow, (T) := {A € C: AI - Tis not generalized Drazin upper semi-Weyl},
ogow_(T) := {A € C: Al - T'is not generalized Drazin lower semi-Weyl},
{

ogow(T) :={A € C: Al — T'is not generalized Drazin Weyl}, respectively.
By [11], it is known that

= agpg, (T) U agpg (T),

C 0406, (T) € agpw.(T) C ogpg(T),
C 04pp_(T) C agpw_(T) C oypa(T),
C a4pp(T) C agpw C agp(T).

Uqub(T
GgKD(T
GgKD(T

OgKD(T

~ ~— ~— ~—

Recently, Zivkovi¢-Zlatanovi¢ and Cvetkovié¢ [20] introduced the notion of generalized Drazin-Riesz in-
vertible operators by substituting the third condition with TST — T is Riesz. They established that an
operator T € B(X) is generalized Drazin-Riesz invertible if and only if there exists a pair (M, N) € Red(T)
such that Ty is invertible and Ty is Riesz. An operator T € B(X) is said to be generalized Drazin-Riesz
bounded below (surjective, upper (lower) semi-Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if
there exists a pair (M, N) € Red(T) such that Ty, is bounded below (surjective, upper (lower) semi-Fredholm,
upper (lower) semi-Weyl, Weyl, respectively) and Ty is Riesz. The generalized Drazin-Riesz bounded below,
generalized Drazin-Riesz surjective, generalized Drazin-Riesz invertible, generalized Drazin-Riesz upper (lower)
semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-Riesz upper (lower) semi-Weyl and gener-
alized Drazin-Riesz Weyl spectra are defined by

osorg(T) := {A € C: Al — Tis not generalized Drazin-Riesz bounded below},
osprQ(T) := {A € C : AI - Tis not generalized Drazin-Riesz surjective},
o4pr(T) := {A € C: Al - Tis not generalized Drazin-Riesz invertible},

ogpre, (T) := {A € C: Al — T'is not generalized Drazin-Riesz upper semi-Fredholm},
ogDR(p_(T) :={A € C: AI - T'is not generalized Drazin-Riesz lower semi-Fredholm},

o4pre(T) := {A € C: Al - T'is not generalized Drazin-Riesz Fredholm},
agorw, (T) := {A € C : AI - Tis not generalized Drazin-Riesz upper semi-Weyl},
ogprw_(T) := {A € C: Al — Tis not generalized Drazin-Riesz lower semi-Weyl},

)= {

asprw(T) := {A € C: AI - T'is not generalized Drazin-Riesz Weyl}, respectively.

Recently, Zivkovi¢-Zlatanovi¢ and Duggal [22] replaced the third condition with TST — T is meromorphic
and introduced the notion of generalized Drazin-meromorphic invertible operators. They established
that an operator T € B(X) is generalized Drazin-meromorphic invertible if and only if there exists a pair
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(M,N) € Red(T) such that Ty is invertible and Ty is meromorphic. An operator T € B(X) is said to be
generalized Drazin-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm,
upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair (M, N) € Red(T) such that Ty is bounded
below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl respectively)
and Ty is meromorphic. The generalized Drazin-meromorphic bounded below, generalized Drazin-meromorphic
sutjective, generalized Drazin-meromorphic invertible spectra, generalized Drazin-meromorphic upper (lower) semi-
Fredholm, generalized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic upper (lower) semi-Weyl
and generalized Drazin-meromorphic Weyl spectra are defined by

oyDMw_(T :={A € C: Al - Tis not generalized Drazin-meromorphic lower semi-Weyl},

OgDM, 7(T) :={A € C: Al - Tis not generalized Drazin-meromorphic bounded below},
a,oma(T) := {A € C: Al - Tis not generalized Drazin-meromorphic surjective},
o4oM(T) := {A € C: A - Tis not generalized Drazin-meromorphic invertible},
OgDM(/)+(T) :={A € C: AI - T'is not generalized Drazin-meromorphic upper semi-Fredholm},
ogpme_(T) := {A € C : AI - Tis not generalized Drazin-meromorphic lower semi-Fredholm},
osoMe(T) := {A € C: AI - Tis not generalized Drazin-meromorphic Fredholm},
agomw, (T) := {A € C: Al — Tis not generalized Drazin-meromorphic upper semi-Weyl},
)= {
)= {

ogomw(T) := {A € C: AI - T'is not generalized Drazin-meromorphic Weyl}, respectively.

Also, Zivkovié-Zlatanovié [19] introduced the notion of generalized Drazin-g-meromorphic invertible oper-
ators by substituting the third condition with TST — T is g-meromorphic. They established that an operator
T € B(X) is generalized Drazin-g-meromorphic invertible if and only if there exists a pair (M, N) € Red(T)
such that Ty is invertible and Ty is g-meromorphic. An operator T € B(X) is said to be generalized
Drazin-g-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower)
semi-Weyl, Weyl, respectively) if there exists a pair (M, N) € Red(T) such that Ty is bounded below (sur-
jective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and Ty is
g-meromorphic. The generalized Drazin-g-meromorphic bounded below, generalized Drazin-g-meromorphic surjec-
tive, generalized Drazin-g-meromorphic invertible, generalized Drazin-g-meromorphic lower (upper) semi-Fredholm,
generalized Drazin-g-meromorphic Fredholm, generalized Drazin-g-meromorphic lower (upper) semi-Weyl and gen-
eralized Drazin-g-meromorphic Weyl spectra are defined by

agpemg (T) := {A € C: Al - Tis not generalized Drazin-g-meromorphic bounded below},
osp@me(T) := {A € C: Al - Tis not generalized Drazin-g-meromorphic surjective},

agpm)(T) := {A € C: Al - Tis not generalized Drazin-g-meromorphic invertible},
agpemyo, (T) := {A € C: Al - T'is not generalized Drazin-g-meromorphic upper semi-Fredholm},

{
{
{
{
ogpemye_(T) := {A € C: Al - Tis not generalized Drazin-g-meromorphic lower semi-Fredholmj},
agp@mys(T) := {A € C: Al - T'is not generalized Drazin-g-meromorphic Fredholm},

agp@mw, (T) := {A € C : AI - Tis not generalized Drazin-g-meromorphic upper semi-Weyl},
agpemw_(T) := {A € C: Al - T'is not generalized Drazin-g-meromorphic lower semi-Weyl},
( {

agpEmw(T) := {A € C: Al — T'is not generalized Drazin-g-meromorphic Weyl}, respectively.

By [19, 20, 22], it is known that
ng*(p(T) = OgDs¢, (T) U O gD (T),
GgK*(T) C GgD*¢+(T) (- GgD*W+(T) C GgD*j(T),
UgK*(T) C OgDs¢p_ (T) c O gD+W_ (T) c O-gD*Q(T)/
G_,;K*(T) - GyD*(p(T) - O gD«W - G_,;D*(T),

where * stands for Riesz or meromorphic or g-meromorphic operators.
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Recall that an operator T satisfies Browder’s theorem if 65 (T) = 0,,(T) and generalized Browder’s theorem
if opp(T) = 0pw(T). Amouch et al. [6] and Karmouni and Tajmouati [16] provided a novel characterization
of Browder’s theorem using the spectra derived from Drazin invertibilty and Fredholm theory. Gupta and
Kumar [14] gave a new characterization of generalized Browder’s theorem by taking equality between
the generalized Drazin-meromorphic spectrum and the generalized Drazin-meromorphic Weyl spectrum.
Motivated by them, we give a new characterization of operators satisfying Browder’s theorem. We prove
that an operator T satisfies Browder’s theorem if and only if o,pgaw(T) = 4oy (T). In the last section,
for operators A and B satisfying A*B¥A* = A**! for some positive integer k, we generalize Cline’s formula
to the case of generalized Drazin-g-meromorphic invertibility.

2. Main Results
In this section, we will utilize the following result:

Theorem 2.1. [19, Theorem 3.7] Let T € B(X), then T is generalized Drazin-g-meromorphic upper semi-Weyl (gen-
eralized Drazin-g-meromorphic lower semi-Weyl, generalized Drazin-g-meromorphic upper semi-Fredholm, general-
ized Drazin-g-meromorphic lower semi-Fredholm, generalized Drazin-g-meromorphic Weyl, respectively) if and only
if T admits a GK(gM)D and 0 ¢ acco,pw, (T) (acco,pw_(T), acco,py, (T), accopg_(T), accozpw(T), respectively).

Theorem 2.2. [11, Theorem 3.4] Let T € B(X), then T is generalized Drazin upper semi-Weyl (generalized Drazin
lower semi-Weyl, generalized Drazin upper semi-Fredholm, generalized Drazin lower semi-Fredholm, generalized
Drazin Weyl, respectively) if and only if T admits a GKD and 0 ¢ acco,,(T) (accoy,(T), acco,¢(T), accoif(T),
accoy(T), respectively).

The following example illustrates that the inclusions opgayw_(T) C 0,pme(T) and
oy, (T) C dgpeag(T) can be proper.

Example 2.3. [20, Example 3.3] Let X = c(IN), co(IN), I’(IN) (p = 1) or I*(IN). Let U and V be the forward
and the backward unilateral shifts on X, respectively. Let T = U ® V. Then 0,(T) = 0,(T) = D, where ID
denotes the closed unit disc. Therefore, 0 € into,(T) and 0 € intos(T). Thus, by [19, Theorems 3.13 and
3.14] 0 € ogD(gM)J(T) and 0 € GgD(gM)Q(T)- Since 0 ¢ ogprw, (T) and we know that O gD(gM)W., (T) c O gDRW, (T),
0¢ O gD(gM)W.,. (T) Thus, 0e GgD(gM)J(T) \ O gD(gM)W., (T) Similarly, 0e GgD(gM)Q(T) \ O gD(gM)W_ (T)

In the following results we obtain necessary and sufficient conditions to get equality.

Proposition 2.4. Let T € B(X), then o,pmg(T) = oyp@mw,(T) if and only if T has SVEP at every A ¢
ogngmw, (T)-

Proof. Assume that o,p7(T) = opgmw, (T). Let A ¢ o,pmyw, (T), then AI — T is generalized Drazin-
g-meromorphic bounded below. Therefore, by [19, Theorem 3.13] T has SVEP at A. Conversely, assume
that T has SVEP at every A ¢ aypgamw, (T). It is sufficient to show that o,pgag(T) C ogpEmw, (T). Let A ¢
agp@mw, (T) which implies that AI — T is generalized Drazin-g-meromorphic upper semi-Weyl. Therefore,
by Theorem 2.1 AI — T admits a GK(gM)D. Thus, there exists (M, N) € Red(AI — T) such that (AI — T)y is
semi-regular and (A — T)y is g-meromorphic. Since T has SVEP at every A ¢ o,panw, (T), (Al - T) has SVEP
at 0. As SVEP at a point is transmitted to the restrictions on closed invariant subspaces, (AI — T) has SVEP
at 0. Therefore, by [1, Theorem 2.91] (AI — T)y is bounded below. Thus, by [19, Theorem 3.13] we have
Al — T is generalized Drazin-g-meromorphic bounded below. Hence, A € o,pgam7(T). O

Proposition 2.5. Let T € B(X), then o,pgma(T) = ogpemw_(T) if and only if T* has SVEP at every A ¢
O gD(gM)W_ (T)

Proof. Assume that o,pgne(T) = opemw_(T). Let A & oypgaw_(T), then AI — T is generalized Drazin-
g-meromorphic surjective. Therefore, by [19, Theorem 3.14] T* has SVEP at A. Conversely, assume that
T* has SVEP at every A ¢ aspemw_(T). It is sufficient to show that o,pgme(T) € ogpemw_(T). Let
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A ¢ oypgmw.(T) which implies that AI - T is generalized Drazin-g-meromorphic lower semi-Weyl. Then by
Theorem 2.1 AI-T admits a GK(gM)D and A & accozpw_(T). Since T* has SVEP at every A € o,pgmyw_(T) and
dgp@gmw._(T) C 01,(T) then T has SVEP atevery A ¢ 01,(T) = 04,(T*). Therefore, by [1, Theorem 5.27] we have
010(T) = 04w(T) = 0,6(T*) = o1p(T). Now we prove that o,pw_(T) = ,pq(T). Clearly, o,ow_(T) C 0,p(T). Let
u & ogpw_(T), then by Theorem 2.2, we have ul — T has GKD and u ¢ accoy,(T) = accoy(T). Therefore, by [11,
Theorem 3.7] u & g,p(T). Thus, aypw_(T) = 0,pa(T). This implies that A ¢ acco,pe(T). Therefore, by [19,
Theorem 3.14] AI-T is generalized Drazin-g-meromorprhic surjective and it follows that A ¢ o,pane(T). O

Corollary 2.6. Let T € B(X), then o,pum)(T) = 0spemw(T) if and only if T and T* have SVEP at every A ¢
agpemyw(T).

Proof. Suppose that o,pm)(T) = ogpEnw(T). Let A ¢ o,pmw(T), then AI — T is generalized Drazin-g-
meromorphic invertible. Therefore, by [19, Theorem 3.10] T and T* have SVEP at A. Conversely, let
A ¢ ogpenw(T) = opgmw, (T) U agpgayw_(T). Then by proofs of Proposition 2.4 and Proposition 2.5 we
have A ¢ GgD(gM)J(T) U GgD(gM)Q(T) = GgD(gM)(T)- O

Theorem 2.7. Let T € B(X), then following statements are equivalent:
(1) OyD(gM)(T) = OgD(gM)W(T)r
(i1) T or T* have SVEP at every A ¢ o ,p@gw(T).

Proof. Suppose that T has SVEP at every A ¢ o,pgw(T). It is sufficient to prove that o,pn(T) C
agpemw(T). Let A ¢ o,pmyw(T) then AI — T admits a GK(gM)D and A ¢ acco,pw(T). Since o,p@w(T) C
0w(T), T has SVEP at every A ¢ 0,(T). Therefore, by [1, Theorem 5.4] we have ¢,(T) = 0,(T). Now we prove
osow(T) = o4p(T). Clearly, o,ow(T) C o4p(T). Let u ¢ o;pw(T), then by Theorem 2.2, we have ul — T has
GKD and u ¢ accoy(T) = accoy(T). Therefore, by [11, Theorem 3.9] u ¢ o,p(T). Thus, 6,ow(T) = o,4p(T). This
implies that A ¢ acco,p(T). Therefore, by [19, Theorem 3.10] AI — T is generalized Drazin-g-meromorphic
invertible.

Now suppose that T* has SVEP at every A ¢ o ,pmw(T). Since o,p(T) = 0,p(T*) and o,pw(T) = 0,ow(T")
we have o,p(T) = 0gpyw(T). The converse is an immediate consequence of Corollary 2.6. [

Recall that an operator T € B(X) is said to satisfy generalized a-Browder’s theorem if oysp4(T) = Ouspw(T).
An operator T € B(X) satisfies a-Browder’s theorem if 0,4(T) = 0,,(T). By [4, Theorem 2.2] we know that
a-Browder’s theorem is equivalent to generalized a-Browder’s theorem.

Theorem 2.8. Let T € B(X), then the following holds:
(i) a-Browder's theorem holds for T if and only if o ;pgm)5(T) = dgpemw, (T),
(i1) a-Browder’s theorem holds for T* if and only if o ;pn(T) = 0 gp@mw_(T),
(iii) Browder's theorem holds for T if and only if o,pm)(T) = gp@nw(T).

Proof. (i) Suppose that a-Browder’s theorem holds for T which implies that ¢,,(T) = 0,4(T). Then by proof
of Proposition 2.5, we have o,p7(T) = o,pw, (T). It is sufficient to prove that o,pun.7(T) C ospEmyw, (T). Let
A ¢ a;pemw, (T), then AI — T is generalized Drazin-g-meromorphic upper semi-Weyl. By Theorem 2.1 it
follows that AI — T admits a GK(gM)D and A ¢ acco,pw, (T). This gives A ¢ acco,pg(T). Therefore, by [19,
Theorem 3.13] AI — T is generalized Drazin-g-meromorphic bounded below which gives A & o ,pnn7(T).
Conversely, suppose that o,pmg(T) = 0spEmw, (T). Using Proposition 2.4 we deduce that T has SVEP at
every A ¢ o,pemw, (T). Since o,pmyw, (T) C 0ua(T), T has SVEP at every A ¢ 0,,(T). By [1, Theorem 5.27]
T satisfies a-Browder’s theorem.

(i) Suppose that a-Browder’s theorem holds for T* which implies that 04(T) = 01,(T). By proof of Propo-
sition 2.5, we have o,po(T) = g,ow_(T). It is sufficient to prove that o,pgme(T) € ompEmw. (T). Let
A ¢ agpmw_(T), then AI — T is generalized Drazin-g-meromorphic lower semi-Weyl. By Theorem 2.1 it
follows that AI = T admits a GK(gM)D and A ¢ acco,pw_(T). This gives A ¢ acco,pg(T). Therefore, by
[19, Theorem 3.14] AI — T is generalized Drazin-g-meromorphic surjective which gives A ¢ o,pma(T).
Conversely, suppose that o,pma(T) = ospEmw_(T). Using Proposition 2.5 we deduce that T* has SVEP at
every A ¢ ogpgmw._(T). Since aypgayw_(T) C 01,(T), T* has SVEP at every A ¢ 01,(T) = 0,0(T"). Therefore,



A. Kumar el. / Filomat 38:25 (2024), 8849-8860 8856

a-Browder’s theorem holds for T*.

(iif) Suppose that Browder’s theorem holds for T which implies that 04(T) = 04,(T). Then by proof of
Theorem 2.7, we have o,p(T) = o,ow(T). It is sufficient to prove that o,pu(T) C ompEnw(T). Let
A ¢ agpe@nw(T), then Al — T is generalized Drazin-g-meromorphic Weyl. By Theorem 2.1 it follows that
Al = T admits a GK(gM)D and A ¢ acco,pw(T). This gives A ¢ acco,p(T). Therefore, by [19, Theorem 3.10]
AI-T is generalized Drazin-g-meromorphic invertible which gives A ¢ o,pn)(T). Conversely, suppose that
agpem)(T) = 04pemyw(T). Using Corollary 2.6 we deduce that T and T* have SVEP at every A ¢ o,pgw(T).
Since 0,pEamw(T) C 04(T), T and T have SVEP atevery A ¢ 0,,(T). Therefore, by [1, Theorem 5.4] Browder’s
theorem holds for T. O

Using Theorem 2.8, [2, Theorem 2.3], [4, Theorem 2.1], [5, Proposition 2.2], [16, Theorem 2.6] and [14,
Theorem 2.8] we have the following theorem:

Theorem 2.9. Let T € B(X), then the following statements are equivalent:
(i) Browder’s theorem holds for T,
(ii) Browder’s theorem holds for T*,
(iii) T has SVEP at every A ¢ 0,(T),
(iv) T* has SVEP at every A & o,(T),
(v) T has SVEP at every A ¢ op(T),
(vi) generalized Browder’s theorem holds for T,
(vii) T or T* has SVEP at every A ¢ o,prw(T),
(viii) o 4pr(T) = 0gprW(T),
(ix) T or T* has SVEP at every A ¢ ogppw(T),
(x) T or T* has SVEP at every A & ogpgw(T),
(xi) agpm(T) = agomw(T),
(xii) o4p(T) = agpw(T),
(XZZl) GgD(gM)(T) = agD(gM)W(T)~

Using [4, Theorem 2.2], [16, Theorem 2.7] and [14, Theorem 2.9] a similar result for a-Browder’s theorem
can be stated as follows:

Theorem 2.10. Let T € B(X), then the following statements are equivalent:
(i) a-Browder’s theorem holds for T,
(ii) generalized a-Browder’s theorem holds for T,
(iii) T has SVEP at every A & ogprw, (T),
(iv) ogprg (T) = o4prW, (T),
(v) T has SVEP at every A & o zpmw, (T),
(vi) T has SVEP at every A & o pgw, (T),
(vii) 0 gpmg (T) = agpmw, (T),
(viii) agpemy 7 (T) = ogpEmw, (T).

Lemma 2.11. Let T € B(X), then
(i) ouf(T) = 0uwp(T) & 04p¢, (T) = 0gpg(T),
(i1) 017(T) = op(T) & 0gpy_(T) = agpa(T).

Proof. (i) Let 0,4(T) = 0,¢(T). It is sufficient to show that o,p7(T) C op¢, (T). Let A & 04pg, (T). Then AI =T
is generalized Drazin upper semi-Fredholm. Then by Theorem 2.2, AI — T admits a GKD and A ¢ acco,¢(T)
which implies that A ¢ acco,;(T). Then by Theorem [11, Theorem 3.6], we have A ¢ o,p5(T). Coversely, let
0gp¢, (T) = 04pg(T). Itis sufficient to show that 0,;,(T) C 0,¢(T). Let A ¢ 0,¢(T). Then A ¢ aypy, (T) = agpg(T).
This implies that A ¢ acco,y(T). Then by [1, Remark 2.11], we have T has SVEP at A. This gives p(AI-T) < co.
Thus, A ¢ 0,,(T).

(ii) Using a similar argument as above we can get the desired result. [J
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The following example demonstrates that the inclusions o,pye, (T) € 0pm g (T),
agpemyo_(T) € 0gpema(T) and 6,pgae(T) C 04pgmy(T) can be proper:

Example 2.12. Let X = c¢(IN), co(IN), I’(IN) (p = 1) or I*(IN). Let U and V be the forward and the backward
unilateral shifts on X, respectively. Then o(U) = 6(V) = D, where ID denotes the closed unit disc, o,(U) =
05(V) = dD and by [21, Theorem 4.2], we have o¢(U) = g¢(V) = JID. Therefore, by [19, Theorem 4.13],
OgK(gM)(u) = OgD(gM)¢+(u) = UgD(gM)j(u) = JD which gives GgD(gM)qb,(u):OgD(gM)¢(u):8D- AISO, by [19,
Corollary 4.1], we have o ,pme(U) = o4pm)(U) = ID. Hence, the inclusions o ,pmyp_(U) C oypgnae(U) and
GgD(gM)(p(U) C agD(gM)(U) are proper. Also, by [19, Theorem 4.14], agK(gM)(V) = GgD(gM)d)_(V) = GgD(gM)Q(V) =
dID which gives g,pmye. (V) = 0gpgmye(V) = dD. By [19, Corollary 4.1], we have 6,pgg (V) = 0gpmy(V) =
ID. Hence, the inclusion apne, (V) C agpgm7(V) is proper.

In the following results we obtain necessary and sufficient conditions to get equality.

Theorem 2.13. Let T € B(X), then the following statements are equivalent:
(i) agpe. (T) = 0,09(T),
(ii) T has SVEP at every A ¢ o,py,(T),
(iii) T has SVEP at every A & 0 ypgmye, (T),
(iv) O'gD(gM)J(T) = OgD(gM)o. ().

Proof. (i) © (ii) Suppose that o,py, (T) = o,pg(T). Let A & oype,(T), then A & o,pg(T) which gives T has
SVEP at A. Now suppose that T has SVEP at every A ¢ o,py, (T) which gives T has SVEP at every A ¢ a,,¢(T).
This implies that 6,,¢(T) = 0,5(T). Thus by Lemma 2.11, we have o,p¢, (T) = 04p5(T).

(iii) & (iv) Suppose that T has SVEP at every A ¢ o,pm)e, (T) which implies that AI — T is generalized
Drazin-g-meromorphic upper semi-Fredholm. It is sufficient to show that o;p7(T) C oypae, (T). Let
A ¢ oypmye, (T), then by Theorem 2.1 there exists (M, N) € Red(AI—T) such that (AI -T)y is semi-regular and
(AI=T)y is g-meromorphic. Since T has SVEP at A, (AI — T)p has SVEP at 0. Therefore, by [1, Theorem 2.91]
(AI = T)y is bounded below. Thus, A ¢ o,pEm)7(T). Conversely, suppose that o,pg7(T) = d4p@mye, (T)-
Let A ¢ oypmye, (T), then AI - T is generalized Drazin-g-meromorphic bounded below. Therefore, by [19,
Theorem 3.13] it follows that T has SVEP at A.

(i) © (iv) Suppose that o,py,(T) = o4pg(T). It is sufficient to prove that oypa7(T) C d4p@gmye, (T). Let
A & ogpgmye, (T), then AI — T is generalized Drazin-g-meromorphic upper semi-Fredholm. By Theorem
2.1 it follows that AI — T admits a GK(¢M)D and A ¢ accoype,(T). This gives A ¢ acco,pg(T). There-
fore, by [19, Theorem 3.13] AI — T is generalized Drazin-g-meromorphic bounded below which gives
A ¢ 04pgm)5(T). Conversely, suppose that o,pg 7(T) = 0gpmye, (T). Then by (iv) = (iii) T has SVEP at ev-
ery A & opmye, (T)- Since 0 ,pgmyp. (T) € 04¢(T), T has SVEP at every A ¢ 0,¢(T). Therefore, 0,¢(T) = 0,4(T).
Thus, by Lemma 2.11 opy, (T) = 0,pg(T). O

Theorem 2.14. Let T € B(X), then the following statements are equivalent:
(i) 045 (T) = 04pa(T),
(ii) T* has SVEP at every A ¢ o,pe_(T),
(iii) T* has SVEP at every A ¢ ogpgne_(T),
(i) agp(gma(T) = ogpignng-(T)-

Proof. (i) & (ii) Suppose that o;p_(T) = gyp(T). Let A & o,p_(T), then A ¢ 0,pq(T) which gives T* has
SVEP at every A ¢ o,pe_(T). Now suppose that T* has SVEP at every A ¢ o,p,_(T) which gives T* has SVEP
atevery A ¢ 0;¢(T). This implies that 0;¢(T) = 05(T). Thus by Lemma 2.11, we have o,p¢_(T) = ,pa(T).

(iii) & (iv) Suppose that T* has SVEP at every A ¢ o,pym)e_(T) which implies that AI — T is generalized
Drazin-g-meromorphic lower semi-Fredholm. It is sufficient to show that o,pme(T) C ospEmye_(T)- Let
A & ogpgmye_(T). By Theorem 2.1 it follows that AI — T admits a GK(gM)D and A ¢ accoypy_(T). Since
agpemyo_(T) C 01¢(T), T* has SVEP at every A ¢ 0¢(T). Therefore, we have 0;¢(T) = o5(T). Thus, by Lemma
2.11 04py_(T) = 04p(T) which implies that A ¢ acco,pe(T). Hence, A ¢ o,pma(T). Conversely, suppose
that o,pema(T) = ogpemye_(T). Let A ¢ aypemye_(T), then AI — T is generalized Drazin-g-meromorphic
surjective. Therefore, by [19, Theorem 3.14] it follows that T* has SVEP at A.
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(i) © (iv) Suppose that o,ps_(T) = o,pa(T). It is sufficient to prove that o,pmae(T) C dgp@ae_(T). Let
A ¢ TgD(gMy_ (T), then AI — T is generalized Drazin-g-meromorphic lower semi-Fredholm. By Theorem
2.1 it follows that AI — T admits a GK(gM)D and A ¢ accoype_(T). This gives A ¢ acco,pq(T). Therefore,
by [19, Theorem 3.14] AI — T is generalized Drazin-g-meromorphic surjective which gives A ¢ o,pma(T)-
Conversely, suppose that o,pgme(T) = dgpEmye_(T). Then by (iv) = (iii) T* has SVEP at every A ¢
agpemyo_(T). Since oypgae_(T) € 01¢(T), T* has SVEP at every A € 01¢(T). Therefore, 0;¢(T) = o5(T). Thus,
by Lemma 2.11 o,py_(T) = 0,pa(T). O

Using [16, Corollary 2.10], [14, Corollary 2.14] and Theorems 2.13, 2.14 we have the following result:

Corollary 2.15. Let T € B(X), then the following statements are equivalent:
(i) g f(T) = oy(T),
(i1) T and T* have SVEP at every A & o¢(T),
(iit) opf(T) = ow(T),
(iv) T and T* have SVEP at every A & op¢(T),
(v) 04p(T) = 04py(T),
(vi) T and T* have SVEP at every A ¢ o,p¢(T),
(Ulll) GgDR(T) = GyDng(T),
(viii) T and T* have SVEP at every A ¢ ogpre(T),
(ix) 0gom(T) = ogpme(T),
(x) T and T* have SVEP at every A & o4pmy(T),
(x1) 04p(gm)(T) = 04D(gmyp(T),
(xii) T and T* have SVEP at every A & 0 ,p(gnme(T).

3. Cline’s Formula for the generalized Drazin-g-meromorphic invertibility

For a ring R with identity, Drazin[12] introduced the concept of Drazin inverses in a ring. An element
a € R is said to be Drazin invertible if there exist an element b € R and r € IN such that

ab="ba, bab="b,a*'b=4a".

If such b exists then it is unique and is called Drazin inverse of a and denoted by aP. For a,b € R, Cline [10]
proved that if ab is Drazin invertible, then ba is Drazin invertible and (ba)® = b((ab)”)*a. Recently, Gupta
and Kumar [13] generalized Cline’s formula for Drazin inverses in a ring with identity to the case when
abkak = a**! for some k € IN and obtained the following result:

Theorem 3.1. ([13, Theorem 2.10]) Let R be a ring with identity and suppose that a“b*a* = a**! for some k € IN.
Then a is Drazin invertible if and only if b*a* is Drazin invertible. Moreover, (V*a*)P = b*(aP)2a* and aP =
ak(bkak)D)kH_

Recently, Karmouni and Tajmouati [15] investigated for bounded linear operators A, B, C satisfying the
operator equation ABA = ACA and obtained that AC is generalized Drazin-Riesz invertible if and only if
BA is generalized Drazin-Riesz invertible. Also, they generalized Cline’s formula to the case of generalized
Drazin-Riesz invertibility. Gupta and Kumar [14] established Cline’s formula for the generalized Drazin-
meromorphic invertibility for bounded linear operators A and B under the condition A*B*A¥ = A1 In this
section, we establish Cline’s formula for the generalized Drazin-g-meromorphic invertibility for bounded
linear operators A and B under the condition A¥B*AF = A**1. By the proofs of [13, Proposition 2.1, Theorems
2.4,2.5 and 2.8] and [7, Theorem 3] we can deduce the following result:

Proposition 3.2. Let A, B € B(X) satisfies A\BXA* = A1 for some k € IN, then A is g-meromorphic if and only if
B¥A¥ is g-meromorphic.

Theorem 3.3. Suppose that A,B € B(X) and A*B*A* = A¥1 for some k € IN. Then A is generalized Drazin-g-
meromorphic invertible if and only if B€A¥ is generalized Drazin-g-meromorphic invertible.
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Proof. Let A be generalized Drazin-g-meromorphic invertible, then there exists T € B(X) such that
TA=AT, TAT=T and ATA - A is g-meromorphic.
Let S = B*T?A*. Then
(B A¥)S = (BXANY(BFT2AK) = BX(AFBFANT? = BFARIT? = BrakT
and
S(B*AF) = (BFT2A%)\(BFA¥) = BFT2 AR = BFAFT.
Therefore, S(B*A¥) = (B*A¥)S. Now
S(B*A"S = BFT2AR(BKAMBFT? A% = (BFT2A¥)(BXAFT) = BFT?A*'T = BFT?AF = 6.
Let Q =1 - AT, then Q is a bounded projection commuting with A which gives Q" = Q for all n € IN. Also,
observe that
(QAYBH(QAY = QFAFBFQFAF = QAR QF = QM1 AR = (QA)k+!
and
BFAK — (BFAK)2S = BKAK — (BEAR)2BFT2AK = BFAF — BX(A¥BKAR)BFT2 AF
= B*AF — BFAM2T? = BY(I — A2T?)AF = B¥(I — AT)A*
= B*QA* = BFQrAF = BX(QA).
Since QA is g-meromorphicand(QA)*B*(QA)* = (QA)**!, by Proposition 3.2 BXA¥—(B* A¥)2S is g-meromorphic.
Conversely, let B*A* be generalized Drazin-g-meromorphic invertible. Then there exists T’ € B(X) such

that
T'BA* = BFAFT!, T'BFA*T" =T’ and BYAFT'B*A* - B*A* is g-meromorphic.

Let S = AKT’*!, Then
S'A = AFTH A = ARTR2BR AR A = ART/RY2BR AR = ARTRR2(BEARY2 = ARk
and
AS' = AT = Ak
Consider
’ _ krrk+1 krprk+1 _ keprky akrk+1 _ pk k+1 Rk A2kqrk+1 _ pkgrk+1pk A kyk+1
AS' = (A"T""A)A'T = (A"T"")A*T = A" B*"ATT =A"T"""(B*A")
=g = AT =g,
We assert that
(A - A%8")" = (A" — A"™1S") for alln € IN.
We prove it by induction. Clearly, the result holds for n = 1. Suppose that it is true for n = m. Consider
(A _ AZsl)m+1 - (A _ AZS/)(A _ AZsl)m
— (A _ AZs/)(Ap _Am+lsl)
=Am+1 _Am+ZS/ _Am+25/ +Am+SSr2
:Anl+1 —Am+25,.
Also,
B ( AZS )k Bk(Ak Ak+1S/) — BkAk _ BkAk—lAZSI — BkAk _ BkAk—lAkT/k—l
— BkAk _ BkAZk—lT/k—l — BkAk _ (BkAk)kT/k—l — BkAk _ (BkAk)ZSI.
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Consider

(A _ AZSl)kBk(A _ AZS/)k — (Ak _ Ak+lS/)Bk(Ak _ Ak+1s/)
— AkBkAk _ Ak+15/BkAk _ AkBkAkBkAksl + Ak+1(BkAk)ZSl2
— Ak+1 _Ak+2sl — (A _AZSI)k+1.

Since BX(A — A2S") = B*AK — (B*AF)2T" is g-meromorphic, using Proposition 3.2 we deduce that A — A2S’ is
g-meromorphic. [J
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