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Abstract. In recent years, quasi-Cauchy sequences have been studied by many authors in the real line
and in metric spaces. In this paper, we investigate the concepts of quasi Cauchyness of sequences, ward
compactness and ward continuity in asymmetric metric spaces. We prove that forward totally boundedness
coincides with upward compactness, backward totally boundedness coincides with downward compact-
ness, an upward continuous function on a subset E of an asymmetric metric space X to an asymmetric
metric space Y is forward continuous under the condition that forward convergence implies backward
convergence on X. We also prove some other interesting theorems.

1. Introduction

Sequences, sequential compactness, sequential continuity of functions are very important concepts
which play a very important role, not only in pure mathematics, but also in other branches of science in-
volving mathematics especially in computer science, combinatorics, information theory, biological science,
geographic information systems, population modelling, and motion planning in robotics. Cauchy sequence
is a concept that involves far more than that the distance between successive terms is tending to zero, and
more generally speaking, than that the distance between successive terms is tending to zero, where by
successive terms, we mean xn and xn+1. Nevertheless, sequences which satisfy this weaker property are
more interesting in their own right in asymmetric metric spaces than in metric spaces.

The asymmetric distance function was first defined in 1914 by F. Hausdorff. Hausdorff introduced the
concept of asymmetry by defining a distance that expresses the distance between any two subsets of a metric
space which does not have symmetry property. Asymmetric metric spaces were then studied by Wilson
by calling the concept as quasi-metric ([13]). Later, Albert (1941) and Stoltenberg (1969) studied quasi-
metric spaces, while Ribeiro (1943) named these spaces as weak metric spaces. Reilly and Künzi worked
on quasi-pseudo metric spaces ([10, 12]). Kočinac and Künzi studied selection principles in quasi-metric
and quasi-uniform spaces ([9]). In addition, Colins and Zimmer (2007) have investigated the concepts of
convergence, compactness, and total boundedness in asymmetric metric spaces. For more information
about asymmetric metric structures see the book [5].

An asymmetric metric is a non-negative real valued function defined on X × X which does not have to
satisfy the symmetry property of classical metric conditions. In this case (X, d) is called an asymmetric metric
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* Corresponding author: Huseyin Cakalli
Email addresses: fikriyeincedagci@gmail.com (Fikriye Ince Dagci), huseyincakalli@maltepe.edu.tr. (Huseyin Cakalli)



F. I. Dagci, H. Cakalli / Filomat 38:25 (2024), 8917–8923 8918

space, where X is a non-empty set. The absence of symmetry in asymmetric metric spaces has revealed that
there are two types of topology in these spaces, and therefore two types of examination of basic concepts
such as convergence of a sequence, compactness, completeness and total boundedness of a set. The set
B+(x, ε) = {y ∈ X : d(x, y) < ε} is a forward ball at center x with radius ε, the set B−(x, ε) = {y ∈ X : d(y, x) < ε}
is a backward ball at center x with radius ε. The topology generated by the forward balls is called the forward
topology, and the topology generated by the backward balls is called the backward topology.

A function f on an asymmetric metric space is forward (backward) continuous if it preserves forward
(backward) convergent sequences ([6]). Using the idea of continuity of a function in terms of sequences in
the sense that a function preserves a certain kind of sequences, many kinds of continuities were introduced
and investigated. Recently, in [2], a concept of ward continuity, and a concept of ward compactness have
been introduced in the senses that a real function is called ward continuous if limn→∞ ∆ f (xn) = 0 whenever
limn→∞ ∆xn = 0, and a subset E of the set of real numbers is called ward compact if whenever (xn) is a
sequence of points in E there is a subsequence (yk) = (xnk ) of (xn) with limk→∞ ∆yk = 0, where∆yk = yk+1− yk.
We note that forward continuity and forward compactness terms were used in place of the terms ward
continuity and ward compactness in [2], respectively.

Since theorems and proofs related to backward topology are similar to those related to forward topology,
we will not give the proofs of theorems for backward case, only express statements. .

The aim of this paper is to investigate the concept of quasi-Cauchyness and prove interesting theorems
in asymmetric metric spaces.

2. Preliminaries

Now we give some definitions and notation which will be needed throughout the paper. X, Y,R andN
will denote an asymmetric metric space with an asymmetric metric dX, an asymmetric metric space with
an asymmetric metric dY, the set of real numbers, and the set of positive integers, respectively. We will use
d for both dX and dY when confusion does not arise. We will use boldface letters x, y, z, ... for sequences
x = (xn), y = (yn), z = (zn), ... of points in X or in Y.

Definition 2.1. A sequence (xn) is called forward (backward) Cauchy if for every ε > 0 there exists n0 ∈ N
such that for m ≥ n ≥ n0, d(xn, xm) < ε ( d(xm, xn) < ε) .

We recall the definition of forward (backward) convergence which was given in [6].

Definition 2.2. A sequence (xn) in an asymmetric metric space X forward (backward) converges to x ∈ X
if limn→∞ d(x, xn) = 0 (limn→∞ d(xn, x) = 0).

3. Ward compactness in asymmetric metric spaces

The term quasi-Cauchy was used by Burton and Coleman in real case ([1]), and whereas Cakalli used
the term forward in real case in [2] and metric spaces in [? ].

Palladino ([11]) introduced a concept of upward half Cauchyness, and a concept of downward half
Cauchyness in the following way: a sequence (xn) of points in R is called upward half Cauchy if for every
ε > 0 there exists an n0 ∈ N so that xn − xm < ε for m ≥ n ≥ n0, and downward half Cauchy if for every ε > 0
there exists an n0 ∈N so that xm − xn < ε for m ≥ n ≥ n0. Using the idea of the definition of an upward half
Cauchy sequence, a concept of upward half quasi-Cauchy sequence is introduced in [3]. A sequence (xn) of
points in R is called upward half quasi-Cauchy if for every ε > 0 there exists an n0 ∈N such that xn − xn+1 < ε
for n ≥ n0. A subset E of R is called upward compact if any sequence of points in E has an upward half
quasi-Cauchy subsequence. A sequence (xn) of points in R is called downward half quasi-Cauchy if for every
ε > 0 there exists an n0 ∈ N such that xn+1 − xn < ε for n ≥ n0 ([3]). A subset E of R is called downward
compact if any sequence of points in E has a downward half quasi-Cauchy subsequence. A subset E of R is
called up half compact if any sequence of points in E has an up half Cauchy subsequence, and is called down
half compact if any sequence of points in E has a down half Cauchy subsequence ([3]).
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In this section, we give the definition of a concept of forward (backward) quasi-Cauchy sequence, and
investigate new types of compactness on asymmetric metric spaces. Now we give definition of a forward
(backward) quasi-Cauchy sequence.

Definition 3.1. A sequence (xn) in an asymmetric metric space X is called forward (backward) quasi Cauchy
if (∆+xn) ((∆−xn)) is a null sequence, where ∆+xn = d(xn, xn+1) (∆−xn = d(xn+1, xn)) for each positive integer
n.

∆+(X) (∆−(X)) will stand for the set of all forward (backward) quasi-Cauchy sequences of points in
X. We note that left (right) quasi-K-Cauchy sequence term is used in [4] instead of forward (backward)
quasi-Cauchy sequence.

According to this definition, it is clear that any forward Cauchy sequence is forward quasi Cauchy
sequence, but the converse is not true as it is demonstrated in the following.

Example 3.2. (Sorgenfrey asymmetric) The function d : R ×R→ R defined by

d(x, y) =
{

y − x, if y ≥ x;
1, if y < x.

is an asymmetric metric. It is easy to see that (xn) =
√

n is forward quasi Cauchy but not forward Cauchy
in this asymmetric metric space.

Forward (backward) Cauchy sequences have the property that any subsequence of a forward (backward)
Cauchy sequence is forward (backward) Cauchy in asymmetric metric spaces. The analogous property fails
for forward (backward) quasi-Cauchy sequences. In fact, it is precisely the forward (backward) Cauchy
sequences which have the property that all of their subsequences are forward (backward) quasi-Cauchy.
One of the most important concepts in metric spaces is no doubt compactness. Many kinds of compactness
were introduced and investigated in real case and in metric spaces; ward compactness ([2]), statistical
compactness. Two kinds of quasi-Cauchness was investigated for the real spaces which made us to
introduce the concept in asymetric metric spaces ([3]). There are two kinds of compactness in asymetric
metric spaces. Now we introduce a concept of upward (downward) compactness of a subset of X.

Definition 3.3. A subset E of X is called upward (downward) compact if any sequence x = (xn) of points in
E has a forward (backward) quasi-Cauchy subsequence.

According to this definition, we see that any finite subset of X is both upward and downward compact.
It is easy to see that any subset of a upward (downward) compact set of X is upward (downward) compact,
union of finite number of upward (downward) compact subsets of X is upward (downward) compact and
intersection of family of any upward (downward) compact subsets of X is upward (downward) compact.
These observations above suggested to us the following.

Theorem 3.4. ([7]) A subset E of X is forward totally bounded if and only if any sequence of points in E has a forward
Cauchy subsequence.

It is easy to see that a subset E of X is backward totally bounded if and only if any sequence of points in
E has a backward Cauchy subsequence. Now we prove that forward totally boundedness coincides with
upward compactness in the following

Theorem 3.5. A subset E of X is forward totally bounded if and only if it is upward compact.

Proof. It is clear that forward totally boundedness of E implies upward compactness of E.
To prove the converse suppose that E is not forward totally bounded. In that case, there is an ε > 0

such that E has not a finite ε-net. Now take any element of E and say x1. Since E is not forward totally
bounded, Sε(x1) , E. Otherwise {x1} would be a finite ε-net of E. So there is an x2 ∈ E such that x2 < Sε(x1),
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i.e. d(x1, x2) ≥ ε. Since {x1, x2} is not a finite ε-net, Sε(x1) ∪ Sε(x2) , E. Now let x3 < Sε(x1) ∪ Sε(x2). So we
obtain d(x1, x3) ≥ ε and d(x2, x3) ≥ ε. Continuing in this way we can generate the sequence (xn) such that
xn < ∪n−1

i=1 Sε(xi) for n = 2, 3, .... So we get d(xi, xn) ≥ ε for i = 1, 2, ...,n−1 and for n = 2, 3, .... As a result of this,
for all n,m ∈ N which satisfy n < m we have d(xn, xm) ≥ ε. Therefore d(xn, xn+1) ≥ ε. Thus the sequence (xn)
constructed has not any forward quasi-Cauchy subsequence. This contradiction completes the proof.

Following a similar way to the proof of the preceding theorem, one can prove that A subset of X is
backward totally bounded if and only if it is downward compact.

4. Ward continuity of functions in asymmetric metric spaces

In this section, we introduce a concept of an upward (downward) continuous function on asymmmetric
metric spaces and examine the relationship between upward continuity and forward uniform continuity.

Some examples are given in [6, 7] that forward convergence does not imply forward Cauchyness, and
now we give an another simple example of this situation.

Example 4.1. In the Sorgenfrey asymmetric metric, if we take xn = (x + 1/n) , we see that (xn) is forward
convergent but it is not forward Cauchy.

It is also true that backward convergence does not imply backward Cauchyness, and one can give an
example of a sequence which is backward convergent, not backward Cauchy.

Lemma 4.2. Let (X, d) be an asymmetric metric space which has the property that forward convergence implies
backward convergence. Then any forward convergent sequence is forward Cauchy.

It is also true that any forward convergent sequence is forward Cauchy in an asymmetric metric space
which has the property that backward convergence implies forward convergence.

Definition 4.3. A function f is called upward (downward) continuous on a subset E of X to Y if f preserves
forward (backward) quasi-Cauchy sequences, i.e. the sequence f (x) = ( f (xn)) is forward (backward) quasi-
Cauchy in Y whenever x = (xn) is forward (backward) quasi-Cauchy in X.

Theorem 4.4. Assume that f be an upward continuous function on a subset E of X to Y and that forward convergence
implies backward convergence on X , then it is forward continuous.

Proof. Take any upward continuous function f on E to Y. Let (xn) be any forward convergent sequence of
points in E with forward limit ℓ. Then the sequence

(x1, ℓ, x2, ℓ, ..., xn, ℓ, ...)

is also forward convergent to ℓ. Hence

(x1, ℓ, x2, ℓ, ..., xn, ℓ, ...)

is forward quasi Cauchy. As f is upward continuous from E to Y, the sequence

( f (x1), f (ℓ), f (x2), f (ℓ), ..., f (xn), f (ℓ), ...)

if forward quasi Cauchy in Y . Thus limn→∞ dY( f (ℓ), f (xn)) = 0. This completes the proof of the theorem.

Corollary 4.5. Assume that f be an upward continuous on a subset E of X to Y and that backward convergence
implies forward convergence on X, then it is backward continuous.

It turns out that if f is downward continuous on a subset E of X to Y and if backward convergence
implies forward convergence on X , then it is backward continuous.
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Theorem 4.6. Let f be an upward continuous function from X to Y. Then upward continuous image of any upward
compact subset of X is upward compact.

Proof. Let f be an upward continuous function and E be an upward compact subset of X. Take any
sequence y = (yn) of terms in f (E). Write yn = f (xn), where xn ∈ E for each n ∈ N. Upward compactness of E
implies that there is a subsequence t = (tk) = (xnk ) of x with limk→∞ ∆

+tk = 0. Since f is upward continuous,
f (t) = ( f (tk)) is forward quasi-Cauchy. As f (t) is a subsequence of the sequence f (x) with limk→∞ ∆

+ f (tk) = 0,
the proof follows.

Using similar steps to the proof of the preceding theorem, one can easily obtain that downward contin-
uous image of any downward compact subset of X is downward compact.

We recall that a subset E of X is called forward compact if any sequence of point in E has a forward
convergent subsequence with a forward limit in E .

Corollary 4.7. Upward continuous image of any forward compact subset of X is forward compact.

Proof. The proof follows from the preceding theorem, so is omitted.

It is easy to see that downward continuous image of any backward compact subset of X is backward
compact.

Notation 4.8. Let YX denote the space of all functions from X to Y. The uniform asymmetric metric on YX

is

ρ( f , 1) := sup{d( f (x), 1(x)) : x ∈ X},

where d(x, y) = min{d(x, y), 1} and d is the asymmetric metric defined on Y. This asymmetric metric
generates the uniform topology on YX.

Now we state that any forward (backward) uniformly continuous function preserves forward (back-
ward) quasi-Cauchy sequences. This important result proved by Jao and Kanibir on quasi-pseudo metric
spaces.

Theorem 4.9. ([4]) If f is forward uniformly continuous on a subset E of X, then it is upward continuous on E.

It is also true that any backward uniformly continuous function on a subset E of X is downward
continuous on E.

It is well known that uniform limit of a sequence of continuous functions is continuous. This is also
true in the case of upward (downward) continuity, i.e. forward (backward) uniform limit of a sequence of
upward (downward) continuous functions is upward (downward) continuous under the condition that Y
is sequentially compact.

Theorem 4.10. Suppose that Y is forward sequentially compact. If ( fn) is a sequence of upward continuous functions
defined on a subset E of X to Y and ( fn) is backward uniformly convergent to a function f , then f is upward continuous
on E.

Proof. Let x = (xn) be any forward quasi-Cauchy sequence of points in E and ε > 0. Since ( fn) is backward
uniformly convergent to f , there exists a positive integer N1 such that dY( fn(x), f (x)) < ε

3 for all x ∈ E
whenever n ≥ N1. Since Y is forward sequentially compact, ( fn(x)) forward converges to f (x) for all x ∈ E.
So there exists a positive integer N2 such that dY( f (x), ( fn(x)) < ε

3 for all x ∈ E whenever n ≥ N2. Take
N = max {N1,N2}. As fN is upward continuous, there exists a positive integer N0, depending on ε and
greater than N such that d( fN(xn), fN(xn+1)) < ε3 for n ≥ N0. Now for n ≥ N0 we have
d( f (xn), f (xn+1)) ≤ d( f (xn), fN(xn)) + d( fN(xn), fN(xn+1)) + d( fN(xn+1), f (xn+1)) < ε3 +

ε
3 +

ε
3 = ε.

This completes the proof of the theorem.
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Suppose that Y is backward sequentially compact. If ( fn) is a sequence of downward continuous
functions defined on a subset E of X to Y and ( fn) is forward uniformly convergent to a function f , then f
is downward continuous on E.

Theorem 4.11. Suppose that forward convergence is equivalent to backward convergence in Y. If ( fn) is a sequence
of upward continuous functions defined on a subset E of X to Y and ( fn) is forward uniformly convergent to a function
f , then f is upward continuous on E.

Proof. Let x = (xn) be any forward quasi-Cauchy sequence of points in E and ε > 0. Then there exists a
positive integer N1 such that dY( f (x), fn(x)) < ε3 for all x ∈ X whenever n ≥ N1. Since forward convergence
is equivalent to backward convergence in Y, ( fn(x)) backward converges to f (x) for all x ∈ E. So there
exists a positive integer N2 such that dY( fn(x), f (x)) < ε

3 for all n ≥ N2. Take N = max {N1,N2}. As fN
is upward continuous, there exists a positive integer N0, depending on ε and greater than N such that
d( fN(xn), fN(xn+1)) < ε3 for n ≥ N0. Now for n ≥ N0 we have
d( f (xn), f (xn+1)) ≤ d( f (xn), fN(xn)) + d( fN(xn), fN(xn+1)) + d( fN(xn+1), f (xn+1)) < ε3 +

ε
3 +

ε
3 = ε.

This completes the proof of the theorem.

Suppose that forward convergence is equivalent to backward convergence in Y. If ( fn) is a sequence of
downward continuous functions defined on a subset E of X to Y and ( fn) is backward uniformly convergent
to a function f , then f is downward continuous on E.

Lemma 4.12. If the asymmetric metric space (Y, dY) is forward compact and has the property that forward convergence
implies backward convergence, then the space YX is forward complete in the uniform asymmetric metric ρ regarding
to dY.

One can prove that the space YX is backward complete in the uniform asymmetric metric ρ regarding
to dY if the asymmetric metric space (Y, dY) is backward compact and has the property that backward
convergence implies forward convergence.

Theorem 4.13. Suppose that (Y, dY) is forward compact, and that forward convergence implies backward convergence
in Y. The set of all upward continuous functions defined on X to Y is a forward closed subset of the space YX in the
uniform asymmetric metric ρ regarding to dY.

Proof. Let us denote the set of all upward continuous functions on X by ∆+C(X) and f be any element in
the forward closure of ∆+C(X). Then there exists a sequence of points in ∆+C(X) that forward uniformly
converges to f . To show that f is upward continuous take any forward quasi Cauchy sequence (xn). Let
ε > 0. Since ( fn) forward converges to f , there exists a positive integer N1 such that dY( f (x), fn(x)) < ε3 for all
x ∈ X whenever n ≥ N1. Also there exists a positive integer N2 such that dY( fn(x), f (x)) < ε3 for all n ≥ N2.
Take N = max {N1,N2}. As fN is upward continuous, there exists a positive integer N0, depending on ε and
greater than N such that d( fN(xn), fN(xn+1)) < ε3 for n ≥ N0. Hence for all n ≥ N0, we have
d( f (xn), f (xn+1)) ≤ d( f (xn), fN(xn)) + d( fN(xn), fN(xn+1)) + d( fN(xn+1), f (xn+1)) < ε3 +

ε
3 +

ε
3 = ε. This completes

the proof of the theorem.

If (Y, dY) is backward compact, and that backward convergence implies forward convergence in Y, then
the set of all downward continuous functions defined on X to Y is a backward closed subset of the space
YX in the uniform asymmetric metric ρ regarding to dY.

Corollary 4.14. Suppose that (Y, dY) is forward compact, and that forward convergence implies backward convergence
in Y. The set of all upward continuous functions from X to Y is forward complete in the uniform asymmetric metric
ρ regarding to dY.

Proof. The proof follows from the Lemma 4.12 and the preceding theorem.

Supposing that (Y, dY) is backward compact, and that backward convergence implies forward conver-
gence in Y. The set of all downward continuous functions from X to Y is backward complete in the uniform
asymmetric metric ρ regarding to dY.
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5. Conclusion

In this paper, we introduce and investigate not only upward and downward continuities of functions,
but also some other kinds of continuities defined via upward and downward quasi-Cauchy sequences in
an asymetric metric space X. We also investigate necessary and sufficient conditions for a subset of X to
be upward totally bounded. We prove results related to these newly defined continuities, newly defined
compactness, and some other kinds of continuities and compactness; namely compactness, continuity, and
uniform continuity on asymetric metric spaces. It turns out that not only the set of all upward continuous
functions defined on X to Y is a forward complete subspace of the space YX, but also the set of all downward
continuous functions from X to Y is backward complete subspace of the space YX in the uniform asymmetric
metric ρ regarding to dY under certain conditions. We suggest to investigate upward and downward quasi-
Cauchy sequences of fuzzy points, soft points or neutrosophic on asymetric metric spaces.

We also suggest to investigate upward and downward quasi-Cauchy double sequences (see for example
[8] for the definitions and related concepts in the double sequences case).
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