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Abstract. This article’s main purpose is to derive Chen’s inequalities for submanifolds immersed in golden
Riemannian manifolds having constant sectional curvatures and equipped with a semi-symmetric metric
connection. It also demonstrates the associations relating to the sectional curvatures, scalar curvature,
Ricci curvatures, and the mean curvature linked to the semi-symmetric metric connection. The cases about
equality are considered.

1. Introduction

The basic idea of Golden structure [14] was laid by polynomial structures on a manifold, which was
addressed in [18]. In [20], invariant submanifolds were studied for their various features in a golden
Riemannian manifold, and integrability was demonstrated in [17]. In [32], the Golden sectional curvature
has been investigated, and the geometry of submanifolds of locally decomposable Golden Riemannian
manifolds with constant Golden sectional curvature has been investigated.

The concept of the metallic structure was introduced in 2013 due to [20], as a generalization of the golden
structure defined on Riemannian manifolds. Since then, various aspects of metallic Riemannian manifolds
with respect to curvature have been discussed in [4, 5].

Moreover, Chen [12] studied submanifolds of real space form in 1993 and presented the fundamental
concept of the sharp inequality linking the intrinsic and extrinsic invariants. Chen-like inequalities were
subsequently investigated in numerous other ambient spaces, as well as in the references [13, 15, 16, 24, 25].

Semi-symmetric metric connections (ssmc) on Riemannian manifolds were conceptualised by H.A.
Hayden in [21]. In [36], K. Yano investigated some characteristics of a Riemannian manifold with a ssmc.
T. Imai discovered certain characteristics of a Riemannian manifold and a hypersurface of a Riemannian
manifold equipped with a ssmc in [22] and [23]. Submanifolds of a Riemannian manifold endowed with
ssc were examined by Z. Nakao [28]. However, establishing basic relationships between a submanifold’s
intrinsic and extrinsic invariants is one of the fundamental issues in submanifold theory. In this regard, B.
Y. Chen [6, 7, 10] introduced inequalities known as Chen inequalities. Subsequently, numerous geometers
examined comparable issues for distinct submanifolds in different ambient spaces; as evidenced by the
works of [1–3, 26, 27] and [29].
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* Corresponding author: Mehmet Akif Akyol
Email addresses: majid_alichoudhary@yahoo.co.in (Majid Ali Choudhary), mehmet.akyol@usak.edu.tr (Mehmet Akif Akyol)



M. A. Choudhary, M. A. Akyol / Filomat 38:25 (2024), 8925–8935 8926

Motivated by the aforementioned advancements, the purpose of this note is to obtain sharp inequalities
for submanifolds of locally decomposable golden Riemannian manifolds that possess constant sectional
curvatures and are equipped with ssmc. Relationships between the sectional curvatures, scalar curvature,
Ricci curvatures, and the mean curvature linked to the ssmc have also been derived. The equality cases are
taken into account.

2. Preliminaries

2.1. Golden Riemannian manifolds

Any (1, 1)-tensor field φ generates a Golden-type structure on a manifold Nn+p if [18]:

φ2
− φ − I = 0,

(N, φ) is referred to as the Golden manifold. Moreover, in case φ on the Riemannian manifold (N, 1) satisfies

1(φX̃, Ỹ) = 1(Ỹ, φX̃),

N is termed as Golden Riemannian manifold [14]. Substituting φX̃ in place of X̃ in above relation produces
the subsequent

1(φX̃, φỸ) = 1(φ2X̃, Ỹ) = 1(φX̃, Ỹ) + 1(X̃, Ỹ).

Consider a Golden Riemannian manifold (N, 1, φ). If we have

∇φ = 0,

that is, φ is covariantly parallel, then N is a locally decomposable Golden Riemannian manifold.
The curvature tensor of a locally decomposable Golden Riemannian manifold (N, 1, φ) with a constant

Golden sectional curvature is therefore defined as follows: [32]

R̃
(
X̃, Ỹ

)
Z̃ =

c
3

{
1
(
Ỹ, Z̃

)
X̃ − 1

(
X̃, Z̃

)
Ỹ (2.1)

−1
(
Ỹ, φZ̃

)
X̃ − 1

(
Ỹ, Z̃

)
φX̃ + 21

(
Ỹ, φZ̃

)
φX̃

+1
(
X̃, φZ̃

)
Ỹ + 1

(
X̃, Z̃

)
φỸ − 21

(
X̃, φZ̃

)
φỸ

}
regarding any vector fields X̃, Ỹ, and Z̃ on N.

2.2. Riemannian Invariants

Let Nn+p(c) be a Riemannian manifold and ∇̃ be a linear connection on it. If T̃, the torsion tensor of ∇̃, is
written as [11]

T̃(X̃, Ỹ) = ∇̃X̃Ỹ − ∇̃ỸX̃ − [X̃, Ỹ],

satisfying
T̃(X̃, Ỹ) = ϕ(Ỹ)X̃ − ϕ(X̃)Ỹ.

Then, the connection ∇̃ is referred to as semi-symmetric for a 1 -form ϕ.
Assume any Riemannian metric 1 and connection ∇̃ on N. ∇̃ is referred to as a ssmc on N if

∇̃1 = 0.

In accordance with [36], ∇̃ is an ssmc on N such that

∇̃X̃Ỹ =
◦

∇X̃ Ỹ + ϕ(Ỹ)X̃ − 1(X̃, Ỹ)P
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in this case, the Levi-Civita connection with respect to 1 is denoted by
◦

∇̃ and for each vector field X̃,

1(P, X̃) = ϕ(X̃)

defines a vector field P.

We will take a Riemannian manifold N that is equipped with
◦

∇̃, and a ssmc ∇̃.
Suppose a Riemannian manifold N has a n-dimensional submanifold called Mn. We take into con-

sideration the induced Levi-Civita connection indicated by
◦

∇ and the induced ssmc indicated by ∇ on
Mn.

The curvature tensor of Nn+p with respect to ∇̃ is R̃, and the curvature tensor of N with respect to
◦

∇̃ is
◦

R̃. Additionally, we indicate the curvature tensors of ∇ and
◦

∇ on Mn by the symbols R and
◦

R, respectively.

The Gauss formulas for ∇ and
◦

∇, respectively, can be expressed as follows:

∇̃XY = ∇XY + h(X,Y),
◦

∇X Y =
◦

∇X Y+
◦

h (X,Y),

∀X,Y ∈ χ (Mn) .

Let h is a (0,2)-tensor on Mn, and
◦

h is the second fundamental form of Mn. The formula (7) from [28]

indicates that h is symmetric as well. One represents the mean curvature vector of Mn in Nn+p by
◦

H.
Consider the golden Riemannian manifold Nn+p(c), which has a constant golden sectional curvature and

a ssmc ∇̃. With the aid of (2.1), the curvature tensor
◦

R̃ with regard to
◦

∇̃ on Nn+p(c) is written by

◦

R̃ (X,Y,Z,W) =
c
3
{1(Y,Z)1(X,W) − 1(X,Z)1(Y,W) (2.2)

−1(Y, φZ)1(X,W) − 1(Y,Z)1(φX,W)
+21(Y, φZ)1(φX,W) + 1(X, φZ)1(Y,W)
+1(X,Z)1(φY,W) − 21(X, φZ)1(φY,W)}.

Following that, we can write the curvature tensor R̄ with respect to the ssmc ∇̄ on Nn+p(c) as [23]

R̄(X,Y,Z,W) =
◦

R̄ (X,Y,Z,W) − α(Y,Z)1(X,W) + α(X,Z)1(Y,W) (2.3)
−α(X,W)1(Y,Z) + α(Y,W)1(X,Z),

∀X,Y,Z,W ∈ χ (Mn), where the (0, 2)-tensor field α is expressed as

α(X,Y) =
(
◦

∇̄X ϕ

)
Y − ϕ(X)ϕ(Y) +

1
2
ϕ(P)1(X,Y).

The curvature tensor R̄ can be expressed as follows from (2.2) and (2.3)

R̄(X,Y,Z,W) =
c
3
{1(Y,Z)1(X,W) − 1(X,Z)1(Y,W) − 1(Y, φZ)1(X,W) (2.4)

−1(Y,Z)1(φX,W) + 21(Y, φZ)1(φX,W) + 1(X, φZ)1(Y,W)
+1(X,Z)1(φY,W) − 21(X, φZ)1(φY,W)} − α(Y,Z)1(X,W)
+α(X,Z)1(Y,W) − α(X,W)1(Y,Z) + α(Y,W)1(X,Z),

λ represents the trace of α.
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For the submanifold Mn, the Gauss equation into the real space form Nn+p(c) van be recalled as

◦

R̄ (X,Y,Z,W) =
◦

R (X,Y,Z,W) + 1(
◦

h (X,Z),
◦

h (Y,W))

− 1(
◦

h (X,W),
◦

h (Y,Z)).

Let π ⊂ TxMn, x ∈Mn represent a section in 2-plane. A sectional curvature of Mn about the induced ssmc ∇
is denoted by K(π). The scalar curvature τ at x for any orthonormal basis {e1, . . . , em} of TxMn is given by

τ(x) =
∑

1≤i< j≤n

K
(
ei ∧ e j

)
.

We recollect the algebraic lemma given below:

Lemma 2.1. [12] When the (n + 1) real numbers are represented by a1, . . . , an, b for n ≥ 2( n∑
i=1

ai

)2
= (n − 1)

( n∑
i=1

a2
i + b

)
,

then,
2a1a2 ≥ b

and equality hold if and only if
a1 + a2 = a3 = · · · = an.

Suppose Mn be a Riemannian manifold and X be a unit vector in L, L is a k-plane section of TxMn,where, x ∈
Mn. To ensure that e1 = X, we select an orthonormal basis {e1, . . . , ek} of L.

The k-Ricci curvature, also known as the Ricci curvature, of L at X is defined by [8]

RicL(X) = K12 + K13 + . . . + K1k,

where the sectional curvature of the 2-plane section spanned by ei, e j is indicated by Ki j, as usual. The
Riemannian invariant Θk on Mn for each integer k, 2 ≤ k ≤ n is defined as follows:

Θk(x) =
1

k − 1
inf
L,X

RicL(X), x ∈Mn,

X varies over all of the unit vectors in L and L runs over every k-plane section in TxMn.

3. Chen First Inequality

Let Mn be a Riemannian manifold, τ the scalar curvature at x, π ⊂ TxMn, x ∈ Mn, and K(π) be the
sectional curvature of Mn associated with a 2-plane section. Remember that the first invariant of Chen is
provided by

δM(x) = τ(x) − inf {K(π) | π ⊂ TxMn, x ∈Mn,dimπ = 2} ,

(for instance, [10]).
From here on, let us set Nn+p(c) for a golden Riemannian manifold that possesses a ssmc and has constant

golden sectional curvature. We prove the optimal inequality that we will refer to as Chen’s first inequality:

Theorem 3.1. Let Mn,n ≥ 3, be a submanifold immersed in Nn+p(c) and λ be the trace of α. Then, for each x ∈Mn,
we get

τ − K(π) ≤ (n − 2)
[

n2

2(n−1)∥H∥
2
− λ

]
− trace

(
α |π⊥

)
(3.1)

−
c
6

{
2 + 3n − n2

− 2∥φ∥2 − 2∥φ∥ + 2n∥φ∥
}
,

π represents a 2-plane section of TxMn.
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Proof. The Gauss equation for ssmc is derived from [28].

R̃(X,Y,Z,W) = R(X,Y,Z,W) + 1(h(X,Z), h(Y,W)) (3.2)
−1(h(Y,Z), h(X,W)).

Let x ∈Mn, and the orthonormal bases of TxMn and T⊥x Mn, respectively, be {e1, e2, . . . , en} and
{
en+1, . . . , en+p

}
.

From the equations (2.4) and (3.2), for X =W = ei,Y = Z = e j, i , j, one determines

2τ + ∥h∥2 − n2
∥H∥2 = −2(n − 1)λ +

c
3

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
, (3.3)

where λ is the trace of α and
n∑

i=1

1(ei, φei) = ||φ||,

indicated by

∥h∥2 =
∑n

i, j=1 1
(
h
(
ei, e j

)
, h

(
ei, e j

))
,

H = 1
n trace h.

One takes

ε = 2τ −
n2(n − 2)

n − 1
∥H∥2 + 2(n − 1)λ −

c
3

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
. (3.4)

Next, we obtain from (3.3) and (3.4)

n2
∥H∥2 = (n − 1)

(
∥h∥2 + ε

)
. (3.5)

Consider the following:
x ∈Mn, π ⊂ TxMn,dimπ = 2, π = sp {e1, e2} .

By defining en+1 =
H
∥H∥ , we may derive the following from the relation (3.5):

 n∑
i=1

hn+1
ii


2

= (n − 1)

 n∑
i, j=1

n+p∑
r=n+1

(
hr

i j

)2
+ ε

 ,

or in the same manner, n∑
i=1

hn+1
ii


2

= (n − 1)

 n∑
i=1

(
hn+1

ii

)2
 (3.6)

+(n − 1)


∑
i, j

(
hn+1

i j

)2
+

n∑
i, j=1

n+p∑
r=n+2

(
hr

i j

)2
+ ε

 .
We obtain from (3.6) by applying Lemma 2.1:

2hn+1
11 hn+1

22 ≥

∑
i, j

(
hn+1

i j

)2
+

n∑
i, j=1

n+p∑
r=n+2

(
hr

i j

)2
+ ε. (3.7)
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For the case X =W = e1,Y = Z = e2, the Gauss equation yields

K(π) =R (e1, e2, e2, e1)

=
c
3
{
1 − ∥φ∥

}
− α (e1, e1) − α (e2, e2) +

p∑
r=n+1

[
hr

11hr
22 −

(
hr

12

)2
]

≥
c
3
{
1 − ∥φ∥

}
− α (e1, e1) − α (e2, e2) +

n+p∑
r=n+2

hr
11hr

22 −

n+p∑
r=n+1

(
hr

12

)2

+
1
2

∑
i, j

(
hn+1

i j

)2
+

n∑
i, j=1

n+p∑
r=n+2

(
hr

i j

)2
+ ε


=

c
3
{
1 − ∥φ∥

}
− α (e1, e1) − α (e2, e2) +

n+p∑
r=n+2

hr
11hr

22 −

n+p∑
r=n+1

(
hr

12

)2

+
1
2

∑
i, j

(
hn+1

i j

)2
+

1
2

n∑
i, j=1

n+p∑
r=n+2

(
hr

i j

)2
+

1
2
ε

=
c
3
{
1 − ∥φ∥

}
− α (e1, e1) − α (e2, e2) +

1
2

∑
i, j

(
hn+1

i j

)2
+

1
2

n+p∑
r=n+2

∑
i, j>2

(
hr

i j

)2

+
1
2

n+p∑
r=n+2

(
hr

11 + hr
22

)2
+

∑
j>2

[(
hn+1

1 j

)2
+

(
hn+1

2 j

)2
]
+

1
2
ε

≥
c
3
{
1 − ∥φ∥

}
− α (e1, e1) − α (e2, e2) +

ε
2
,

that implies

K(π) ≥
c
3
{
1 − ∥φ∥

}
− α (e1, e1) − α (e2, e2) +

ε
2
.

We note that
α (e1, e1) + α (e2, e2) = λ − trace

(
α |π⊥

)
Based on (3.4), we obtain

K(π) ≥ τ + (n − 2)
[
−

n2

2(n−1)∥H∥
2 + λ

]
+ trace

(
α |π⊥

)
+ c

6

{
2 + 3n − n2

− 2∥φ∥2 − 2∥φ∥ + 2n∥φ∥
}
,

This stands for the inequality that needs to be demonstrated.
Remember the following significant finding from [22] (Proposition 1.2).

Proposition 3.2. The mean curvature H of Mn with regard to ssmc and the mean curvature
◦

H of Mn corresponding
to Levi-Civita connection coincide if and only if P is tangent to Mn.

Remark 3.1. Formula (7) from [28] indicates that if P is tangent to Mn, then h =
◦

h.

Relation (3.1) in this instance becomes

Corollary 3.3. Similar to the Theorem 3.1, if P is tangent to Mn, then we get

τ − K(π) ≤ (n − 2)
[

n2

2(n−1)∥
◦

H ∥2 − λ
]
− trace

(
α |π⊥

)
(3.8)

−
c
6

{
2 + 3n − n2

− 2∥φ∥2 − 2∥φ∥ + 2n∥φ∥
}
.
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Theorem 3.4. Given that Mn is tangent to P. The equality case in (3.1) is true if and only if with orthonormal
basis {e1, e2, . . . , en} of TxMn and orthonormal basis

{
en+1, . . . , en+p

}
of T⊥x Mn, shape operators A at x ∈ Mn, take the

following identities:

Aen+1 =


a 0 0 · · · 0
0 b 0 · · · 0
0 0 µ · · · 0
...
...
...
. . .

...
0 0 0 · · · µ


, a + b = µ,

Aen+i =


hn+i

11 hn+i
12 0 · · · 0

hn+i
12 −hn+i

11 0 · · · 0
0 0 0 · · · 0
...

...
...
. . .

...
0 0 0 · · · 0


, 2 ≤ i ≤ p,

where we indicate n + 1 ≤ r ≤ n + p and hr
i j = 1

(
h
(
ei, e j

)
, er

)
, 1 ≤ i, j ≤ n.

Proof. When all prior inequalities are equal and the equality in the lemma is achieved, the equality case is
said to hold at x ∈Mn:

hn+1
i j = 0, ∀i , j, i, j > 2,

hr
i j = 0, ∀i , j, i, j > 2, r = n + 1, . . . ,n + p,

hr
11 + hr

22 = 0, ∀r = n + 2, . . . ,n + p,

hn+1
1 j = hn+1

2 j = 0, ∀ j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = . . . = hn+1

nn .

Assuming hn+1
12 = 0, we can select {e1, e2}. We then denote with a = hr

11, b = hr
22, µ = hn+1

33 = . . . = hn+1
nn . As a

result, A adopt the desired forms.

4. Ricci Curvature along a Unit Tangent Vector’s Direction

In this part, we prove a sharp relationship between the mean curvature H and the Ricci curvature in the
direction of a unit tangent vector X with regard to ∇̃. Indicate by

N(x) = {X ∈ TxMn
| h(X,Y) = 0, ∀Y ∈ TxMn

} .

Theorem 4.1. Let Mn,n ≥ 3 be Riemannian manifold immersed in Nn+p(c). Following holds:
(i) ∀X ∈ TxM, we possess

∥H∥2 ≥
4
n2 [Ric(X) −

c
3
{
(2 − n) + ∥φ∥

}
+ (2n − 3)λ] (4.1)

−
4
n2 [(n − 2)α(X,X)].

(ii) In the case where H(x) = 0, the equality condition of (4.1) is satisfied by X at x if and only if X ∈ N(x).

Proof. (i) Assume that X ∈ TxMn. Let e1, e2, . . . , en, en+1, . . . en+p be an orthonormal basis that we select so that
e1, e2, . . . , en are tangent to Mn at x, with e1 = X. We derive from (3.3) that

n2
∥H∥2 = 2τ +

1
2

n+p∑
r=n+1

[(
hr

11 + . . . + hr
nn

)2
+

(
hr

11 − hr
22 − . . . − hr

nn

)2
]
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+2
n+p∑

r=n+11≤i< j≤n

(
hr

i j

)2
− 2

n+p∑
r=n+12≤i< j≤n

(
hr

iih
r
j j

)
(4.2)

+2(n − 1)λ −
c
3

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
.

After performing some basic calculations, we obtain from the Gauss equation for X = W = ei,Y = Z = e j,
and i , j,

∑
2≤i< j≤n

Ki j =

n+p∑
r=n+12≤i< j≤n

[
hr

iih
r
j j −

(
hr

i j

)2
]
− (n − 2) [λ − α (e1, e1)]

+
c
6

{
(n − 1)(n − 4) − 2(n − 1)∥φ∥ + 2∥φ∥2

}
. (4.3)

Substitution of (4.3) into (4.2) yields

n2
∥H∥2 ≥

1
2

n2
∥H∥2 + 2

τ − ∑
2≤i< j≤n

Ki j

 + 2
n+p∑

r=n+1

n∑
j=2

(
hr

1 j

)2

−
2c
3

{
(2 − n) + ∥φ∥

}
+ 2(2n − 3)λ − 2(n − 2)α (e1, e1) ,

that provides us
1
2

n2
∥H∥2 ≥2 Ric(X) −

2c
3

{
(2 − n) + ∥φ∥

}
+ 2(2n − 3)λ − 2(n − 2)α(X,X).

The inequality (4.1) is demonstrated by this.

(ii) Let us assume that H(x) = 0. In (4.1), equality exists if and only if

hr
12 = . . . = hr

1n = 0,
hr

11 = hr
22 + . . . + hr

nn, r ∈ {n + 1, . . . ,n + p}.

So hr
1 j = 0,∀ j ∈ {1, . . . ,n}, r ∈ {n + 1, . . . ,n + p}, i.e. X ∈ N(x).

Corollary 4.2. If Mn is tangent to P, then for all unit tangent vectors at x, the equality case of (4.1) holds identically
if and only if either n = 2 and x is totally umbilical point, or x is a totally geodesic point.

Proof. For all unit tangent vectors at x, the equality case of (4.1) holds if and only if

hr
i j = 0, i , j, r ∈ {n + 1, . . . ,n + p},

hr
11 + . . . + hr

nn − 2hr
ii = 0, i ∈ {1, . . . ,n}, r ∈ {n + 1, . . . ,n + p}.

We separate these two instances:

• x is a totally geodesic point if n , 2;

• Given n = 2, x is a totally umbilical point.

Converse is trivial.
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5. k-RICCI CURVATURE

Consider a Riemannian manifold Mn immersed in Nn+p(c). First, we establish a connection between
the sectional curvature of Mn and ∥H∥2. We utilize this inequality to establish a connection between ∥H∥2

(extrinsic invariant) and the k-Ricci curvature of Mn (intrinsic invariant). We assume that P is tangent to Mn

in this section.

Theorem 5.1. Let Mn,n ≥ 3 be Riemannian submanifold of Nn+p(c). Further, let Mn be tangent to P. Subsequently,
we have

∥H∥2 ≥
2τ

n(n − 1)
−

c
3n(n − 1)

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
+

2
n
λ. (5.1)

Proof. Let TxMn have an orthonormal basis defined by {e1, e2, . . . , en} and for any x ∈ Mn. The relationship
(3.4) is identical as

n2
∥H∥2 = 2τ + ∥h∥2 + 2(n − 1)λ −

c
3

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
. (5.2)

At x, we select an orthonormal basis
{
e1, . . . , en, en+1, . . . , en+p

}
such that H(x) and en+1 are parallel to each

other, where Aen+1 is diagonalized by e1, . . . , en. The forms then taken by the shape operators are

Aen+1 =


a1 0 . . . 0
0 a2 . . . 0
...
...
. . .

...
0 0 . . . an

 ,
Aer =

(
hr

i j

)
, i, j = 1, . . . ,n; r = n + 2, . . . ,n + p, trace Ar = 0.

We obtain from (5.2)

n2
∥H∥2 = 2τ +

n∑
i=1

a2
i +

n+p∑
r=n+2

n∑
i, j=1

(
hr

i j

)2
(5.3)

+2(n − 1)λ −
c
3

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
.

On the contrary, since

0 ≤
∑
i< j

(
ai − a j

)2
= (n − 1)

∑
i

a2
i − 2

∑
i< j

aia j.

We acquire

n2
∥H∥2 =

 n∑
i=1

ai


2

=

n∑
i=1

a2
i + 2

∑
i< j

aia j ≤ n
n∑

i=1

a2
i ,

which implies
n∑

i=1

a2
i ≥ n∥H∥2

Based on (5.3), we possess

n2
∥H∥2 ≥ 2τ + n∥H∥2 + 2(n − 1)λ −

c
3

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
Likewise, in the same way,

∥H∥2 ≥
2τ

n(n − 1)
−

c
3n(n − 1)

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
+

2
n
λ.

Applying Theorem 5.1, we get the subsequent
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Theorem 5.2. Let Mn,n ≥ 3 be a Riemannian manifold immersed in Nn+p(c). Then, for any x ∈Mn and any integer
k, 2 ≤ k ≤ n, we obtain

∥H∥2(p) ≥ Θk(p) −
c

3n(n − 1)

{
n2
− 3n − 2n∥φ∥ + 2∥φ∥2

}
+

2
n
λ, (5.4)

where we have considered Mn is tangent to P.

Proof. For TxMn, let {e1, . . . , en} be an orthonormal basis. The k-plane section spanned by ei1 , . . . , eik is denoted
by Li1...ik . According to definitions, one possesses

τ
(
Li1...ik

)
=

1
2

∑
i∈{i1,...,ik}

RicLi1 ...ik
(ei) ,

τ(x) =
1

Ck−2
n−2

∑
1≤i1<...<ik≤n

τ
(
Li1...ik

)
.

From (5.1), one obtains

τ(x) ≥
n(n − 1)

2
Θk(p),

implying (5.4).

6. Golden sectional curvature as a function of golden scalar curvature

Assume that N is a Golden Riemannian manifold whose Golden sectional curvature (GSC) is constant.
Next, as described in [32], the Golden Ricci tensor in terms of GSC of N is as follows:

SG
(
X̃, Ỹ

)
= S

(
X̃, φỸ

)
=

c
3

{
1
(
X̃, φỸ

)
[∥φ∥ − 3] + 1

(
X̃, Ỹ

)
[2∥φ∥ − n]

}
.

Moreover, [32] defines the Golden scalar curvature in terms of the GSC.

rG =
c
3
{
∥φ∥(3∥φ∥ − 3 − n)

}
. (6.1)

We demonstrate the following sharp inequality using the Golden scalar curvature in terms of GSC:

Theorem 6.1. Let Mn,n ≥ 3 be a Riemannian manifold immersed in Nn+p(c) and allow Mn to be tangent to P.
Following that, we have

∥H∥2 ≥
2τ

n(n − 1)
−

c
3n(n − 1)

{
∥φ∥(3∥φ∥ − 3 − n)

}
+

2
n
λ. (6.2)

Applying Theorem 6.1, we derive the subsequent

Theorem 6.2. For any Riemannian manifold Mn,n ≥ 3 immersed in Nn+p(c) and tangent to P. We obtain

∥H∥2(p) ≥ Θk(p) −
c

3n(n − 1)
{
∥φ∥(3∥φ∥ − 3 − n)

}
+

2
n
λ, (6.3)

where k, 2 ≤ k ≤ n is any integer and x ∈Mn.
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