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Arithmetics of β−expansions in Fq((x−1))

S. Zouaria

aDépartement de Mathématiques, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia

Abstract. The aim of this study is to give some arithmetic properties on the set of β-polynomials inFq((x−1))
i.e. the set of series whose β-expansion has not fractional part, where |β| > 1 is an algebraic formal power
series over the finite field Fq. We will give sufficient conditions over β to have the quantity L⊙ is finite,
where L⊙ designates the maximal finite shift after the comma for the product of two β-polynomials.

1. Introduction

The class of β-transformation {Tβ, β > 1}was introduced by A. Rényi in [10]. Let β > 1 be a real number.
The β-transformations is a piecewise linear transformation on [0, 1) defined by

Tβ : x −→ βx − [βx],

If ∀ i ≥ 1, xi = [βTi−1
β (x)], then x =

∑
i≥1

xi

βi .

We define the β-expansion of x as the sequence dβ(x) = 0 • x1x2x3 . . ..
For any real number x > 1, there exists an m > 0 such that β−m−1x ∈ [0, 1). Thus we can express each x in the
form

x = x−mβ
m + · · · + x−1β + x0︸                        ︷︷                        ︸

[x]β

+
x1

β
+

x2

β2 +
x3

β3 + · · ·︸                 ︷︷                 ︸
{x}β

,

then dβ(x) = (xi)i≥−m = x−m . . . x−1x0 • x1x2x3 . . ..
The part with non-negative powers of β is then called the β-integer part of x, denoted by [x]β; the part with
negative powers of β is then called the β-fractional part of x, denoted by {x}β = x− [x]β. This allows a natural
generalization for the definition of integers in base β.

A β-expansion is finite if (xi)i≥1 is eventually 0. It is periodic if there exists p ≥ 1 and m ≥ 1 with xk = xk+p
holds for all k ≥ m; if xk = xk+p holds for all k ≥ 1, then it is purely periodic. We denote by

Fin(β) = {x ∈ R+ : dβ(x) is finite}.
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It is proved in [1] that ifN ⊂ Fin(β), then β is a Pisot number; that is, a real algebraic integer greater than
1 with all conjugates strictly inside the unit circle. LetZ[β] be the smallest ring containingZ and β. Denote
by Z[β]≥0 the non negative elements of Z[β]. We say that the number x satisfies the finiteness property if:

Fin(β) = Z[β−1]≥0.

This property was introduced by Frougny and Solomyak [5]. They showed that if β satisfies the finiteness
property then β is a Pisot number. Note that there are Pisot numbers without finiteness property, especially,
all numbers β such that dβ(1) is infinite.

The set of β-integers, denoted by Zβ, is the set of real numbers x for which there exists n ∈N, such that

x = ±
n∑

i=0
aiβi, where an . . . a0 • 0 is the β-expansion of |x|.

In general, the sets Zβ and Fin(β) are not stable under addition and multiplication. In spite of that, it is
sometimes useful in computer science to consider this operation in β-arithmetics. Therefore, it is important
to study which fractional parts might appear as a result of addition and multiplication of β-integers.

The following quantities L⊕ and L⊙, are introduced in [2]. They represents the maximal possible finite
length of the β-fractional parts which would appear when one adds or multiplies two β-integers.

Definition 1.1. Let β > 1. We denote
• L⊕ := min{n ∈N : ∀x, y ∈ Zβ, x + y ∈ Fin(β) =⇒ βn(x + y) ∈ Zβ} when this set is not empty, +∞ otherwise.
• L⊙ := min{n ∈N : ∀x, y ∈ Zβ, xy ∈ Fin(β) =⇒ βn(xy) ∈ Zβ} when this set is not empty, +∞ otherwise.

Many authors are interested in the case where L⊕ and L⊙ are finite. Indeed if the sum or the product of
two β-integers belongs to Fin(β), then the length of the β-fractional part of this sum or product is bounded
by a constant which only depends on β. C. Frougny and B. Solomyak in [5] showed that L⊕ is finite when β
is a Pisot number. The case of quadratic Pisot numbers has been studied in [4] when β is a unit. The authors
gave exact values for L⊕ and L⊙, when β > 1 is a solution either of equation x2 = mx − 1, m ∈ N, m ≥ 3 or
of equation x2 = mx + 1 , m ∈ N. In the first case L⊕ = L⊙ = 1, in the second case L⊕ = L⊙ = 2, and in [6]
otherwise. However, when β is of higher degree, it is a difficult problem to compute the exact value of L⊕
or L⊙, and even to compute upper and lower bounds for these two constants. Several examples are studied
in [2], where a method is described in order to compute upper bounds for L⊕ and L⊙ for Pisot numbers
satisfying additional algebraic properties.

In [3], J. Bernat determined the exact value of L⊕ for several cases of cubic Pisot units numbers: He
especially proved that if we denote by L⊕(k1, k2) the value of L⊕ associated to the positive root β of P(x) =
x3
− k1x2

− k2x − 1, where k1, k2 ∈ N2 satisfy max{1, k2} ≤ k1 ≤ 3. For example, L⊕(1, 0) = 11, L⊕(2, 2) = 5
and L⊕(3, 2) = 4. In particular, in the Tribonacci case, that is, when β is the positive root, of the polynomial
x3
− x2

− x − 1, he proved the following result.

Proposition 1.2. If β is the Tribonacci number, then L⊕ = 5.

Let’s note that until now, we don’t know the value of L⊙ in the case of the Tribonacci number. It is only
proven in [2] that 4 ≤ L⊙ ≤ 5.

We can define analogous notions in the case of the field of formal power series over a finite field.

The main objective of this paper is to study a similar concepts over the field of formal power series over
finite field. This paper is organized as follows: In section 2, we define the field of formal power series over
a finite field Fq((x−1)). We will also define the β-expansion algorithm over this field. In section 3, we prove
that, for any algebraic integer series β, the quantity L⊙ is finite. In the sequel, we have shown that L⊙ is also
finite in algebraic unit basis.
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2. β-expansions in Fq((x−1))

Let Fq be a finite field with q elements, Fq[x] the ring of polynomials with coefficients in Fq and Fq(x)
the field of rational functions.
Let Fq((x−1)) be the field of formal power series of the form:

f =
l∑

k=−∞

fkxk, fk ∈ Fq,

where

l = deg f :=
{

max{k : fk , 0} if f , 0,
−∞ if f = 0.

Define the absolute value | f | = qdeg f . Thus, Fq((x−1)), equipped with this absolute value, is a complete
metric space, it is the completion of Fq(x). Since the above absolute value is not archimedean, it fulfills the
strict triangle inequality:

| f + 1| ≤ max(| f |, |1|) and | f + 1| = max(| f |, |1|) if | f | , |1|.

Consider f ∈ Fq((x−1)) and define the polynomial part [ f ] =
l∑

k=0
fkxk where the empty sum, as usual, is

defined to be zero. Therefore [ f ] ∈ Fq[x] and f − [ f ] ∈M0 where M0 = { f ∈ Fq((x−1)) : | f | < 1}.
Let β ∈ Fq((x−1)), we denote by:
• Fq(x, β) = Fq(x)(β) the smallest field containing Fq(x) and β.
• Fq[x, β] = Fq[x][β] the smallest ring containing Fq[x] and β.

Now, we are ready to define the β-expansions of f in the field of formal power series.
Let β, f ∈ Fq((x−1)) where |β| > 1 and f ∈ M0. A representation in base β (or β-representation) of f is a

sequence (di)i≥1, di ∈ Fq[x], such that

f =
∑
i≥1

di

βi .

A particular β-representation of f is called the β-expansion of f and noted dβ( f ). It is obtained by using the
β-transformation Tβ in M0 which is given by the mapping:

Tβ : M0 −→ M0

f 7−→ β f − [β f ].

Thus, dβ( f ) = 0 • (di)i≥1 if and only if di = [βTi−1
β ( f )]. Note that dβ( f ) is finite if and only if there is a k ≥ 0

such that Tk
β( f ) = 0, dβ( f ) is ultimately periodic if and only if there is some smallest p ≥ 0 (the pre-period

length) and s ≥ 1 (the period length) for which Tp+s
β ( f ) = Tp

β( f ). If f ∈ M0 and dβ( f ) = 0 • (di)i≥1, we often
write f = 0 • d1d2d3 . . . .

Now let f ∈ Fq((x−1)) be an element with | f | ≥ 1. Then there is a unique k ∈N such that |β|k ≤ | f | < |β|k+1.
Hence | f

βk+1 | < 1 and we can represent f by shifting dβ(
f
βk+1 ) by k + 1 digits to the left. That is, if dβ(

f
βk+1 ) =

0 • d1d2d3 . . . , then dβ( f ) = d1d2d3 . . . dk+1 • dk+2 . . . .

Remark 2.1. In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if z,
w ∈ Fq((x−1)), we have dβ(z + w) = dβ(z) + dβ(w) digitwise. We have also dβ(c f ) = cdβ( f ) for every c ∈ Fq.

Theorem 2.2. [8] A β-representation (d j) j≥1 of f in M0 is its β-expansion if and only if |d j| < |β| for j ≥ 1.



S. Zouari / Filomat 38:25 (2024), 8961–8970 8964

Let us first recall some number theoretical notions.
A formal power series β is called an algebraic series over Fq(x), if there exists an, . . . , a0 ∈ Fq[x] such that

P(β) = anβ
n + an−1β

n−1 + · · · + a1β + a0 = 0.

If the polynomial P is of minimal degree, then P is called the minimal polynomial of β of algebraic degree
n. The other roots of the minimal polynomial which are not necessarily in Fq((x−1)) are called the algebraic
conjugates of β. If an ∈ F∗q, then β is called an algebraic integer series and if a0 ∈ F∗q, then β is called a unit
series.

Proposition 2.3. [9] Let K be a complete field with respect to a non archimedean absolute value |.| and L/K (K ⊂ L)
be an algebraic extension of degree m. Then |.| has a unique extension to L defined by : |a| = m

√
|NL/K(a)| and L is

complete with respect to this extension.

We apply this proposition to algebraic elements of Fq((x−1)). Since Fq[x] ⊂ Fq((x−1)), then every alge-
braic element in Fq[x] can be valuated. However, since Fq((x−1)) is not algebraically closed, such an element
needn’t be necessarily a formal power series.

Lemma 2.4. [8] Let P(Y) = AnYn
−An−1Yn−1

− · · · −A0 where Ai ∈ Fq[x], for i = 1, . . . ,n. Then P admits a unique
root in Fq((x−1)) with absolute value > 1 and all other roots are with absolute value < 1 if and only if |An−1| > |Ai| for
i , n − 1.

If dβ( f ) = dldl−1 . . . d0 • d−1d−2 . . ., let [ f ]β = dlβl + dl−1βl−1 + · · · + d0 and { f }β = f − [ f ]β.

If dβ( f ) is finite with f =
m∑
l

diβ−i where m, l ∈ Z, then we put ordβ( f ) = −m and ordβ( f ) = −∞ otherwise.

Using this last notion, we define the set of β-polynomials as follow:

(Fq[x])β = { f ∈ Fq((x−1)) : ordβ( f ) ≥ 0}.

In the sequel, we will use the following notation:

Fin(β) = { f ∈ Fq((x−1)) : dβ( f ) is finite}.

Per(β) = { f ∈ Fq((x−1)) : dβ( f ) is periodic}.
Pur(β) = { f ∈ Fq((x−1)) : dβ( f ) is purely periodic}.

Per(β, s) = { f ∈ Fq((x−1)) : dβ( f ) is periodic with pre-period s}.

We define the quantity L⊙ as follows:

L⊙ =


min Eβ if Eβ , ∅,

∞ if Eβ = ∅,

with Eβ = {n ∈ N : ∀p1, p2 ∈ (Fq[x])β, p1.p2 ∈ Fin(β) =⇒ βn(p1.p2) ∈ (Fq[x])β}.More precisely, we can see L⊙
as follows:

L⊙ = max{−ordβ(p1.p2) : p1, p2 ∈ (Fq[x])β, p1.p2 ∈ Fin(β)}.
Let us note that L⊙ designates the maximal finite shift after the comma for the product of two β-

polynomials.

Example 2.5. Let β be the unique root of absolute value > 1 of the polynomial
P(Y) = Yd + x2Yd−1 +Ad−2Yd−2 + · · ·+A0, with Ai = 1 for all 0 ≤ i ≤ d− 2. Then L⊙ = (d− 1). Indeed, the existence
of such β is due to Lemma 2.4 and his degree is 2. We have βd + x2βd−1 + βd−2 + · · · + 1 = 0. Hence the β-expansion
of x2 is given by

x2 = −β −
1
β
−

1
β2 − . . . −

1
βd−1
.

It is clear that in this case L⊙ = −ordβ(x2) = d − 1.
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3. Results

In order to prove the finiteness of L⊙ in algebraic basis, we need to introduce some basic notions: Let β
be an algebraic series of degree d and β(2), . . . , β(d) be their conjugates.
For f ∈ Fq(x, β), we have f = k0 + k1β + k2β2 + · · · + kd−1βd−1 with ki ∈ Fq(x), the j-th conjugate of f is defined
by f ( j) = k0 + k1β( j) + k2(β( j))2 + · · · + kd−1(β( j))d−1.

We define f , the vector conjugate of f by f =


f (2)

...
f (d)

 and ∥ f ∥ = sup
2≤ j≤d

| f ( j)
|.

We begin by this lemma which is essential for the development of Theorem 3.2.

Lemma 3.1. Let β be an algebraic series with |β| > 1 and β( j) a conjugate of β such that |β( j)
| > 1. If f ∈ Fq(x, β) with

f =
∑
k≥1

akβ−k and (ak)k≥1 is a periodic sequence, then f ( j) =
∑
k≥1

ak(β( j))−k.

Proof. .
Let f ∈ Fq(x, β) where f =

∑
k≥1

akβ−k and (ak)k≥1 is a periodic sequence. So

(ak)k≥1 = a1...apap+1...ap+s with ap , ap+s. Hence we get

f =
a1

β
+ · · · +

ap

βp +
ap+1

βp+1 + · · · +
ap+s

βp+s +
1
βs (

ap+1

βp+1 + · · · +
ap+s

βp+s ) +
1
β2s (

ap+1

βp+1 + · · · +
ap+s

βp+s ) + · · · .

Therefore
f =

a1

β
+ · · · +

ap

βp + (
ap+1

βp+1 + · · · +
ap+s

βp+s )(1 +
1
βs +

1
β2s +

1
β3s + · · · ),

this gives

f =
a1

β
+ · · · +

ap

βp + (
ap+1

βp+1 + · · · +
ap+s

βp+s )(
1

1 − 1
βs

).

For every conjugate β( j) of β, we get

f ( j) =
a1

β( j)
+ · · · +

ap

(β( j))p
+ (

ap+1

(β( j))p+1
+ · · · +

ap+s

(β( j))p+s
)(

1
1 − 1

(β( j))s

).

Now, for every conjugate β( j) of β such that |β( j)
| > 1, we have

f ( j) =
a1

β( j)
+ · · · +

ap

(β( j))p
+ (

ap+1

(β( j))p+1
+ · · · +

ap+s

(β( j))p+s
)(1 +

1
(β( j))s

+
1

(β( j))2s
+

1
(β( j))3s

+ · · · ).

Finally, we reach to our result by getting the following equality

f ( j) =
a1

β( j)
+ · · · +

ap

(β( j))p
+

ap+1

(β( j))p+1
+ · · · +

ap+s

(β( j))p+s
+

1
(β( j))s

(
ap+1

(β( j))p+1
+ · · · +

ap+s

(β( j))p+s
)+

1
(β( j))2s

(
ap+1

(β( j))p+1
+ · · · +

ap+s

(β( j))p+s
) + · · · .

As recently seen in the introduction, there are both quantities L⊕ and L⊙, except in the case of formal
series the quantity L⊕ is not interesting, because we know that the sum of two β-polynomials is always
a β-polynomial. We excluded the case when deg(β) = 1, since in this trivial case, the product of two
β-polynomials is a β-polynomial. Then we have L⊙ = 0.
So far, we are interested in results for L⊙ for general algebraic series β.
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Theorem 3.2. Let β be an algebraic integer series with |β| > 1. Then the set
((Fq[x])β.(Fq[x])β) ∩ Per(β) is finite.

Proof. . Suppose without loss of generality dβ(PQ) = cn . . . c1c0 • c−1 . . . c−m is ultimately periodic where P
and Q are two β-polynomials such that

P = asβs + as−1βs−1 + · · · + a0 with |ai| < |β|

and

Q = bkβk + bk−1βk−1 + · · · + b0 with |bi| < |β|.

Hence
PQ = cnβ

n + · · · + c0 +
c−1

β
+

c−2

β2 + · · · +
c−m

βm +
c−1

βm+1 + · · · +
c−m

β2m + · · · .

So
{PQ}β = PQ − cnβ

n
− · · · − c0 =

c−1

β
+

c−2

β2 + · · · +
c−m

βm +
c−1

βm+1 + · · · +
c−m

β2m + · · · .

Let (β( j))2≤ j≤d be the conjugates of β. To show this theorem, we first distinguish these two cases:

Case 1: If |β( j)
| > 1.

In this case, we have {PQ}β ∈ Fq(x, β) and so by Lemma 3.1, we obtain

{PQ}( j)
β =

c−1

β( j)
+

c−2

(β( j))2
+ · · · +

c−m

(β( j))m
+

c−1

(β( j))m+1
+ · · · +

c−m

(β( j))2m
+ · · · .

Since |ci| < |β| for all i ∈ {−1, ...,−m}, so |{PQ}( j)
β | < |β|.

Case 2: If |β( j)
| ≤ 1.

In this case, we have

{PQ}( j)
β = (as(β( j))s + · · · + a0)(bk(β( j))k + · · · + b0) − cn(β( j))n

− · · · − c0

=

s+k∑
l=0

(
l∑

p=0

bpal−p)(β( j))l
− cn(β( j))n

− · · · − c0

≤ max{|
s+k∑
l=0

(
l∑

p=0

bpal−p)(β( j))l
|; |cn(β( j))n

− · · · − c0|}.

As |β( j)
| ≤ 1, we get

|

s+k∑
l=0

(
l∑

p=0

bpal−p)(β( j))l
| ≤ |β|2 and |cn(β( j))n

− · · · − c0| ≤ |β|

Consequently,

|{PQ}( j)
β | ≤ |β|2.

Therefore the module of


{PQ}β
{PQ}(2)

β
...

{PQ}(d)
β

 is less than |β|2.



S. Zouari / Filomat 38:25 (2024), 8961–8970 8967

Now, since {PQ}β =
s+k∑
l=0

(
l∑

p=0
bpal−p)βl

− cnβn
− · · · − c0 and β is an algebraic integer of degree d, we easily

deduce that {PQ}β = A0 + A1β + · · · + Ad−1βd−1 with Ai ∈ Fq[x]. Hence for all j ∈ {2, . . . , d}; {PQ}( j)
β =

A0 + A1(β( j)) + · · · + Ad−1(β( j))d−1. Thus

{PQ}β
{PQ}(2)

β
...
...

{PQ}(d)
β


=M



A0
A1
...
...

Ad−1


, where M =



1 β . . . . . . βd−1

1 β(2) . . .
...

...
...
. . .

. . .
...

...
...

. . . (β(d−1))d−1

1 β(d) . . . . . . (β(d))d−1


.

We have det M =
∏
i< j

(β(i)
− β( j)) , 0 which implies that M is invertible therefore it transforms all bounded

vector in an bounded vector. From the two cases and since |{PQ}β| < 1, we have


{PQ}β
{PQ}(2)

β
...

{PQ}(d)
β

 is bounded, so


A0
A1
...

Ad−1

 is also bounded and moreover belongs to Fq[x]d. Therefore this last vector takes a finite number

of possibilities (since Fq is finite).

Corollary 3.3. Let β be an algebraic integer series with |β| > 1. Then L⊙ is finite.

In order to prove Theorem 3.5, we need the following lemma.

Lemma 3.4. Let β be an algebraic unit series and ξ be a positive number.
Then

lim
p→∞

min
f∈X(p)

∥ f ∥ = ∞,

where
X(p) = { f ∈ Fin(β) : | f | ≤ ξ, ordβ( f ) = −p}.

Proof. . Assume that there exists a constant B and an infinite sequence fi (i=1,2,. . . ) so that both

| f ( j)
i | ≤ B for j = 2, 3, . . . , d and lim

i→∞
ordβ( fi) = −∞

holds. Since β is an algebraic series, Fin(β) ⊂ Fq[x, β−1]. Moreover β is unit, then Fin(β) ⊂ Fq[x, β−1] ⊂ Fq[x, β].
We know that Fq[x, β] is discrete, then Fin(β) is discrete. In addition, we have | fi| ≤ ξ, so these fi’s are finite,
a contradiction with the second condition, completing the proof.
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Theorem 3.5. Let β be an algebraic unit series with |β| > 1. Then L⊙ is finite.

Proof. . By assumption, we have dβ(PQ) is finite i.e dβ(PQ) = cn . . . c0 • c−1 . . . c−m, where P,Q ∈ (Fq[x])β such
that

P = asβs + as−1βs−1 + · · · + a0 with |ai| < |β|

and

Q = bkβk + bk−1βk−1 + · · · + b0 with |bi| < |β|.

We have
PQ = cnβ

n + · · · + c0 +
c−1

β
+

c−2

β2 + · · · +
c−m

βm .

So
{PQ}β = PQ − cnβ

n
− · · · − c0 =

c−1

β
+

c−2

β2 + · · · +
c−m

βm .

Let (β( j))2≤ j≤d be the conjugates of β. Now, we begin by distinguish these two cases:

Case 1: If |β( j)
| > 1.

In this case, we have
{PQ}( j)

β =
c−1

β( j)
+

c−2

(β( j))2
+ · · · +

c−m

(β( j))m
.

Since |ci| < |β| for i ∈ {−1, ...,−m}, we obtain |{PQ}( j)
β | < |β|.

Case 2: If |β( j)
| ≤ 1.

{PQ}( j)
β = (as(β( j))s + · · · + a0)(bk(β( j))k + · · · + b0) − cn(β( j))n

− · · · − c0

≤ max{|
s+k∑
l=0

(
l∑

p=0

bpal−p)(β( j))l
|; |cn(β( j))n

− · · · − c0|}.

As |β( j)
| ≤ 1, we get

|

s+k∑
l=0

(
l∑

p=0

bpal−p)(β( j))l
| ≤ |β|2 and |cn(β( j))n

− · · · − c0| ≤ |β|

Consequently,

|{PQ}( j)
β | ≤ |β|2.

As a consequence, we deduce that for all j ∈ {2, . . . , d}, {PQ}( j)
β is bounded, wherefrom we have ∥ {PQ}β ∥≤ |β|2.

Moreover, note that |{PQ}β| < 1 and by Lemma 3.4, there exist k ∈ Z, such that for all PQ ∈ (Fq[x])β we
obtain that ordβ(PQ) ≥ k. Therefore, L⊙ is finite.

Example 3.6. Let β be the unique root with absolute value > 1 of the polynomial P(Y) = Yd + xmYd−1 +Ad−2Yd−2 +
· · · + A1Y + xm−1, with deg(Ai) < m for i ∈ {1, . . . , d − 2}. Then L⊙ = (d − 1)(m − 1).
Indeed, the existence of such β is due to Lemma 2.4 and his degree is m. We have

xm = −β −
Ad−2

β
− · · · −

xm−1

βd−1
.
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Hence, ordβ(xm) = 1 − d. Moreover

xm+1 = −xβ −
xAd−2

β
− · · · −

xm

βd−1
.

Therefore, ordβ(xm+1) = 2(1 − d) and by induction for all positive integer s, we get ordβ(xm+s) = (s + 1)(1 − d). So,
in this case, L⊙ = −ordβ(x2m−2) = (d − 1)(m − 1).

Now, we prove that the set of periodic β-fractional part with fixed pre-period is finite where the basis β
is an algebraic integer.

Theorem 3.7. Let β be an algebraic integer series with |β| > 1. Then the set
Fq[x, β] ∩ Per(β, s) is finite.

Proof. . Let f ∈ Fq[x, β] ∩ M0 and β an algebraic integer series of degree d, then f =
d−1∑
i=0

Aiβi, therefore

f (k) =
d−1∑
i=0

Ai(β(k))i for all k ∈ {2, ..., d}. Thus

f
f (2)

...

...
f (d)


=



1 β . . . . . . βd−1

1 β(2) . . .
...

...
...
. . .

. . .
...

...
...

. . . (β(d−1))d−1

1 β(d) . . . . . . (β(d))d−1





A0
A1
...
...

Ad−1


=M



A0
A1
...
...

Ad−1


.

Let now dβ( f ) = 0 • a1 . . . asas+1 . . . ap+s. To complete this proof, we must distinguish these two cases:

Case 1: If |β(k)
| ≤ 1. We have

f =
a1

β
+ · · · +

as

βs +
as+1

βs+1 + · · · +
ap+s

βp+s +
1
βp ( f −

a1

β
− · · · −

as

βs ).

Given that a1, . . . , ap+s ∈ Fq[x], we find

f (k) =
a1

β(k)
+ · · · +

as

(β(k))s
+

as+1

(β(k))s+1
+ · · · +

ap+s

(β(k))p+s +
1

(β(k))p ( f (k)
−

a1

β(k)
− · · · −

as

(β(k))s
).

Then

f (k)(1 −
1

(β(k))p ) =
a1

β(k)
+ · · · +

as

(β(k))s
+

as+1

(β(k))s+1
+ · · · +

ap+s

(β(k))p+s +
1

(β(k))p (−
a1

β(k)
− · · · −

as

(β(k))s
).

Hence

f (k)((β(k))p+s
− (β(k))s) = a1(β(k))p+s−1 + · · · + as(β(k))p + as+1(β(k))p−1 + · · · + (ap+s − as).

Since |β(k)
| < 1, we get | f (k)(β(k))s

| < |β|. As the pre-period s of f is fixed, we have | f (k)
| <

|β|
|(β(k))s |

.

Case 2: If |β(k)
| > 1.

In this case, we have

f =
a1

β
+ · · · +

as

βs +
as+1

βs+1 + · · · +
ap+s

βp+s +
as+1

βp+s+1 + · · ·

and so by Lemma 3.1, we obtain

f (k) =
a1

β(k)
+ · · · +

as

(β(k))s
+

as+1

(β(k))s+1
+ · · · +

ap+s

(β(k))p+s +
as+1

(β(k))p+s+1
+ · · · .

So | f (k)
| < |β|.
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As a consequence, we deduce from these two cases that f (k) is bounded for all k ∈ {2, . . . , d}. Since
det M =

∏
i< j

(β(i)
− β( j)) , 0, M is invertible. Hence, it transforms all bounded vector in an bounded vector.

From these two cases and since | f | < 1, we have


f

f (2)

...
f (d)

 is bounded, so


A0
A1
...

Ad−1

 is also bounded and

moreover belongs to Fq[x]d, therefore this vector take a finite number of possibilities (since Fq is finite).

Corollary 3.8. Let β be an algebraic integer series with |β| > 1. Then the set Fq[x, β] ∩ Pur(β) is finite.
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