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Arithmetics of f—expansions in F ((x7!))

S. Zouari?®

?Département de Mathématiques, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia

Abstract. The aim of this study is to give some arithmetic properties on the set of -polynomials in IF,((x™!))
i.e. the set of series whose f-expansion has not fractional part, where || > 1 is an algebraic formal power
series over the finite field IF,. We will give sufficient conditions over f to have the quantity Lo, is finite,
where L, designates the maximal finite shift after the comma for the product of two -polynomials.

1. Introduction

The class of p-transformation {Tg, f > 1} was introduced by A. Rényi in [10]. Let 8 > 1 be a real number.
The B-transformations is a piecewise linear transformation on [0, 1) defined by

Tg:x — px —[Bx],
IfVi>1, 5 =[BT )], then x=Y 2%
=l
We define the -expansion of x as the sequence dg(x) = 0 ® x1x2x3.... ..

For any real number x > 1, there exists an m > 0 such that $7"~!x € [0, 1). Thus we can express each x in the
form

X1 X2 X3
xzxfmﬁm+--~+x,1ﬁ+xo+—+—+— +--,
[
[x]
’ {x}p
then dg(x) = (X;)iz—m = X_p ... X_1X0 ® X1X2X3 . . ..

The part with non-negative powers of 8 is then called the -integer part of x, denoted by [x]s; the part with
negative powers of § is then called the f-fractional part of x, denoted by {x}z = x —[x]g. This allows a natural
generalization for the definition of integers in base f3.

A B-expansion is finite if (x;);>1 is eventually 0. It is periodic if there exists p > 1 and m > 1 with xx = Xy,
holds for all k > m; if xx = xi4p holds for all k > 1, then it is purely periodic. We denote by

Fin(B) = {x € R : dg(x) is finite}.
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It is proved in [1] that if IN C Fin(g), then § is a Pisot number; that is, a real algebraic integer greater than
1 with all conjugates strictly inside the unit circle. Let Z[S] be the smallest ring containing Z and . Denote
by Z][B]so the non negative elements of Z[S]. We say that the number x satisfies the finiteness property if:

Fin(g) = Z[p"z0.

This property was introduced by Frougny and Solomyak [5]. They showed that if § satisfies the finiteness
property then § is a Pisot number. Note that there are Pisot numbers without finiteness property, especially,
all numbers  such that dg(1) is infinite.

The set of g-integers, denoted by Z, is the set of real numbers x for which there exists n € IN, such that
1 .
x ==Y a8, wherea,...ay 0 is the f-expansion of |x|.
i=0
In general, the sets Z and Fin(p) are not stable under addition and multiplication. In spite of that, it is

sometimes useful in computer science to consider this operation in f-arithmetics. Therefore, it is important
to study which fractional parts might appear as a result of addition and multiplication of f-integers.

The following quantities Lg and Lo, are introduced in [2]. They represents the maximal possible finite
length of the p-fractional parts which would appear when one adds or multiplies two p-integers.

Definition 1.1. Let § > 1. We denote
o Lg := min{n € N : Vx,y € Zg,x + y € Fin(f) = p"(x + y) € Zp} when this set is not empty, +oo otherwise.
® Lo := min{n € N : Vx,y € Zg, xy € Fin(f) = B"(xy) € Zg} when this set is not empty, +oo otherwise.

Many authors are interested in the case where Ly and L, are finite. Indeed if the sum or the product of
two B-integers belongs to Fin(f), then the length of the p-fractional part of this sum or product is bounded
by a constant which only depends on . C. Frougny and B. Solomyak in [5] showed that Lg is finite when
is a Pisot number. The case of quadratic Pisot numbers has been studied in [4] when f§ is a unit. The authors
gave exact values for Lg and Lo, when B > 1 is a solution either of equation x> = mx —1,m € N, m > 3 or
of equation x> = mx + 1, m € IN. In the first case Ly = Lo = 1, in the second case Ly = Lo = 2, and in [6]
otherwise. However, when f is of higher degree, it is a difficult problem to compute the exact value of Lg
or Lo, and even to compute upper and lower bounds for these two constants. Several examples are studied
in [2], where a method is described in order to compute upper bounds for Lg and Ly for Pisot numbers
satisfying additional algebraic properties.

In [3], ]J. Bernat determined the exact value of Lg for several cases of cubic Pisot units numbers: He
especially proved that if we denote by Lg(ki, k2) the value of Lg associated to the positive root § of P(x) =
x3 = kix? — kox — 1, where ki, k; € IN? satisfy max{1,kp} < k; < 3. For example, Lg(1,0) = 11, Lg(2,2) = 5
and Lg(3,2) = 4. In particular, in the Tribonacci case, that is, when f is the positive root, of the polynomial
x® — x? — x — 1, he proved the following result.

Proposition 1.2. If § is the Tribonacci number, then Lg = 5.

Let’s note that until now, we don’t know the value of L, in the case of the Tribonacci number. It is only
provenin [2] that4 < Lo < 5.

We can define analogous notions in the case of the field of formal power series over a finite field.

The main objective of this paper is to study a similar concepts over the field of formal power series over
finite field. This paper is organized as follows: In section 2, we define the field of formal power series over
a finite field F,((x™")). We will also define the p-expansion algorithm over this field. In section 3, we prove
that, for any algebraic integer series f3, the quantity Lo is finite. In the sequel, we have shown that L, is also
finite in algebraic unit basis.
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2. B-expansions in F,((x™"))

Let IF; be a finite field with g elements, IF;[x] the ring of polynomials with coefficients in IF; and IF;(x)
the field of rational functions.
Let ]Fq((x‘l)) be the field of formal power series of the form:

1
f = Z kak/ fk E]qu
k=—c0

wl ere
maxik: e #0} if f#0,
= degf = { fk if ; 0.

Define the absolute value |f| = q98/. Thus, F,((x™!)), equipped with this absolute value, is a complete
metric space, it is the completion of IF;(x). Since the above absolute value is not archimedean, it fulfills the
strict triangle inequality:

If + gl <max(Ifllg) and |f +gl=max(Ifllg) if If] # gl

!
Consider f € Fy((x"!)) and define the polynomial part [f] = Y. fix* where the empty sum, as usual, is
k=0

defined to be zero. Therefore [f] € IF;[x] and f — [f] € My where My = {f € IFq((x‘l)) s fl< 1)
Let B € Fy((x™")), we denote by:

o IF;(x, B) = IF,;(x)(B) the smallest field containing IF,(x) and f.

o Fy[x, B] = IF,[x][B] the smallest ring containing IF,[x] and B.

Now, we are ready to define the f-expansions of f in the field of formal power series.

Let B, f € Fy((x™!)) where || > 1 and f € M. A representation in base p (or p-representation) of f is a
sequence (d;);>1, d; € IF;[x], such that

di
= P
A particular f-representation of f is called the f-expansion of f and noted dg(f). It is obtained by using the
p-transformation T in My which is given by the mapping:

f =

TﬁtMo — Mo
fo—= Bf-IBfl

Thus, dg(f) = 0 e (d;)i>1 if and only if d; = [ﬁT;g‘l(f)]. Note that dg(f) is finite if and only if there isa k > 0
such that T’g( f) =0, dg(f) is ultimately periodic if and only if there is some smallest p > 0 (the pre-period
length) and s > 1 (the period length) for which T?S(f) = Tg(f). If f € My and dg(f) = 0 e (d:)i>1, we often
write f =0e dldzdg e

Now let f € F,((x™!)) be an element with |f| > 1. Then there is a unique k € N such that |g]* < |f] < |B[F*1.

Hence I‘%I < 1 and we can represent f by shifting d,;(ﬁkiﬂ) by k + 1 digits to the left. That is, if dﬁ(ﬁ%) =
Oe d1d2d3 ceey then dﬁ(f) = dldzdg, . dk+1 L] dk+2 RN

Remark 2.1. In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if z,
w € Fy((x™)), we have dg(z + w) = dg(z) + dg(w) digitwise. We have also dg(cf) = cdg(f) for every c € IF,.

Theorem 2.2. [8] A B-representation (d;)j»1 of f in My is its f-expansion if and only if |d;| < || for j > 1.
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Let us first recall some number theoretical notions.
A formal power series f§ is called an algebraic series over IF,(x), if there exists a,, ..., a9 € IF;[x] such that

P(,B) = anﬁn + an—lﬁn_l +--+af+ag=0.

If the polynomial P is of minimal degree, then P is called the minimal polynomial of 8 of algebraic degree
n. The other roots of the minimal polynomial which are not necessarily in IF,((x™")) are called the algebraic
conjugates of B. If a, € IF;, then f is called an algebraic integer series and if a9 € IF;, then f is called a unit
series.

Proposition 2.3. [9] Let K be a complete field with respect to a non archimedean absolute value |.| and L/K (K c L)
be an algebraic extension of degree m. Then |.| has a unique extension to L defined by : |a| = 3/|Np/x(a)| and L is
complete with respect to this extension.

We apply this proposition to algebraic elements of ]Fq((x‘l)). Since IFy[x] C ]Fq((x‘l)), then every alge-
braic element in IF;[x] can be valuated. However, since ]Fq((x‘l)) is not algebraically closed, such an element
needn’t be necessarily a formal power series.

Lemma 2.4. [8] Let P(Y) = A, Y"— A, Y"1 —...— Ag where A; € Fy[x], fori=1,...,n. Then P admits a unique
root in Fa((x™1)) with absolute value > 1 and all other roots are with absolute value < 1 if and only if |A,1| > |Aq| for
i#zn—1
Ifdg(f) =didiy...dyedqdr... let[flg =dipl +diap™ + - +doand {f}s = f - [f.
If dg(f) is finite with f = ). d;~" where m,| € Z, then we put ordg(f) = —m and ordg(f) = —oo otherwise.
1

Using this last notion, we define the set of g-polynomials as follow:
(F,[xDg = (f € Fy(@™) : ordy(f) > 0).
In the sequel, we will use the following notation:
Fin(B) = {f € Fy((x™")) : dg(f) is finite}.

Per(B) = {f € Fy((x1)) : dg(f) is periodic}.
Pur(B) = {f € Fy((x™")) : dg(f) is purely periodic}.
Per(B,s) = {f € Fo((x1)) : dg(f) is periodic with pre-period s}.

We define the quantity L as follows:

min Eg if Eg # 0,

LO =

(S o] if Elg = 0,
with Eg = {n € N : Ypy,p2 € (F;[x])s, p1.p2 € Fin(B) = B"(p1.p2) € (IFy[x])s}. More precisely, we can see Lo
as follows:

Lo = max{—ordg(p1.p2) : p1,p2 € (Fy[x]), p1.p2 € Fin(B)}.
Let us note that L, designates the maximal finite shift after the comma for the product of two f-

polynomials.

Example 2.5. Let f be the unique root of absolute value > 1 of the polynomial

P(Y) = Y +x2Y4 " + Ay Y42 -+ Ag, with A; = 1 forall 0 < i < d —2. Then Lo = (d —1). Indeed, the existence
of such B is due to Lemma 2.4 and his degree is 2. We have p? + x?p%~! + p4=2 + .-~ + 1 = 0. Hence the B-expansion
of x? is given by

It is clear that in this case Lo = —ordﬁ(xz) =d-1
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3. Results

In order to prove the finiteness of Ly, in algebraic basis, we need to introduce some basic notions: Let 3
be an algebraic series of degree d and 2, ..., B? be their conjugates.
For f € IF,(x, B), we have f = ko + kif + ko> + - - + ka_1p~! with k; € IF,(x), the j-th conjugate of f is defined
by f(f) =ko + klﬁ(f) + kz(ﬁ(f))z 44 kd_l(ﬁ(f))d‘l.
@
We define f, the vector conjugate of fby f=| : |and||fll = sup |f7].
f(d) 2<j<d

We begin by this lemma which is essential for the development of Theorem 3.2.

Lemma 3.1. Let f be an algebraic series with |p| > 1 and B\ a conjugate of B such that || > 1. If f € Fy(x, B) with

f =Y ap* and (a1 is a periodic sequence, then f9 = Y. ar(BD)*
k=1 k=1

Proof. .
Let f € IF,(x, p) where f = }, akﬁ‘k and (ax)k=1 is a periodic sequence. So
k>1

(k=1 = a1..8p8p11..0p+s With a, # ay,s. Hence we get

_ ai ap ap+1 ap+s p+1 p+s 1 p+1 p+s
f E o ‘B_p ﬁp+1 to ﬁp+s ﬁs (ﬁpﬂ h ‘Bp+s) ﬁZs ﬁerl ' ﬁp+s) +
Therefore
_m ap ap+1 Ap+s 1 1 1
f_ﬁ+ +ﬁ_7’ (ﬁp+1+-- ,BP+S)(1+E+@+[E+M)'
this gives
ay ap Ap+1 Ap+s 1
f==+-+—=4( e —— ).
P p+1 p+s _ 1
p P peiiol
For every conjugate ) of B, we get
; Mm ap Ap+1 Ap+s 1
f(])=—<+"' + (— et X ).
po 0y Iy P71 =
Now, for every conjugate ) of § such that [8)| > 1, we have
a a a 1 1 1
f(/)__ L pl P21+ ).

g0 T oy T gy T T gy T gy T gy T gy

Finally, we reach to our result by getting the following equality
a Ap+1 Ap+ 1 Ap+1 Ap+
N ==L e S AR P P . e
f 1) oy Ty T oy T oy oy T oy

1 Ap+1 Ap+s

G oy T oy

)+

Y+---. O

As recently seen in the introduction, there are both quantities Ly and Lo, except in the case of formal
series the quantity Le is not interesting, because we know that the sum of two p-polynomials is always
a p-polynomial. We excluded the case when deg(f) = 1, since in this trivial case, the product of two
B-polynomials is a f-polynomial. Then we have Lo = 0.

So far, we are interested in results for Ly for general algebraic series .
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Theorem 3.2. Let f be an algebraic integer series with |B| > 1. Then the set
((IFy[x])p-(IFy[x])p) N Per(p) is finite.

Proof. . Suppose without loss of generality ds(PQ) = c¢;,...c1¢o ® c—1...C—y is ultimately periodic where P
and Q are two -polynomials such that

P=af+as 1 + - +ap with |a;]| < |B]

and
Q = bif* + b ft + -+ + by with [b] < IB.
Hence e co o o1 o
PQ:cnﬁ"+--~+c0+?+ﬁ—2+--~+ﬁ—m+ﬁm+l+~--+ﬁz—m+
So c.1 Cp Cm c_1 Com
{PQ}ﬁ:PQ_Cnﬁn_”'_CO:?*‘E"‘"““ﬁm +‘Bm+l+m+ﬁm+

Let (BY),<<q be the conjugates of B. To show this theorem, we first distinguish these two cases:

Case 1: If |gY)] > 1.
In this case, we have {PQ] € IF;(x, ) and so by Lemma 3.1, we obtain

() _ €1 C_2 Com c_1 Cm
{PQ}ﬁj ~ B0 + (B0)2 oot ()" * (Bym+1 oot (By2m +

Since [ei| < |l for all i € {~1, ..., =m}, so {PQ}| < IB.

Case 2: If || < 1.
In this case, we have

{PQ}g) = (@BVY +--+ ﬂo)(bk(ﬁ(j))k +oo b)) — cu(BPY = — g
s+k 1
= 2 Qb)) — )~ — o
=0 p=0
s+k 1 4 '
< max( Y () b )Y leu(BOY" = -+ = coll.
=0 p=0

As |V <1, we get
s+k |

1Y O by )N < I8P and leu(B)" = -+ = col < Ifl
=0 p=0
Consequently,
PQIl < I
{PQls
(PQ)Y
Therefore the module of . is less than |B|%.

{PQ};;’)
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stk 1
Now, since {PQ}s = Y.(X. byai_p)p' — cuf” — -+ — co and B is an algebraic integer of degree d, we easily
1=0 p=0

deduce that {PQly = Ao + Aif + -+ + Ag1f™™! with A; € Fylx]. Hence for all j € {2,...,d}; (PQ)Y =
Ag + Ay (BD) + -+ + Ag_1 (D)1, Thus

{PQ}ﬁ Ao 1 ﬁ e e ﬁd_l
{PQ};Z) Aq 1 po :

: =M : , where M = :

: : Do ) (d-1)yd-1
{PQ}? Ag 1 gD (l(gﬁw))gq

We have det M = [[(B®" — B)) # 0 which implies that M is invertible therefore it transforms all bounded

i<j
{PQ}s
(PQ)Y
vector in an bounded vector. From the two cases and since [{PQ]}g| < 1, we have . is bounded, so
(PQI;
Ap
Ay
is also bounded and moreover belongs to ]Fq[x]d . Therefore this last vector takes a finite number
A

of possibilities (since IF; is finite). [J

Corollary 3.3. Let f be an algebraic integer series with |B| > 1. Then Lo is finite.

In order to prove Theorem 3.5, we need the following lemma.

Lemma 3.4. Let  be an algebraic unit series and & be a positive number.
Then _

lim min ||f|] = oo,

p—eo feX(p) /
where

X(p) = {f € Fin(B) : |f| < &, ordy(f) = —p}.

Proof. . Assume that there exists a constant B and an infinite sequence f; (i=1,2,...) so that both

Ifi(j)ISB for j=2,3,...,d and limordg(f;) = —oo0

holds. Since B is an algebraic series, Fin() C IF,[x, B~!]. Moreover is unit, then Fin(B) C IF,[x, B~'] C IF,[x, Bl.
We know that IFy[x, f] is discrete, then Fin(g) is discrete. In addition, we have [f;| < &, so these f;’s are finite,
a contradiction with the second condition, completing the proof. [
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Theorem 3.5. Let f be an algebraic unit series with || > 1. Then L is finite.

Proof. . By assumption, we have dg(PQ) is finite i.e dg(PQ) = ¢, ...co ® c-1...c_y, where P, Q € (IF;[x])s such
that

P=af+as 1 + - +ap with |a;]| < |B]

and
Q = bk + b_1f1 + -+ + by with |b;] < |BI.
We have PQ_Cﬁn+.'.+C+C;1+C;2+“.+C—_m
— tn 0 ﬁ ﬁ2 ﬁm.
%0 n €1 C2 Com
{PQ}g = PQ —cuf _.”_CO=?+?+M+ﬁ7'

Let (B)y<j<q be the conjugates of B. Now, we begin by distinguish these two cases:

Case 1: If |g9)] > 1.

In this case, we have
i C1 C_p C_
(PQy) = =5 .

BT T (B2 ot By
Since |ci| < |B| for i € {~1,....,—m}, we obtain |{PQ}g)| < IBl.

Case 2: If I,B(j)l <1

(PQI) = @By + -+ a)(be(B) + -+ bo) = cu(B))" = -+ o
s+k 1
< max{] )| () b)) Bl lea (7Y =+ = col)
=0 p=0

As [BD] < 1, we get
s+k 1

1Y O by ) BN < I8P and leu(B)" = -+ = col < If]

=0 p=0

Consequently,

PQIl < I

As a consequence, we deduce thatforallj € {2,...,d}, {PQ}g )is bounded, wherefrom we have || {PQ}; [|< IBI2.

Moreover, note that [{PQ}g| < 1 and by Lemma 3.4, there exist k € Z, such that for all PQ € (IF;[x])s we
obtain that ordg(PQ) > k. Therefore, Lo is finite. [J

Example 3.6. Let 8 be the unique root with absolute value > 1 of the polynomial P(Y) = Y* + x" Y41 + Ay Y42 +
s+ ALY + X7 with deg(A;) < mfori€{1,...,d —2}. Then Lo = (d — 1)(m — 1).
Indeed, the existence of such B is due to Lemma 2.4 and his degree is m. We have
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Hence, ordg(x™) = 1 — d. Moreover

Therefore, ordlg(xm“) = 2(1 — d) and by induction for all positive integer s, we get ordg(x"**) = (s + 1)(1 — d). So,
in this case, Lo = —ordg(x*"~2) = (d — 1)(m — 1).

Now, we prove that the set of periodic p-fractional part with fixed pre-period is finite where the basis 8
is an algebraic integer.

Theorem 3.7. Let § be an algebraic integer series with |B| > 1. Then the set
IF;[x, B] N Per(B, s) is finite.

-1
Proof. . Let f € Fy[x, ] N My and f an algebraic integer series of degree d, then f = }  A;f', therefore
i=0

-1 ,
f® =¥ A;(BP) for all k € {2, ..., d}. Thus
i=0

1 g ... .. ﬁd_l Ao Ao
f@ 1 80 - : Ay Aq
. _ . M .
. : : . ( (d—l))d—l .
fO)l1 g oo gyt )\ A Ad-1

Let now dg(f) =0 eay...asds1 ... ap1s. To complete this proof, we must distinguish these two cases:

Case 1: If |3®] < 1. We have

{Ils a5+1 p+s 1 ai as
f=%e b LB %)
‘Bs ‘Bs+1 ‘Bp+s IBp ‘8 ﬁs
Given thatay, ..., a,4s € Fy[x], we find
_ Mo s Asp Ot Voo s
R ) ) T A R O
Then
1 a a a Apys 1 a a
®q _ _mo s sl oy s 1 o m O
T ) N ) A R s
Hence

FOBOYT = B0 = ar Oy 4 4 as(BOY + asa (PO o+ (@ — a5).

Since |B%] < 1, we get |[f®(B0)%| < || As the pre-period s of f is fixed, we have || < I(ﬁ‘gl)SI‘

Case 2: If Iﬁ(k)l > 1.

In this case, we have
as as+1 Ap+s As+1

‘Bs ‘Bs+1 too A ‘Bp+s + ﬁp+s+1 +

f== L.
and so by Lemma 3.1, we obtam

_m o, as As41 Ap+s ds+1

B® toot (8% + (B)s+1 T (5(k))p+s + (B)p+s+ +

So [f®] < |l
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As a consequence, we deduce from these two cases that f(k) is bounded for all k € {2,...,d}. Since
detM = H(ﬁ(l) — B@) # 0, M is invertible. Hence, it transforms all bounded vector in an bounded vector.

i<j
f Ao
f(2) 1
From these two cases and since |f| < 1, we have . is bounded, so . is also bounded and
f(d) A

moreover belongs to ]Fq[x]d, therefore this vector take a finite number of possibilities (since IFy is finite). [J

Corollary 3.8. Let 8 be an algebraic integer series with |B| > 1. Then the set IFy[x, f] N Pur(p) is finite.
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