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On the filter bornological convergence of the nested sequences of sets
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Abstract. In this work, we show the equivalence of filter bornological convergence and bornological
convergence for the nested sequences of sets on topological vector spaces. Then we investigate the filter
bornological limit of the nested sequence of sets.

1. Introduction

In 1951, Fast ([13]) and Steinhaus ([27]) defined the concept of statistical convergence, which is a weaker
type of convergence than classical convergence. In 2000, Kostyrko et al ([19]) defined the concept of ideal
convergence (briefly, I-convergence), which is a more general convergence type that includes classical
convergence and statistical convergence (see also [20]). [6] and [7] provide some results regarding statistical
convergence and ideal convergence of sequences of functions. Ideals and filters are dual concepts to each
other. The reader can refer to [2, 4, 16] for filter convergence (briefly, F -convergence) equivalent to ideal
convergence. Today, many researchers continue to work on statistical convergence, ideal convergence and
filter convergence.

Many convergence methods have been defined for sequences of sets. Among these convergence types,
we can mention Hausdorff convergence, Wijsman convergence and Kuratowski convergence (see [22, 23,
30, 31]). For generalizations of these concepts in terms of statistical convergence and ideal convergence,
the reader may refer to [18, 26, 28]. Apreutesei [3] showed that Wijsman convergence and Hausdorff
convergence are equivalent to each other for monotone sequences of sets. In [1], it has been shown that
ideal Hausdorff convergence and Hausdorff convergence are equivalent, and ideal Wijsman convergence
and Wijsman convergence are equivalent for nested sequence of sets.

The concept of bornology has the structure of ideals, the only difference is that it creates a cover. In the
literature, there are studies on bornological spaces, bornological convergence (briefly, B-convergence) and
different types of convergence on bornologies (see [8, 9, 11, 24]). In [5], it was introduced the concept of filter
bornological convergence (briefly, FB-convergence) for sequences of sets on topological vector spaces.

In the second part of this study, we will give basic information about filters, bornologies and their
associated convergence types. In the third part, we will present some results related to bornological conver-
gence and filter bornological convergence. We show that bornological convergence and filter bornological
convergence are equivalent for nested set sequences.
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H. Albayrak / Filomat 38:25 (2024), 8987–8997 8988

2. Preliminaries

Let’s start with the definition of topological vector space. Let X be a vector space on the real numbers
field R and let τ be a linear topology on X (that means the operations addition and scalar multiplication
are τ-continuous on X). In this case, the pair (X, τ) is called a topological vector space (or linear topological
space) and it is denoted by TVS for short (see [17, 21, 29]). Throughout this paper, Cl (X) and K (X) denote
the family of all nonempty closed subsets and the family of all nonempty compact subsets of X, respectively.

We will denote the zero element of the space X by θ. Each linear topologies on a TVS has a base N of
neighbourhoods of zero, providing the following properties (we use such a base in our proofs):

a. Each V ∈ N is a balanced set (i.e., λx ∈ V for each x ∈ V and each λ ∈Nwith |λ| ≤ 1).

b. Each V ∈ N is an absorbing set (i.e., for each x ∈ X there is a λ > 0 such that λx ∈ V ).

c. For each V ∈ N there is a set W ∈ N such that W +W ⊆ V. Here, the operation W +W is defined as
W +W :=

{
x + y : x, y ∈W

}
.

Every normed space is a topological vector space. Also, if a TVS has a countable base of neighbourhoods
of θ then it is metrizable.

Let A ⊆ X, the closure of A is defined by

cl (A) =
{
x ∈ X : For every U ∈ N there exists a y ∈ A such that x − y ∈ U

}
.

If (X, τ) is a HausdorffTVS then the intersection of all neighborhoods ofθhas onlyθ, that is,
⋂

U∈N U = {θ}
(see [17]).

A nonempty family F of subsets ofN is said to be a filter onN, if it provides the following conditions
(see [12, 32]):

i. ∅ < F ,

ii. If A,B ∈ F then A ∩ B ∈ F ,

iii. If A ∈ F and A ⊆ B then B ∈ F .

If F = {N} then F is called a trivial filter, otherwise a non-trivial filter. The family F = {B : A ⊆ B} is
called a principal filter generated by A where A is a nonempty subset ofN (F is nonprincipal otherwise).
F is said to be a free filter if the intersection of all its members is empty (that is,

⋂
A∈F A = ∅). If a filter F is

not free then it is called fixed.
Definition of filter convergence of a sequence may be given for an arbitrary topological space and, then

in particular, for a topological vector space. The reader can look at [4] and [16] for filter convergence.

Definition 2.1. Let (X, τ) be a TVS. Let (xn)n∈N be a sequence in X, let x0 ∈ X and let F be a filter on N. The
sequence (xn) is said to be filter convergent (or F -convergent) to the point x0, if for every neighborhood U of θwe have

{n ∈N : xn − x0 ∈ U} ∈ F .

Then we write F − lim xn = x0 or xn
F
−→ x0.
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In the following, we give some examples of filters and filter convergence. |A| denotes the cardinality of
the set A.

1. Fréchet Filter: The family Fr = {A ⊆N : |N \ A| < ∞} is called the Fréchet filter. Fr-convergence coincides
with the ordinary convergence. Fr is the minimum filter by the inclusion relation. So the free filters are
characterized as follows:

F is free⇐⇒ F ⊇ F r.

2. Statistical Convergence Filter: Let A ⊆ N. Let A(n) = |{1, ...,n} ∩ A| indicate the number of elements in
the set A from 1 to n. The functions

δ(A) = lim inf
n→∞

A(n)
n

and δ(A) = lim sup
n→∞

A(n)
n

are called the lower asymptotic density and upper asymptotic density of the set A, respectively. If δ(A) = δ(A),
that is, the limit

lim
n→∞

A(n)
n

exists, then the value of this limit is called the asymptotic density of the set A, and it is denoted by δ(A)
([10, 14, 25]). The family Fst = {A ⊆N : δ (A) = 1} is called the statistical convergence filter. Fst-convergence
coincides with the statistical convergence ([13, 27]).

Now, we give the concept of bornological convergence of a sequence of sets on TVS. For the bornological
convergence of nets of sets in metric spaces, the reader may look to [11] and [24]. Let’s first give the
definition of bornology.

A family B of subsets of a set X is said to be a bornology, if it provides the following conditions (see
[15]):

i. B is a cover of X, i.e. X =
⋃

B̌∈B B̌,

ii. B is closed under subsets, i.e. if B̌ ∈ B and Ǎ ⊆ B̌ then Ǎ ∈ B,

iii. B is closed under finite unions, i.e. if Ǎ, B̌ ∈ B then Ǎ ∪ B̌ ∈ B.

Items (ii) and (iii) together form the definition of the ideal. That’s why every bornology is also an ideal.
The converse of this statement is not true, as ideals do not need to form a cover. If an ideal is a cover of a
set X, then we call it a bornology on X.

Example 2.2. The following (1)-(3) families are bornologies on any set X, and families (4) and (5) on R2.
1) The power set P(X).
2) Bfin =

{
B̌ ⊆ X : B̌ is finite

}
.

3) Bbnd =
{
B̌ ⊆ X : B̌ is bounded

}
.

4) Bvert =
{
B̌ ⊆ R2 : B̌ is contained in a finite union of vertical lines

}
.

5) Bhorz =
{
B̌ ⊆ R2 : B̌ is contained in a finite union of horizontal lines

}
.

In the following, the concept of ε-enlargement of a set on metric spaces is generalized to the concept of
U-enlargement on topological spaces.
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Definition 2.3. Let (X, τ) be a TVS and let U be a neighborhood of θ. For A ⊆ X, the set

AU =
{
x ∈ X : x − y ∈ U for some y ∈ A

}
is called U-enlargement of the set A ([5]).

Definition 2.4. Let (X, τ) be a TVS and let B be a bornology on X. Take a sequence (An)n∈N of nonempty subsets of
X and a set A ⊆ X.

1. (An)n∈N is said to be lower bornological convergent to the set A, if for each neighborhood U of θ and each B̌ ∈ B
there is a n0 ∈N such that

A ∩ B̌ ⊆ AU
n for every n ≥ n0.

Then we write B− − lim An = A.
2. (An)n∈N is said to be upper bornological convergent to the set A, if for each neighborhood U of θ and each B̌ ∈ B

there is a n0 ∈N such that

An ∩ B̌ ⊆ AU for every n ≥ n0.

Then we write B+ − lim An = A.
3. If the sequence (An)n∈N is both lower bornological convergent and upper bornological convergent to the set A

then (An)n∈N is called bornological convergent to the set A. In this case, it is denoted by B − lim An = A.
(see [5, 11, 24])

Example 2.5. Consider the topological vector space
(
R2, τ

)
equipped with Euclidean topology.

Let An =
{(

x, y
)
∈ R2 : y = x/n

}
for each n ∈N and A =

{(
x, y
)
∈ R2 : y = 0

}
.

Where ε > 0 and U = Uε =
{(

x, y
)
∈ R2 :

√
x2 + y2 < ε

}
, the U-enlargement of sets A and An are

AU =
{(

x, y
)
∈ R2 : −ε < y < ε

}
and

AU
n =
{(

x, y
)
∈ R2 :

x
n
− ε < y <

x
n
+ ε
}
,

respectively.

• Let B̌ be any element of the bornology Bvert. Then, there is a set B =
{(

x, y
)
∈ R2 : x ∈ {a1, a2, ..., am}

}
such that

B̌ ⊆ B where a1, a2, ..., am are real constants.
Let’s take an arbitrary ε > 0 and let U be the neighborhood of θ = (0, 0) associated with ε. We have

An ∩ B =
{(

a1,
a1

n

)
, ...,
(
am,

am

n

)}
for every n ∈N. Let a = max1≤i≤m |ai|. Then, there exist an nε ∈N such that nε >

a
ε

. Hence we get∣∣∣∣ai

n

∣∣∣∣ ≤ a
n
≤

a
nε
< ε

for every i ∈ {1, 2, ...,m} and every n ≥ nε, and so

An ∩ B̌ ⊆ An ∩ B ⊆ AU
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for every n ≥ nε. Thus, we obtain B+vert − lim An = A.
For the same sets and numbers (i.e., B̌,B,U, ε, ai, a), we have

A ∩ B = {(a1, 0) , ..., (am, 0)} .

Then, there exist an nε ∈N such that nε >
a
ε

. Hence we get

a
n
− ε < 0 <

a
n
+ ε =⇒

ai

n
− ε < 0 <

ai

n
+ ε

for every i ∈ {1, 2, ...,m} and every n ≥ nε. Hence, for every n ≥ nε we get (ai, 0) ∈ AU
n and so

A ∩ B̌ ⊆ A ∩ B ⊆ AU
n .

Therefore, we obtain B−vert − lim An = A. Consequently, Bvert − lim An = A.

• If we specifically choose the set B̌1 =
{(

x, y
)
∈ R2 : y = 1

}
∈ Bhorz, we get

An ∩ B̌1 ⊈ AU for every n ∈N

for each the neighborhood U of θ = (0, 0) associated with 0 < ε < 1. Therefore, the sequence (An) is not
B
+
horz-convergent to A.

Similarly, if we specifically choose the set B̌2 = A =
{(

x, y
)
∈ R2 : y = 0

}
∈ Bhorz, we get

A ∩ B̌2 = A ⊈ AU
n for every n ∈N

for each the neighborhood U of θ = (0, 0) associated with ε > 0. Therefore, the sequence (An) is not B−horz-
convergent to A. Consequently, (An) is not Bhorz-convergent to A. □

In the following, the concept of filter bornological convergence, which is a generalization of bornological
convergence, is given.

Definition 2.6. Let (X, τ) be a TVS, let B be a bornology on X and let F be a filter onN. Let (An)n∈N be a sequence
of nonempty subsets of X and let A ⊆ X.

1. The sequence (An)n∈N is said to be filter lower bornological convergent to the set A, if for each neighborhood U
of θ and each B̌ ∈ B we have{

n ∈N : A ∩ B̌ ⊆ AU
n

}
∈ F

and then we write FB−-lim An = A.
2. The sequence (An)n∈N is said to be filter upper bornological convergent to the set A, if for each neighborhood U

of θ and each B̌ ∈ B we have{
n ∈N : An ∩ B̌ ⊆ AU

}
∈ F

and then we write FB+-lim An = A.
3. If the sequence (An)n∈N is both filter lower bornological convergent and filter upper bornological convergent to

the set A, that is, for each neighborhood U of θ and each B̌ ∈ B we have{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F

then the sequence (An)n∈N is called filter bornological convergent to the set A. In this case, it is denoted by
FB − lim An = A.
(see [5])
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For F = Fr, FrB-convergence of a sequence of sets is equivalent to its bornological convergence.

Let (An)n∈N be a sequence of nonempty subsets of X. If An ⊆ An+1 (resp. An+1 ⊆ An) for every n ∈ N
then (An)n∈N is called a monotone increasing sequence (resp. monotone decreasing sequence). We say that
(An)n∈N is a nested sequence if it is monotonically increasing or decreasing.

In the following example,P denotes the set of all prime numbers. It is a known fact that δ (P) = 0 (hence,
N \ P ∈Fst).

Example 2.7. Let B be any bornology on the TVS
(
R2, τ

)
with Euclidean topology. Let’s consider the sequence

(An)n∈N defined as

An =


{(

x, y
)
∈ R2 : x2 + ny2

≤ 16
}

, n < P{(
x, y
)
∈ R2 :

(
1 +

30
n

)
x2 + y2

≤ 16
}
, n ∈ P

and let A =
{(

x, y
)
∈ R2 : −4 ≤ x ≤ 4 and y = 0

}
.

For every neighborhood U of θ = (0, 0) and every B̌ ∈ B we have

A ∩ B̌ ⊆ A ⊆ An ⊆ AU
n for each n ∈N \ P

An ∩ B̌ ⊆ An ⊆ AU for each n ∈N \ (P ∪M)

where M =M
(
U, B̌
)

is a finite subset ofN. Then, we get{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
⊇N \ (P ∪M) ∈ Fst

and so{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ Fst

for every U and every B̌. Therefore, we obtain FstB − lim An = A.
But this sequence is not bornologically convergent to A. For every neighborhood U of θ = (0, 0) and every B̌ ∈ B we
have

A ∩ B̌ ⊆ A ⊆ AU
n for each n ∈N \M

where M =M
(
U, B̌
)

is a finite subset ofN. Then, we get B− − lim An = A.
Specifically, let’s choose an neighborhood U1 of θ = (0, 0) associated with ε = 1 and choose B̌1 ∈ B with (0, 2) ∈ B̌1.
We have

An ∩ B̌1 ⊈ AU1 for each n ∈ P ∪M1

where M1 =M1

(
U1, B̌1

)
is a finite subset ofN. Since P ∪M1 is an infinite set, we get B+ − lim An , A. □

3. Main Results

In this section, we first show that the FB-limit is unique if the limit sets are closed. We give the
bornological limit of nested sequences of sets. As our main result, we show that bornological convergence
and filter bornological convergence are equivalent for nested sequences of sets.
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Theorem 3.1. Let (X, τ) be a TVS, B be a bornology on X, and F be a free filter on N. If FB − lim An = A and
FB − lim An = B where A and B are nonempty sets then cl (A) = cl (B).

Proof. Let U be an arbitrary neighborhood ofθ and let W be another neighborhood ofθ such that W+W+W ⊆
U. Let x ∈ cl (A). There is a point y ∈ A such that x − y ∈W. If FB − lim An = A and FB − lim An = B then
we have

K
(
W, B̌
)
=
{
n ∈N : An ∩ B̌ ⊆ AW and A ∩ B̌ ⊆ AW

n

}
∈ F

and

L
(
W, B̌
)
=
{
n ∈N : An ∩ B̌ ⊆ BW and B ∩ B̌ ⊆ AW

n

}
∈ F

for each B̌ ∈ B. Let’s choose a B̌1 ∈ B such that y ∈ B̌1. For every n ∈ K1 we get

y ∈ A ∩ B̌1 ⊆ AW
n =⇒ y ∈ AW

n

where K1 = K1

(
W, B̌1

)
=
{
n ∈N : An ∩ B̌1 ⊆ AW and A ∩ B̌1 ⊆ AW

n

}
∈ F . For each n ∈ K1 there exist zn ∈ An

such that y − zn ∈ W. None of the points zn may belong to B̌1. Since K1 ∩ L
(
W, B̌
)
∈ F for every B̌ ∈ B,

we can choose an n∗ ∈ K1 and a B̌2 ∈ B such that n∗ ∈ L2

(
W, B̌2

)
and zn∗ ∈ B̌2 where L2 = L2

(
W, B̌2

)
={

n ∈N : An ∩ B̌2 ⊆ BW and B ∩ B̌2 ⊆ AW
n

}
∈ F . Then we have

zn∗ ∈ An∗ ∩ B̌2 ⊆ BW =⇒ zn∗ ∈ BW .

There exists t ∈ B such that zn∗ − t ∈W. Hence we get

x − t =
(
x − y

)
+
(
y − zn∗

)
+
(
zn∗ − t

)
∈W +W +W ⊆ U.

Then we have x ∈ BU. Since U is an arbitrary neighborhood of θ, we get x ∈ cl (B). That is, cl (A) ⊆ cl (B).
The inclusion cl (B) ⊆ cl (A) can be shown similarly. Consequently, we obtain cl (A) = cl (B).

Theorem 3.2. Let (X, τ) be a first countable TVS and B be a bornology on X. Let An ∈ K (X) for every n ∈N.

1. If the sequence (An)n∈N is monotone increasing and cl
(⋃

n∈N An
)

is compact then

B − lim An = cl

⋃
n∈N

An

 .
2. If the sequence (An)n∈N is monotone decreasing then

B − lim An =
⋂
n∈N

An.

Proof.

1. Let’s assume that (An)n∈N is a monotone increasing sequence. Let A := cl
(⋃

n∈N An
)
.

• Let’s choose an arbitrary B̌ ∈ B and an arbitrary neighborhood U of θ. For each n ∈Nwe have

An ∩ B̌ ⊆ An ⊆ cl

⋃
n∈N

An

 = A ⊆ AU.

Then we get B+ − lim An = A.
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• Again, let U be an arbitrary neighborhood of θ and let B̌ ∈ B. Since A is compact, there are
finitely many y1, y2, ..., ym ∈

⋃
n∈N An such that A ⊆

⋃m
i=1
(
yi +U

)
. Let’s index the y j’s again such

that A ∩ B̌ ⊆
⋃k

j=1

(
y j +U

)
, k ≤ m. For each x ∈ A ∩ B̌, there exists a y j ∈

⋃
n∈N An ( j ∈ {1, 2, ..., k})

such that x ∈ y j + U, i.e. x − y j ∈ U. From y j ∈
⋃

n∈N An, there is an n j ∈ N such that y j ∈ An j

for each j ∈ {1, 2, ..., k}. Let n0 := max
{
n j : j ∈ {1, 2, ..., k}

}
. Since (An)n∈N is monotone increasing,

we have y j ∈ An for each j ∈ {1, 2, ..., k} and every n ≥ n0. If x − y j ∈ U and y j ∈ An then we have
x ∈ AU

n . Hence we have

A ∩ B̌ ⊆ AU
n for every n ≥ n0

(Here n0 depends on U and B̌, but not on x ∈ A ∩ B̌). Therefore we get B− − lim An = A.
Consequently, we obtain B − lim An = cl

(⋃
n∈N An

)
.

2. Now, let’s assume that (An)n∈N is a monotone decreasing sequence and let A :=
⋂

n∈N An.

• Let’s choose an arbitrary B̌ ∈ B and an arbitrary neighborhood U of θ. We have

A ∩ B̌ ⊆ A =
⋂
n∈N

An ⊆ An ⊆ AU
n

for each n ∈N. Then we get B− − lim An = A.

• Let U be an arbitrary neighborhood of θ. We show that there exists an n0 ∈N such that

An ⊆ AU

for every n ≥ n0. Let’s assume that this is not true. That is, there is an infinite set K =
{n1 < n2 < ... < nk < ...} ⊆N such that

Ank ⊈ AU

for every k ∈N. Then, for each k ∈N there exists a point xk such that xk ∈ Ank and xk < AU. Since
(An)n∈N is monotone decreasing, (xk)k∈N is a sequence in the set A1. From the compactness of A1,

the sequence (xk)k∈N has a convergent subsequence
(
xk j

)
j∈N

(say x0 to it’s limit). In this case, we

have x0 ∈ A, and for the neighborhood U there is a j0 ∈N such that

xk j − x0 ∈ U

for every j ≥ j0. Then we get xk j ∈ AU and that is a contradiction. Therefore, there exists an
n0 ∈N such that

An ⊆ AU

for every n ≥ n0.
Now, for an arbitrary B̌ ∈ B and an arbitrary neighborhood U of θ we can say that there exists
an n0 ∈N such that

An ∩ B̌ ⊆ An ⊆ AU

for every n ≥ n0. Hence we get B+ − lim An = A.
Consequently, we obtain B − lim An =

⋂
n∈N An.

Now, we give the equivalence of bornological convergence and filter bornological convergence.
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Theorem 3.3. Let (X, τ) be a Hausdorff TVS, B be a bornology on X, and F be a free filter onN. Let (An)n∈N be a
nested sequence of closed subsets of X and A ∈ Cl (X). Then we have:

B − lim An = A⇐⇒ FB − lim An = A.

Proof.
(=⇒) : It is easily obtained from the inclusion F ⊇ F r.
(⇐=) : Let’s assume that FB − lim An = A. We will prove in two cases according to whether (An)n∈N is
increasing or decreasing.
Case 1: Let (An)n∈N be an increasing sequence such that An ⊆ An+1 for every n ∈N.
Firstly, we will show that An ⊆ A for every n ∈ N. Let n ∈ N be an arbitrary constant index and let u ∈ An.
Since (An) is increasing, we have u ∈ Am for every m ≥ n. Since FB − lim An = A, if for each neighborhood
U of θ and each B̌ ∈ Bwe have

K
(
U, B̌
)

:=
{
m ∈N : A ∩ B̌ ⊆ AU

m and Am ∩ B̌ ⊆ AU
}
∈ F .

Let’s choose a B̌0 ∈ B such that u ∈ B̌0. Then, for each neighborhood U of θ and each m ∈ K
(
U, B̌0

)
\

{1, 2, ...,n} ∈ F we get

u ∈ Am ∩ B̌0 ⊆ AU =⇒ u ∈ AU.

Due to A is closed, we obtain u ∈ A. Hence we get An ⊆ A for every n ∈N.
Now, we show that B − lim An = A. Let U be an arbitrary neighborhood of θ and let B̌ ∈ B. Since An ⊆ A
for every n ∈N, we get

An ∩ B̌ ⊆ An ⊆ A ⊆ AU

for every n ∈N. This implies that B+ − lim An = A.
From our assumption of FB − lim An = A, we have

L
(
U, B̌
)

:=
{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F .

Let n0 := min L
(
U, B̌
)
. Since (An) is increasing, we have

A ∩ B̌ ⊆ AU
n0
⊆ AU

n

for each n ≥ n0. Therefore, we get B− − lim An = A.
Consequently, we obtain B − lim An = A.
Case 2: Let (An)n∈N be a decreasing sequence such that An+1 ⊆ An for every n ∈N.
Firstly, we will show that A ⊆ An for every n ∈ N. Let n ∈ N be an arbitrary constant index and let u ∈ A.
Let U be an arbitrary neighborhood of θ and let B̌0 ∈ Bwith u ∈ B̌0. Since FB − lim An = A, we have

K
(
U, B̌0

)
:=
{
m ∈N : A ∩ B̌0 ⊆ AU

m and Am ∩ B̌0 ⊆ AU
}
∈ F .

Then we get

u ∈ A ∩ B̌0 ⊆ AU
m ⊆ AU

n =⇒ u ∈ AU
n

for each U and each m ∈ K
(
U, B̌0

)
\ {1, 2, ...,n} ∈ F . Due to An is closed, we obtain u ∈ An. Hence we get

A ⊆ An for every n ∈N.
Now, we show that B − lim An = A. Let U be an arbitrary neighborhood of θ and let B̌ ∈ B. Since A ⊆ An
for every n ∈N, we get

A ∩ B̌ ⊆ A ⊆ An ⊆ AU
n
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for every n ∈N. This implies that B− − lim An = A.
From our assumption of FB − lim An = A, we have

L
(
U, B̌
)

:=
{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F .

Let n0 := min L
(
U, B̌
)
. Since (An) is decreasing, we have

An ∩ B̌ ⊆ An0 ∩ B̌ ⊆ AU

for each n ≥ n0. Therefore, we get B+ − lim An = A.
Consequently, we obtain B − lim An = A.

From Theorem 3.2 and Theorem 3.3, we can give the following corollary.

Corollary 3.4. Let (X, τ) be a Hausdorff TVS, B be a bornology on X, and F be a free filter onN. Let (An)n∈N be a
nested sequence where An ∈ K (X) for every n ∈N.

1. If (An)n∈N is an increasing sequence and cl
(⋃

n∈M An
)

is compact then

FB − lim An = cl

⋃
n∈N

An

 .

2. If (An)n∈N is a decreasing sequence then

FB − lim An =
⋂
n∈N

An.

Definition 3.5. Let (X, τ) be a TVS and F be a filter on N. Let (An)n∈N be a sequence of nonempty subsets of X.
We say that the sequence (An)n∈N is F -monotone increasing if there exist a set M = {n1 < n2 < ... < nk < ...} ∈ F
such that Ank ⊆ Ank+1 for every k ∈ N. (An)n∈N is said to be F -monotone decreasing if there exist a set M =
{n1 < n2 < ... < nk < ...} ∈ F such that Ank+1 ⊆ Ank for every k ∈N.
If (An)n∈N is F -monotone increasing or F -monotone decreasing then we say that (An)n∈N is an F -nested sequence.

Theorem 3.6. Let (X, τ) be a first countable TVS and B be a bornology on X. Let An ∈ K (X) for every n ∈ N and
let M = {n1 < n2 < ... < nk < ...} ∈ F where F is a free filter.

1. If the subsequence (An)n∈M of (An)n∈N is monotone increasing and cl
(⋃

n∈M An
)

is compact then

FB − lim An = cl

⋃
n∈M

An

 .
2. If the subsequence (An)n∈M of (An)n∈N is monotone decreasing then

FB − lim An =
⋂
n∈M

An.

Proof.
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1. According to Theorem 3.2, since (An)n∈M is monotone increasing we have

B − lim Ank = cl

⋃
n∈M

An

 := A.

Let U be an arbitrary neighborhood of θ and let B̌ ∈ B. Then there is a k0 ∈N such that

A ∩ B̌ ⊆ AU
nk

and Ank ∩ B̌ ⊆ AU

for every k ≥ k0. Hence we get{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
⊇M \ {1, 2, ..., k0 − 1} .

Since F is a free filter, we have M \ {1, 2, ..., k0 − 1} ∈ F . Therefore we obtain{
n ∈N : A ∩ B̌ ⊆ AU

n and An ∩ B̌ ⊆ AU
}
∈ F

and so FB − lim An = A.
2. It can be proved similarly.
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[18] Ö. Kişi, F. Nuray, New convergence definitions for sequences of sets, Abstract and Applied Analysis, https://doi.org/10.1155/2013/852796,

2013.
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