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Abstract. Let M = (0 P) be an expanding real matrix, and let D = {(0), (O ) \2q) L be a

digit set. In this paper, we mainly study the properties of spectra of self-affine measure py o generated
by M and D. We showed that ¢ is a spectral measure if and only if 5 | p. Furthermore, by extending
the maximal mapping to plane, we gives a characterization for E(A) to be a maximal orthogonal family in

L*(um,p)- Based on these, we also obtained some sufficient conditions for the maximal orthogonal set to be
an orthogonal basis of L?(uy,p).

1. Introduction

One of the fundamental problems in harmonic analysis is whether E(A) := {24 1 A € A} forms
an orthonormal basis for L*(u), the space of all square-integrable functions with respect to a probability
measure (. Let u be a probability measure with compact support on IR?, then y is called a spectral measure
if there exists a countable set A C R? such that the set of exponential functions E(A) forms an orthonormal
basis for L?(u). If such A exists, then A is called a spectrum of u, and (u, A) is called a spectral pair.

The origin of the question could date back to Fuglede[20] and his famous conjecture: a measurable set
is a spectral set if and only if it tiles the whole Euclidean space by translation. Although, it was proved to
be false by Tao and others in dimension three or higher (see[26, 32, 36]), but it is still a hot topic in one and
two dimensions. After the original work of Fuglede, the study of spectral measures is also blooming.

In this paper, we mainly consider the properties of spectra for a class of self-affine measure i p on R?,
which generated by the following iterated function systems (IFS)

{pa(x) = M7 (x + d)}sen,

where M is an expanding matrix (that is, all eigenvalues of M are strictly larger than one in modulus) and
D c R? is a finite subset of cardinality #2. By Hutchinson’s theorem[24], there exists a unique probability
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measure Uy p satisfying the following equation

1 _
pmo() = D ;),UM,D oy (), (1)

which is supported on T(M, D), where

TM, D) = ] pu(T(M, D).

deD

The set T(M, D) is called a self-affine set and the measure o is called a self-affine measure.
Moreover, the measure iy p can be expressed by the infinite convolution of Dirac measures as follows

Mmoo = Op1p * Op2p * Oppap # -+, )

where 6 = % Y.dep 04, 04 is the Dirac measure at the point d and the convergence is in weak sense.

The first example of a singular, non-atomic, spectral measure was given by Jorgensen and Pedersen in
[25] , this measure p402) generated by the IFS {47 Y(x +d) : d € {0,2}}, and the spectrum for this measure is

as follows
A= {Zéﬂ‘lk L€ {0,1), n EIN}.
k=0

This surprising discovery received a lot of attention, and the research on the spectrality or non-spectrality
of singular measures has become a hot topic (see [2—4, 8, 11, 13-18, 22, 27, 28] and the references therein
for recent advances). As well as, the convergence of py o with different spectra has different results (see
[16, 34, 35]), and the spectral properties of various classes of spectral measures have been analyzed (see
[1,10,12,23,31] and the references therein for details). In these researches, we can find that the construction
of these fractal spectral measures stem from the existence of compatible pairs.

Definition 1.1. Let M € My(Z) be an expanding matrix with integer entries, and let D,C C Z* be two finite subsets
of integer vectors with #D = #C. We say that (M™'D, C) forms a compatible pair (or (M, D, C) forms a Hadamard
triple) if the matrix

iM-1
P2iM d,c)]

deD,ceC

!

is unitary, that is, H'H = HH" = I, where H* denotes the transposed conjugate of H.

Recall that, Laba and Wang [29] showed that ;0 is a spectral measure if (M~1D, C) forms a compatible
pair for C € Z, M > 1 and O C Z. Then many researchers tried to study the similar case on higher
dimension. Recently, Dutkay et al.[19] proved that the compatible pair always generate self-affine spectral
measures.

Unlike the one-dimensional case, the study on the spectrality of self-affine measures in higher dimen-
sions is more complicated. In [13], Deng and Lau considered the self-similar Sierpinski-type measures
generated by a real matrix M = diag(p, p) (p < 1) and D = {(0,0)', (1,0), (0, 1)"}, they proved that o is a
spectral measure if and only if |p| = % for some p € IN. Later, Dai et al.[11] investigated a general case of
M = diag(p1, p2) (p1, p2 > 1) and D = {(0,0)", (1,0)",(0, 1)}, they showed that the measure i o is a spectral
measure if and only if 3 | p;, i = 1,2. After then, Chen and Yan[7] considered the self-affine measure ppp
generated by the expanding matrix M = diag(p, p) (p > 1) and D = {(0,0)", (1,0, (0,1)},(-1,-1)}, they
proved that uy p is a spectral measure if and only if 2 | p. Also, Chen and Tang considered the similar case,
see[6].

Motivated by the above work, in this paper, our main purpose is to study the spectrality of the self-affine
measures iy, on R?, which is generated by

w1 3 o (i ) 6 () ()
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where p > 1 is a real number.

Our main results are as follows.

Theorem 1.2. Let up p be the self-affine measure defined by (1), and M, D are as in (3). Then upmp is a spectral
measure if and only if 5 | p.

For the Theorem 1.2, it can be seen that the proof of the sufficiency of this theorem can be achieved by
constructing a compatible pair. However, the proof of the necessity of this theorem is the difficult part. For
the necessity, we first relate it to the one-dimensional case by its infinite orthogonal set.

Theorem 1.3. Let iy, be the self-affine measure defined as in (1), and M, D are as in (3). Then pmp admits an
infinite orthogonal set if and only if p = \'/% for some r,p,q € N with gcd(5p, q) = 1.

According to Theorem 1.3, we can prove that uy;p is not a spectral measure in the following two cases:
Casel: p= \'/% and r > 1 (see Proposition 4.1);
Casell: p= %p and g > 1 (see Proposition 4.5).

Throughout the paper, we assume that r is the smallest integer such that p” € Q (for example, p = i/% = i/g ,

we take r = 2).

It is well known that most of singularly spectral measures have uncountable spectra which contains 0,
that is to say, all spectra have complicated structures. Naturally, we want to find the answer to the following
question:

what is the family of spectra of a given spectral self-affine measure ?

Motivated by above question, An et al. [5] studied the spectral structure of planar Sierpinski measure,
where M = diag(34,39) (g > 1 is an integer) and D = {(0,0)/, (1,0)’, (0, 1)'}. They gives a characterization for
E(A) to be a maximal orthogonal family in L?(up;,p), and also give some sufficient conditions for a maximal
orthogonal family E(A) to be or not to be an orthogonal basis of L*(uyp). Later, Li et al. [30] studied
the spectral structure of the planar self-similar measures, where M = diag(2g,29) (g is a positive integer)
and D = {(0,0),(1,0)},(0,1),(-1,-1)"}. They also obtained some sufficient conditions for the maximal
orthogonal set to be or not to be a basis for L*(upp).

Let T be a maximal mapping defined by Definition 3.1 and X be defined as in (13). Set

(o)

(D) = {T(I) = Z(5p)f*%(1|j) Texty.

j=1
Following, we give the final major result of this paper.

Theorem 1.4. Let T be a maximal mapping and A = ©'(X5). If for each I € X there exists ] € L. such that I]; € ¥
and

sup Ni(J) < e,

lex;

where Ni(J;) is defined as in (16). Then A is a spectrum of iy, o.
The paper is organized as follows. In Section 2, we introduce some basic concepts and lemmas, and the

proof of Theorem 1.3. In Section 3, we mainly prove the sufficiency of Theorem 1.2 and Theorem 1.4, and
give some important propositions and lemmas. In Section 4, we prove the necessity of Theorem 1.2.
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2. Preliminaries and proof of Theorem 1.3

Let u be a Borel probability measure with compact support on IR?. The Fourier transform of u is defined
by

e = f e 2D 4, (4)
RZ

where (-, -) denotes the inner product. Suppose up,p be the self-affine measure which is generated by M
and D, where M, D are as in (3), then we have

fmo(&) = H mp(M™E), &= (2) €R?, 5)
k=1
where

1 i £
mp(&) = 5 Ze 2midS) =

deD

(1 4o 2mié y pr2miky | ,m2mi(E1-E2) e—zm(gz—.{])>

all =

is the mask polynomial of D. By a direct calculation, we know that

Zimp) = ( : (_11) ZZ) y ( : (_11) . 22). ©)
Denote
1 1(- 2 2 (-
Ay = 5 (_11) 72, A= 5( 11) +7Z%, As= z (_11) +7Z%, Ay= 5( 11) + 72 7)
Then by (5), we have
Z (o) = M Z (mp) = | ] pHA1u A2 U A5 U AY). (8)
k=1 k=1

Let A € R? be a countable set. Recall that A is called an orthogonal set (a spectrum) of if E(A) = {e 2@
A € A} forms an orthogonal set (an orthonormal basis) for L*(u). It is easy to check that the orthogonality
of E(A) is equivalent to the following condition

(A =N\ {0} € Z(D), ©)

where Z(f1) = {£€ € R* : [i(&) = 0}. We assume that 0 € A because all orthogonal sets (or spectra) are
invariant under translations. For any & € R?, we define

Qa(&) = ) lp(E + AP

AeA

The following criterion is a universal test for a set A € R?, which is a basic tool to determine whether A
is an orthogonal set (a spectrum) of u.

Theorem 2.1. [25] Let y be a Borel probability measure with compact support on R?, and let A € R* be a countable
subset. Then

(i) A is an orthogonal set of w if and only if Qa(E) < 1 for & € R?. In this case, Q(z) is an entire function in C2.
(i) Ais a spectrum of p if and only if Qa(E) = 1 for & € R2.
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The following useful lemma is given by [10], which is an important tool for spectrality and non-
spectrality of the measure with convolution structure.

Lemma 2.2. [10] Let yu = g * piq be the convolution of two probability measures y;, i = 0,1, and they are not Dirac
measures. Suppose that A is an orthogonal set of uo with 0 € A, then A is also an orthogonal set of p, but cannot be
a spectrum of u.

Following, we recall the famous Ramsey’s Theorem. An et al.[2] first introduced the idea of this theorem
into spectral theory.

Theorem 2.3. (Ramsey’s Theorem)[33] Let A be a countable infinite set and let A® be the set of all k elements
subsets of A. For any splitting of A® into r classes, there exists an infinite subset T C A such that T® is contained
in the same class.

The following lemma gives a relationship of orthogonal sets between (51 p and the Bernoulli measure
to-1,5, which was proved by Deng and Lau [13]. For p > 1, the Bernoulli measure p-15 is a self-similar
measure on IR, which is defined by

4
b0 = 5 ) b s00) =) (10)
=0

Lemma 2.4. Let A be an infinite orthogonal set of upp, and let () be the collection of the i-th coordinates of A
fori=1,2. Then Y1(A) and (/) are infinite sets.

Proof. From (5) and (10), we have

:ap—l,S(x) — H mD(p—jx) H( (1 + e—2mp ix + ef4mp ix + e—6nzp ix + e—Smp /x))
j=1 =1
Then
. Y| 2
Z@p9 = (5 + DU + D). @)
j=1

Since A be an orthogonal set of upp, we have

(A=M\ (0} € Z(po) = (41U AU A U AY). (12)
j=1

Therefore,
(@i(A) = i)\ 1oy < | p/( (+ +Z)U (£= +z))
j=1
This means that 1;(A) is an orthogonal set of (-1 5.

Now, we first show that y1(A) is an infinite set. Suppose on the contrary that ¢1(A) is finite. By the
A . , , 0 N

/\’z) € Awith Ay # AJ. Thus A - A" = (/\2 B Aé) ¢ Z(imp),
this is a contradiction with the assumption of A is an orthogonal set of uy;p. Similarly, we also have 1,(A)
is infinite. We complete the proof. [J

pigeonhole principle, there exist A = (t),/\’ = (

In the rest of this section, we will prove the Theorem 1.3. Before that, we give the following lemma,
which is useful to proving Theorem 1.3.
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Lemma 2.5. [12, 23] Let py-1 5(p > 1) be the Bernoulli measure defined as in (10). Then - 5 admits an infinite
orthogonal set if and only if p = \'/% for some v,p,q € N with gcd(5p,q) = 1.

Proof of Theorem 1.3. Firstly, we prove the necessity. Let A be an infinite orthogonal set for 9, then

(A= AN} €| p/(A1U A UAs U AY).
j=1

Denote A; = U;; Pin fori = 1,2,3,4, then by Ramsey’s Theorem, there exists an infinite subset A’ € A
and iy € {1,2, 3,4} such that
(A" = AH\{0} € A,,.

According to the Lemma 2.4, we know ¢1(A’) and »(A’) are infinite sets and

W) = 01 < |5 + 2 U +2)
=1

for k = 1,2. This means that {(A’) is an infinite orthogonal set. By Lemma 2.5, we can get p = \’/% for
some p, q,+ € IN with ged(5p, 9) = 1.
Conversely, suppose that p = \'/% for some 7, p,q € N with ged(5p, q) = 1, and let

Then A is an infinite set. Now, we need to show that the orthogonality of A. For any two distinct vectors
A1, A2 € A, by the definition of A, we can express them by

A=Y Gp)e, da= ) (Gp)e
=1 =1

with m,n € N and m > n. Then

m

M=Aa= ) Bp)ee MDZ(E) € Z(io).

j=n+1

Hence we have A is an infinite orthogonal set of p1y;p. We complete the proof. [

3. Proof of the sufficiency of Theorem 1.2 and Theorem 1.4

In this section, we will first proof the sufficiency of Theorem 1.2. Furthermore, we also consider under
what conditions the maximal orthogonal set is a spectrum of uy p.

Proof of the sufficiency of Theorem 1.2. Suppose p = 5p with p € N, and let

el () 63 ()

By the simple calculations, we have that (M~'D,C,) is a compatible pair. By Theorem 1.3 in [19], we know
that iy p is a spectral measure. [
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Up to now, we have already known that if 5 | p, then py o is a spectral measure. In this case, we want
to know the structure of the spectra of py,p. Let p = 5p, and let

1 1\2 ) ; ) 5p 5p
— —_— = = L ——< _—
Ty M[ 2,2) nZ {(m,n) /4 > <m,n< > [

which is a complete residual system module M in Z?. We can decompose T}, into the following disjoint
union
T, = U(a +C,) (mod M),

a€B,

where B, = {(x,y)' € T, : =p/2 < x < p/2,-5p/2 < y < 5p/2}, and

el 63 ()

y = ZMHQ‘ = 2(5?7)1;1%
i=1

i=1

Foranyy € 72, we have

where all ¢; € T, and ¢; = 0 for sufficient large i.

Following, we introduce the concept of the maximal mapping, which will be used to study the structure
of the maximal orthogonal sets of upp. Before that, we give some descriptions of the symbols. Let
Y5 ={-2,-1,0,1,2},and let X% = {I = i1ip---i, : all i; € Is} be the set of all words with length n > 0 and by

convention we note Zg = {0}. Let X = U | XI be the set of all finite words, and denote the set of all infinite

wordsby X ={I =iyip---: alli; € &s}. And forany I € X7, ] € £ U X%, we denote I] as the concatenation
of [ and |. Moreover, we adopt the notations I** = II---, I* = I[---I for each [ € . And we define I is the
——

s

prefix word of I with length k (k > 1).

Definition 3.1. A mapping T form X% to T, is called a maximal mapping if
(i) T(0%ig41) = ixpapv forallk > 1, and ixyq € Zs;
(i) for any Ij € X, 1(Ij) = e; + jpv (mod M), where ey € By;
(iii) for any I € %, there exists | € L. such that T((I])|;) = 0 for sufficient large j, where v = (1, -1)%

Let 7 be a maximal mapping from X to T),. Set
;= {I € XLz’ : 1(Il,) = Oforsufficientlarge n}. (13)

Then we can define a mapping * from L to Z* by

(e8]

() = Z(5p)i_1’c(1li), VIexi (14)

i=1

The following theorem provide the relationship between a maximal mapping and a maximal orthogonal
set of um.p.

Theorem 3.2. Let p = 5p and A be a subset of R* with 0 € A. Then A is a maximal orthogonal set of ump if and
only if there exists a maximal mapping T such that A = T (X).

Proof. Let T be a maximal mapping, and

T(ED) = {T*(I) = Z(5p)i_1T(I|i) Te z;}.
i=1
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We first show that the orthogonality of 7*(X) for uy,p. For any two distinct elements I, ] € Xf, let k be the
index of the first place in which I, ] disagree, then we can deduce that

T -7 ()= ) 6p) 7 @ll) = (1) = Y Gp) " (@) = 7)) € Gp)* (G — jipv +5p2Z2).
i=1 i=k

Hence 7*(I) — 7°(]) € Z({im,p), which means that 7°(X{) is an orthogonal set of pin,p.

Now, we consider its maximality. Assume 7°(X{) is not maximal, towards a contradiction. Then there
exists an element & ¢ 7°(X7), such that 7°(X%) U {&} is also an orthogonal set of upyp. According to the
orthogonality of 7°(Xf) U {¢} and 0 € 7%(X{), we can obtain that & € Z({iy,p). There exists {c;}?; € T, and &

can be written as
m
£=) (p)ci
i=1

It is enough to prove that there exists I € ¥ such that & = 7°(I). Firstly, we need to show that there exists

i1 € L5 such that ¢; = 7(i1). If not, by the (iii) in Definition 3.1, for each i € L5, there is a ]; € £° such that
i],‘ S Z; Then T*(Z’]i) -&e Z(ﬁM,D)~ And

T(i]i)) = & =1() — 1 + 5pZo
with Zy € Z2. Since
(i) - ¢1 € (T, = Ty)\{0} € (=5p, 5p)*\ {0},
we have
(i) — ¢1 € Z(bp1p)-

This means that {t(i) : i € Zs5} U {c1} is an orthogonal set of 6y;-1p, which contradicts to the fact that
dim(L%(8ps-19)) = 5. Therefore ¢; = 1(i;) for some i; € Zs.

Similarly, there exist some i, € X5 such that ¢, = 7(i1i2). By finite steps, we can get that there exists I € x
such that & = 7°(I). This is a contradiction. Therefore, T*(X{) is a maximal orthogonal set.

Conversely, suppose that A is a maximal orthogonal set of pipp and 0 € A, then A\ {0} € Z(fimp). We
can write A = {A,}7 s with Ao = 0, then A, has a unique expression, that is

(e

An = Z Cn,i(SP)i_lr

i=1

where all ¢,,; € T, and ¢,,; = 0 for large enough i.
Let Ag = {cn1 : 1 2 0}, then Ay is nonempty because 0 € Ay. If ¢, 1 and ¢, are any two distinct vectors
in Ag C T), then there exist A, and A, such that

An - Am =Cp1 —Cm1 + SPZO
with Zy € Z2. By the orthogonality of A, one has
Cnt = Cma1 € Z(bu1p)-

Then Ay is an orthogonal set of 6);-1. Moreover, we know that Ay is maximal. If not, there is a & € T\ Ag
such that Ag U {&} is also an orthogonal set of dy1-19, thatis c,;1 — & € Z((’S\Mfl p) for any n > 0. Then, there
exists A,, € A such that

Ap=E&E=cp1—E+ Z Cni(5p) ! € Z(dm-1p) € Z(fimp)-
i
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This contradicts to the maximality of A. Hence Ay = C,. We can define a mapping 7 from X5 to T, by
T(il) = ilpv.

Now, we can set Ay, = {cn2 : T(i1) = ¢y, 1 = 0}, then A;, is nonempty. Similarly, we can also get that A; is a
spectrum of dy;-1p. Then there exists a unique t;, € B, such that

Aiy ={cnp: t(1) = Cpa,n =0} =t + Cp (mod M).
We define 1(i1i2) = t;, + ippv (mod M) for i, € Ls. By induction, we can define 7 on Zg by
©(Ij) =t + jpv  (mod M),

where ] € B),.

Now, we show that 7 is a maximal mapping. By the construction of 7, we have (i) and (ii) of Definition
3.1 are hold. As for (iii), for any I = ijip---i,, € L, there exists A, € A such that t(i1iz---ix) = cux for
k=1,2,---,m As A, =Y c,,,i(Sp)"‘1 forallc,; € Ty and c,,; = 0 for large enough i, then we can find | € £
such that 7((I])|;) = 0 for sufficient large ;.

Finally, we prove that A = 7*(X]). For each A, € A, there is a integer N, such that A, = Zfi”l cni(5p) !
with ¢,; € Tj and c,,n, # 0. Then there exists I € X2 such that 7(I|x) = ¢, x for 1 < k < N,, and ©(I|x) = 0 for
k> Ny,. So A c 7°(X5). On the other hand, 7*(X%) is an orthogonal set of py,p, then 7°(X5) C A because A is
the maximal orthogonal set. Therefore, we obtain A = 7°(X{) and the proof is completed. [

Based on the above facts, a question emerged in my mind: what conditions can be restricted on a
maximal orthogonal set to make it the spectrum of (0.

Definition 3.3. Let I = ijip--- € Xz U L. If there exists an integer N such that iy # 0 but i = 0 for all k > N,
then N is called the efficient length of the word I, which is denoted by I(I) = N. In particular, we set I(I) = 0 if I = 0"
orI=0%.

For the sake of brevity, we will refer to the following notations.
Let] =iip--- beaword in X; UL, denote
Lim = Indn+1 " im-1

forn <mandI,, = 0.
Forany I € 7, we set
I* = e()el)Tls) - - -

Let T be a maximal mapping, then for each I € X7, there is a ] € £2” such that I] € XI. Then the word (I])*
can be decomposed by

AN = T, WDy === Aty 1 (15)

wheren+1=mnp <ny -+ < #y <y = oo such that t((I])],,) # 0but the last word of (I])|,, = 0for1 < k < m.
Denote

Ni() = Y KD ), (16)
i=0
which depend on the partition {ng,n1,---,n,}. By the definition of the maximal mapping 7, one has
N 1( ] ) < 00.
Denote

tn = Op-1p * Opp2p * - -+ * Omnp, 1 2 1
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Proposition 3.4. Let T be a maximal mapping from L to T,. Then t*(X%) is a spectrum of w, for any n > 1.

Proof. Firstly, we will show that 7°(Zf) is an orthogonal set of y,. For any different elements I and ] in X,
let k be the smallest index such that I|; # J|x, then

() =)

Y Gy - Y 6p) el
i=1 i=1

Y Gp) () - (1)
i=k

m

Gp)Y (Tle) = () + 5pZ2) € Z(f)-

This means that 7°(Xf) is an orthogonal set of u,. Since #(7*(X%)) = 5" = dim(L*(u,)), we have T(XF) is a
spectrum of y,. [

The following lemma is important for the proof of Theorem 1.4.

2
Lemma 3.5. Let T be a maximal mapping from X% to T, and let & € [—%, %] . Suppose that for each | € X%, there
exists J; € X.2” such that 1]; € £f and sup;;. Ni(J1) < co. Then there is a positive constant ¢ and | € £2° (may be not
5
J1) for each I € X such that I] € LI and

(e
2 M'”( Gp)" )l =c

Proof. Forany n > 1and I € X7, it is enough to prove the conclusion by following two cases.
Case 1. 7(I0") =0 forallk> 1. Set ] =0® € >, and

. E+T () _ . &+ (1)
HUmD —(5p)" = UMD (5p)” .

2
As t(lly) € T, C [—5—2’7, 5?’]] , we have

Ly 2@ +5p+--+(Bp) D)
Gp)"

5
S_
8

(5 + (D) )“) .
(Gp) h

fori=1,2. Let

2
fo = min{lﬁM,D(aF cel-23] }

o 2 - 2
then 0 < By < 1, and |ptM,D (%)ﬁ”)‘ > Bo. That is |dmp ("J(r;p)(,{]))| > Bo. The Case 1 follows.

Case 2. 7(I0F) # 0 for some k > 1. Let k be the first integer such that 7(I0¥) # 0. Without loss of generality,

we can assume that k = 1. Otherwise, we can replace I by I0""!. Suppose that T be a maximal mapping
from X to Ty, then there is a Jjo € X2 such that [0]j € X and Njo(Ji) < co. That is, set ] = 0]p € L°, we
have IJ € ¥I and Nj(]) < 0. Using the decomposition of (15), we have (I])* = I"(I])5, », (L)3, 1y == L)y s
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wheren +1=mny <ny <-+- <ny <nyer < oo and ((I)),,) # 0. Denote n; = l((I]);’[lkrnkﬂ ), then

(1)) Z(Sp)” (D) = 7 (D) + Z (5p) (DI

i=n+1
m Mg =1
= TM+), Y, G
k=0 i=ny
= T(1+Z }: (5]0)'1 ((D1)-
no+n)—1 ny+n)—1

In particular, if m = 1, then ©°(I]) = ©"(D + L., Gp) (@) + L, " Gp)~'z((I)l;). Then

2

) A A e I et N
uM,@(W)| - uM,@[ o +;(5p) (D) + Gp) 1;(5;9) %((Unm,-_l)]

2

= |imo [50 + 09 + (5p)" ! Z(5P)i_17((11)|m+i—1)]
i=1
2

| -n1(Eo + 20)|” [fmp(E1 + Y 5P (Ul i-1))
i=1

fim-n-1 (€0 + 00)|2 |t (&1 + 01)‘2

> |
where
_ é +7 (I) i-1
fo= Sy 0= Z(Sp (I,
o+ 0 i
&1 = (5;)”%/ 1= 2(5}7) ()l i1)-

From SUP ey Ni(]) < oo, there exists a positive integer M, such that nj +n; < M. As t((I])|x+1) € B,\{0}, we
have vy = (v (2 )" ¢ Z(Amp). Recall that ((I])lx) € T, C [ 52p, 52”] then fori = 1,2, we have

i _ O = '
o] < L+ 5p -+ + Gp)'s) < (Gp)

and
+FA S+ G
Gp)" B

Similarly, we also get &; € [—%, %]2, v € [-Gp)M, Gp)M > N Z* and v; ¢ Z(fmp)-
Let

| Q1

€D <

2
s=U{oresee|-5 5] oet-on @Mz o Zmo)

and

o = min{ao(@f : £ € S},
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then 0 < By < 1, and thus

. 2
o (%)(U))l > Bo |t (&1 + o)) = B2
Generally, if m < M., similar to the above discussions, we can get
- g+’ m+l o pMo+l
HUmo (W) =By =By
Letc:= 3’“1, we can get the conclusion. So the proof is completed. [J

At the end of this section, we prove the Theorem 1.4.

Proof of Theorem 1.4. From Theorem 3.2, we have shown that A = 7%(X{) is an orthogonal set of ij,p. This

means that
@ =Y [amoE+TO =Y. Y, |amsE+TO) <1

Iex} k=0 {[exL: I(I")=k)

2
We first need to show that QA (&) > 1 at a small domain. Let £ € (—%, %) , then for any 0 < ¢ < 1, there
exists a integer N := N(¢) such that

Y o+ @) <e

[eXs, I(IT)>N

For n > N, one has

(o]

~ * 2
Y, Y. |amoE+rm)
k=0 IeXi I(I")=k
)
k=0 Iext,I(I")=k
N

YooY o)

k=0 IeXZ I(I))=k

Qa(é)

v

o +TO)

A (5+T*<1))’2
M2\ "Gy )|

Set Qy = {I € XL : I(I) < N}, then for each I € Qy, we have

3+ 35+ GpYY) 1
Gp)’ 2(5p — 1)(Ep)" !

(5 + T*(l))(") .
(Gp) -

for i = 1,2. Together with the continuity of iy p and fiy,p(0) = 1, then there exists Ny such that

e+
l“m(w)\ i

whenever n > N; > N. Therefore,

Q> 1= Y |anE+ @)

[eQy
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2
forall & € (-1,1)". By Proposition 3.4, we have
272 y P

1=Y e+ = Y |aercof+ Y |nErco)f
leX} [eXt I(I)<N lext N<I(I")<n
= Y lmEsTapf+ Y, lmE+eapf a”
[ [(IT)<N Iexy N<I(I))<n
= Llerrof+ Y |uercof,
IeQy IexE, N<I(I)<n

where the second equation holds because 7 is a maximal mapping, then for I € X7, there is a | € £ such
that I] € £I. By Lemma 3.5, there is a positive constant c such that

(e + )’

Yo e o)

Tex! N<I(I7)<n Iex! N<I(I7)<n

LY s+ o)f

[exE, N<U(I")<n

DY

€S I(I7)>N

IA

fn(E+ 7O <=,

Combining with (17), we can get

Y e+ =1- Y

IeQn [eXt N<I(I")<n

pE+TOf >1-=.

Hence, QA(&) > (1 - &) (1 - £). Letting & — 0, we have Q(&) 2 1. Therefore, QA(&) = 1for & € (-1, %)2.

Now, we need to show that Q,(&) = 1 for & € R2. By the Theorem 2.1, we have QA(&) is an entire
function on the complex plane. For £ € R?, we have known that Qa (a&) = 1 for a € (=6, 6) with & > 0. Then
Qa(aé) =1 for & € R. Therefore, Qx(&) = 1 for & € R%. And we complete the proof. [J

4. Proof of the necessity of Theorem 1.2

In this section, we mainly prove the necessity of Theorem 1.2. Assume that o is a spectral measure

with a spectrum A and 0 € A. By Theorem 1.3, we have p = \’/% for p,q,r € N and gecd(5p,g9) = 1. So we
will side step the necessity by showing that the following two cases are not spectral measure.

4.1. p:\’/%andr>1

Proposition 4.1. Ifp = | >

7 Jor p,q € N with ged(5p, q) = 1 and r > 1, then py,p is not a spectral measure.

We first introduction the following lemma, which was given by Deng and Lau in [13]. This is a useful
lemma to prove the Proposition 4.1.

Lemma 4.2. [13] Assume that b € Radmits a minimal integer polynomial px" —q and satisfies that a;b' +a,b™ = azb",
wherel,m,n > 0and ay,a;,a3 € Z \ {0}. Thenl =m =n (mod r).



J. Ly, 5.-D. Wei / Filomat 38:25 (2024), 8735-8753 8748

Proof of Proposition 4.1. Suppose that p = \'/% with 7 > 1, then p admits the minimal integer polynomial

gx" —5p = 0. For each & € R?, we write

T

imop(&) = ﬁ Somte) =] ﬁ Sp(MU0¢) =
k=1 j=0

7

Sp(p~Urte).
=0

i=1 i=1 j

Denote y; = *;ioéMf(;M)D for1l <i<r, then

&) = [ [ 6o(p™¢) (18)
=0

for1 <i<randwehave pyp = p1 * o - - - * lir. According to Theorem 1.3, we have iy p admits an infinite
orthogonal set. Let A be an orthogonal set of upp. We claim that A be an orthogonal set of u; for some
1 <i < r. In fact, there are two distinct elements A; and A, in A such that Ay, := Ay — Ax € Z(fimp). And,
we can express them by

A = pfay, Ay = plan, Ap = play,

where s,t,1 € IN and a1, ar, 12 € Z(mp) = U?;lAi- Hence plau = pPag — ptag. By Lemma 4.2, one has
s =t =1 (mod r). Then we deduce that A is an orthogonal set of u; for some 1 <i < r. By Lemma 2.2, we
know that A cannot be a spectrum of pp;p. The desired conclusion get. [

Furthermore, we can get the following result.

Proposition 4.3. Let p = % for some p,q € IN with ged(5p,q) = 1. If A is an orthogonal set of v p, then there
exists t € IN such that

(A =M\ {0} S pf|JEpY(A U A UAs U Ay). (19)
=0

Proof. For any A1 € A, and let f be the smallest index such that (A — A) N pt( Ui, Ai) # 0, then there exists

Az € Aand Ay # A; such that A — Ay = plag, for some aq; € A UA; UA3UA,. Then forany Az € A\ {Aq, A2},
by the orthogonality of A, we have

M—Az=plajzand Ay — A3 = plazg,
where a3, a3 € U?zl A;and s > t,] € N. Therefore,
plarz = plag + plags. (20)
Now, we will proof the proposition by the following cases.

Casel:ifs=t, then Ay — A3 = psalg, = ptalg, € ‘Ot(Al UA, UA3 UAyY).
Case 2: if s > t, then ayp + pl‘ta23 = p*ay3. We claim that ] — t = 0. Indeed, suppose that —t > 0. Then

I+s—2t

q ar + ¢ 5p) Mans = 47 (5p) .

But the right-side of the above equation belongs in Z? while the left-side is not, which is a contradiction.
Similarly, I =t < 0 can also get contradiction. So, the claim follows. Then we get ‘Os_t()qg =1 + a3 € ZTZ.

Since p = % and gcd(5p,9) = 1, we have a3 € g N ( Ui, Ai). Then we have

qt_SO(13 €A1 UA, UA3 U Ay
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qs—tzz
5

mmzqﬂzzwz{(hy(fy(iy(fn (mod 572), 1)

s0 ' *a13 € A1 U Ax U A3 U Ay. Hence

N ( U;-lzl Ai), we have a3 = £z _ B, where g € U;-lzl A; and z € Z2. Therefore,

In fact, as a3 € =

A=Az =plaps = pt(5p)s_tqt_sa13 € pt(5p)s_t(A1 UA; UA3 U Ay).
This completes the proof. O

Together with Theorem 3.2, Lemma 2.2, Lemma 2.5 and Proposition 4.3, we obtain the following
proposition.

Proposition 4.4. Let p = 5pror some p,q € N with gcd(5p,q) = 1, and let A be a set in R*> with 0 € A. Then A is
a maximal orthogonal set of o if and only if there exists a maximal mapping t with respect to p = 5p such that

pt
A:§f@&teN.

4.2. p:%”andq>1
Proposition 4.5. If p = 57’” for p,q € N with ged(5p,q) = 1 and q > 1, then up p is not a spectral measure.

We will prove this proposition by the following technical lemmas.

Lemma 4.6. Let p = 5ffor some p,q € IN with gcd(5p,q) = 1and 1 < q < 5p. Fix j € {1,2}, then for any

X = (il) € R? with |x;| > 1, there exists y = (gl) € R? such that
2 2

-2 1 -1
p~%lxj1 %8 T < Jyil < pIxl,

and
lim ()] < climo (W),

where ¢ = max {|m2)(x)| X ¢ (_1:71’ %p)z}'

Proof. Without loss of generality, it is enough to prove that it holds when j = 1. Denote that {t} is the decimal

partof t € R, and {t} € (—%, %] If {p~tx}| > ﬁ, then

()| = Imp(p™ ) lamo(p™ 0| < clpao(p™ ). (22)
Taking y = p~lx, then we have |fivp(¥)| < clgmoW)l. If l{p~lx}l < ﬁ, then
p~hx1 = {p~hxa} = (5p)zo (23)

where s > 0 and zg € Z with 5p { zp. Then

p—(s+2)x1 —
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H—IZO
5p

Since [p~* D {p~x)l < g5 and £ < (T2 < 1- ¢

10p
argument to (22), we obtain that

542

[ Timotp )l oo™ *2)

j=1
(o~ 20)|| i o (p~ ¢ x)|
< dpmo(p ).

|m,0 ()|

IA

] ‘0—(s+2)x1
Now taking y = p~¢*2x = o642y, | then we have
2

ly1l = [~ x| < p~ Yy l.

Together with (23), we have |x;| > (5p)°, this implies p~° > lell"gSp 971 then

_ _ 1
ly1l = p~ D |xq| > p~2xq 085 1.

Hence, we obtain

-2 1 -1
P~ a8 T < | < p~ .

Therefore, we complete the proof. [

_5_P’

we have [{p~¢*Dx}| ¢ (—

11
T0p” T0p

8750

- ) By the similar

(24)

Lemma 4.7. Let p = %for some p,q € IN with ged(5p,q) = 1 and 1 < q < 5p. Fix j € {1,2}, then there exist § > 0

such that

im0l < (Inlx;)

for each x = (il) € R? with |xj| > 1.
2

Proof. Without loss of generality, we only need to prove the case j = 1. Let x = (2) € R? with |x;| > 1. Set

d(i)

!
d® = x, and applying Lemma 4.6 iteratively, we obtain a sequence {d(i) = ( d%i))} , Where [ is the smallest
i=0

number such that Id(ll)l < 1, which satisfies
p—2|d<1i71)|10g5pq < |d(1i)| < p_lldgifl)l, i=1,2,--,1
and
@ < cdapop@d®), i=1,2,---,1
Then it follows from (26) that
()| < clpmo@Ed?) < .
Moreover, denote w = log5p g, by (25), we obtain
p 20 oy < @) < 1

Thus, we have

Inlxi| <2(1 - @) lw?In5p and

(2(1 —w) 'n5p

2

In |xy]

(25)
(26)

(27)

(28)

)
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Since

1 2(1-w) tn5p Inc 1 Inc
no In (W Inc=1In ((ln [x1))"me - (2(1 — @)™ In5p)ine ) , (29)

according to (27) and (29) ,we have

Inc

Bmo@)] < (In )~ 2(1 - @)~ In5p) .

/ Inw

Hence, for each f € (0 lnc) and x = (2) € R? with |x1] > 1, we have

im0l < (Infx1) .

Therefore, we complete the proof. [

Lemma 4.8. Let p = %for some p,q € N with gcd(5p,q) = 1. Then for all £ € R?,

X

1eXf I(I)<N+1

2

t
AN («S + g—pf(l))

where T is a maximal mapping with respect to p = 5p and t, N € IN.

Proof. For any distinct elements, ] € ¥.{and 1 < I(I), [(]) < N+1, letkbe the firstindex in which I, ] disagree,
then

p' p' p'
§T*(I) - 5T*(]) = 5(5;9)"*1((1(1 ) = 7(J k) + 5pzo)
€ Mk+t71Z(mZ)) C Z(fin+e)

for some integer zo. This means that ’( “(Qn+1) is an orthogonal set of uy.:, where Qn.q = {I € X2 : [(I) <
N + 1}. The result follows. O

Proof of Proposition 4.5. Assume for contradiction’s sake that uyp is a spectral measure. Let A be a
spectrum of ppp with 0 € A, and also A is a maximal orthogonal set of upp. Then, by Proposition 4.4,
there exists a maximal mapping T with respect to py,p, such that

t (o]
A= 5p_p Z(5p)j_1T(I|j) : I € X5 and 1(I|;) = O for sufficientlarge j ¢, (30)
j=1
fort e IN.
Fix & = ) ( s 5) and an integer N such that N > !, where § is the number obtained in Lemma

47 LetT, ={leXl: I(I)<nN}and 7, ={[€ L] : n¥ <I(I) < (n+1)"}. Forany I € 7,41, we have

—(n+1) _t " Y N
Lew 5 e -3) @

(n+1)N
q —t( fom yiN=3 1)
(5p) PP p) 5

i (n+1)N (5P)nN—3
5p

1 7\
2Gp) (<5p>N2) >
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where 7j(E) is the set of j-th coordinate for E C R? and j € {1,2}.
Therefore, by Lemma 4.7 and (31), we have

t t -B
o (p_(””)N_t (5 + g—pT*(I)))’ < (m p (é + g—pT*(I))D (32)
N2In(p) 3In5p In2\\™"
< [(nV|Ing- - -—==] .
< o fma- S-SR
LetC =1Ing - M+(@ - 31:—;’7 - T—gz, then we have |{imp (p—(n+1)N_t (é + %T*(I))) < (CnN)P for sufficient

large ny.

Now, let g be the number which satisfy (31) and (32) whenever n > ny. Denote

Q& =Y

Iel,

2

ot
A r * I
fimp (5 + 5p" ( ))
Then by (32) and Proposition 4.4, we obtain

Q&+ Y,

IeIﬂ,YH'l

Q&+ Y

Ie-z-n,nﬂ

2

Qus1(€)

pl’
Mo (5 + §T*(I))

2 2

t

LTS (5 + g_pT*(I))

t
0 ~)N—t (g P
o (p (‘S Tt (1)))

|

2

IN

Qu(&) + (€M) )"

Ier nn+l

Qu(&) + (CnNy [1 -3,

Iel,
Qu(&) + (Cn™) (1~ Qu(&)).

For any n > ny, this implies

ot
PN+ (é + 57*(1))

IA

pi’
[t (5 + 5’5*([))

IA

1-Qui(®) 2 1-CH¥n M) 1 -Qu&) 2+ 2 H(l = CHEN) (1 - Qi (9)).

k=n0
Taking n — oo, we obtain

1-Qa@) = [ Ja - )1 - Qu()),

k:no

2
and [T;2, (1 — C™2k=2N) # 0. This means that Qs(&) # 1 for & € (O 1) , so by Theorem 2.1, we have

72
Qa(&) # 1 for any & € R. That is, ppp is not a spectral measure when p = 57’7, gcd(5p,q) = 1and g # 1. This
is a contradiction. Therefore, the proof is completed. [
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