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The composition of some approximation operators of exponential type
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Abstract. Recently, Gupta, López-Pellicer, and Srivastava [5] studied the convergence of approximation
operators of exponential type connected to the function x3/2. In the present article, we consider a new
operator obtained by the composition of two exponential type integral operators connected to x2 and x3.
The new operator is based on the modified Bessel function of the second kind. We obtain the moments,
present an estimate for the rate of convergence and establish the complete asymptotic expansion of the new
operator.

Dedicated to the 80th anniversary of the birthday of Professor Manuel López-Pellicer

1. Introduction and main results

In the present article, we consider two exponential-type integral operators and study the operator
obtained by their composition. The exponential-type integral operators given by(

Ln f
)

(x) =
∫
∞

0
ϕn(x, t) f (t)dt

are such that their kernels ϕn(x, t) satisfy the differential equation
∂
∂x
ϕn (x, t) =

n (t − x)
p (x)

ϕn (x, t).

Very recently, V. Gupta, M. López-Pellicer, and H. M. Srivastava [5] studied the convergence of approx-
imation operators of exponential type connected to the function p (x) = x3/2. Here we deal with the two
well-known exponential-type operators, namely Post–Widder operators Pn and the Ismail–May operators
Qn, the values of p(x) are x2 and x3, respectively. The Post–Widder operator [7, (3.9)] is defined by(

Pn f
)

(t) =
nn

tn
1
Γ (n)

∫
∞

0
e−nu/tun−1 f (u) du.

The exponential type operator Qn introduced by Ismail and May [7, Eq. (3.11)] is given by(
Qn f

)
(x) =

n1/2en/x

√
2π

∫
∞

0
t−3/2 exp

(
−

n
2t
−

nt
2x2

)
f (t) dt.
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The composition of the operators Qm and Pn provides a new integral operator Cm,n = Qm ◦ Pn. Obviously,
Cm,n is a positive linear operator. Since Pn and Qn preserve constant functions, so its composition Cm,n does.
We present a concise form of Cm,n as an integral operator by expressing the kernel in terms of certain special
functions.

Theorem 1.1. The operator Cm,n can be written in the form(
Cm,n f

)
(x) =

∫
∞

0
ϕm,n (x,u) f (u) du,

with the kernel function

ϕm,n (x,u) =
nnm1/2em/x

Γ (n) xn+1/2

√
2
π

(
1 + 2

n
m

u
)−n/2−1/4

Kn+1/2

(
m
x

√
1 + 2

n
m

u
)

un−1,

where Kν denotes the modified Bessel function of the second kind.

Proof. We have(
Cm,n f

)
(x) =

nnm1/2em/x

Γ (n)
√

2π

∫
∞

0

(∫
∞

0
t−n− 3

2 exp
(
−

m
2t
−

nu
t
−

mt
2x2

)
dt

)
un−1 f (u) du.

Applying the integral representation

Kν (az) =
zν

2

∫
∞

0
t−ν−1 exp

(
−

a
2

(
t +

z2

t

))
dt,

of the modified Bessel function of the second kind [8, page 39] (cf. [4, entry 8.432, formula 7, p. 917]), with
a = mx−2 and z = x

√
1 + 2 n

m u, we get

(
Cm,n f

)
(x) =

nnm1/2em/x

Γ (n) xn+1/2

√
2
π

∫
∞

0

(
1 + 2

n
m

u
)−n/2−1/4

Kn+1/2

(
m
x

√
1 + 2

n
m

u
)

un−1 f (u) du.

This completes the proof of theorem.

The asymptotic relation Kν (z) ∼
√
π/ (2z)e−z as z → +∞ ([4, entry 8.451, formula 5, p. 962], cf. [10,

p. 80, Eq. (12)]), shows that the operator Cm,n is well-defined, for all locally integrable functions on [0,+∞)
satisfying the growth condition f (u) = O

(
euβ

)
as u → +∞, for some constant β < 1/2. In the special case

when m = n, we get the approximation operator(
Cn,n f

)
(x) =

∫
∞

0
ϕn,n (x,u) f (u) du (1)

with the kernel function

ϕn,n (x,u) =

√
2
π

en/x

Γ (n)

(n
x

)n+1/2
(1 + 2u)−n/2−1/4 Kn+1/2

(n
x

√

1 + 2u
)

un−1.

In this paper we study the operator Cn,n.
Firstly, we present an estimate of the rate of convergence in terms of the classical modulus of continuity.

Let Cb [0,+∞) be the space of all real-valued, continuous and bounded functions defined on the interval
[0,+∞).

Theorem 1.2. Let x > 0. For f ∈ Cb [0,+∞), the rate of convergence can be estimated by

∣∣∣(Cn,n f
)

(x) − f (x)
∣∣∣ ≤ (

1 + x
√

1 + 2x
)
ω

(
f ,

1
√

n

)
. (2)
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Throughout the paper, let er denote the monomials, given by er (x) = xr (r = 0, 1, 2, . . .). Furthermore,
define ψx = e1 − xe0, for x ∈ R. The proof of Theorem 1.2 is based on a classical estimate using the second
central moment (see [2, Theorem 5.1.2]).

Lemma 1.3. Let I be a real interval and E be a sublattice of C (I) containing Cb (I) as well as the functions e1 and e2.
If L : E→ C [0,+∞), then, for f ∈ Cb [0,+∞),∣∣∣(L f

)
(x) − f (x)

∣∣∣ ≤ |(Le0) (x) − 1|
∣∣∣ f (x)

∣∣∣ + (
(Le0) (x) +

1
δ

√(
Lψ2

x

)
(x)

√
(Le0) (x)

)
ω

(
f , δ

)
.

Proof of Theorem 1.2. By Lemma 1.3, Cn,ne0 = e0 and the estimate (8), for f ∈ Cb [0,+∞) and δ > 0,∣∣∣(Cn,n f
)

(x) − f (x)
∣∣∣ ≤ (

1 +
1
δ

√(
Cn,nψ2

x

)
(x)

)
ω

(
f , δ

)
≤

1 +
x
δ

√
1 + 2x

n

ω (
f , δ

)
.

Choosing δ = 1/
√

n we obtain (2).

Now we deal with the asymptotic properties of the operators Cn,n. For q ∈ N and x ∈ (0,∞), let K
[
q; x

]
be the class of all locally integrable functions f of polynomial growth f (t) = O (tq) as t → +∞ which are
q times differentiable at x. The following theorem presents as our main result the complete asymptotic
expansion for the operators Cn,n. The corresponding result for the operator Qn can be found in [1].

Theorem 1.4. Let q ∈ N and x ∈ (0,∞). For each function f ∈ K
[
2q; x

]
, the operators Cn,n possess the asymptotic

expansion

(
Cn,n f

)
(x) = f (x) +

q∑
k=1

ck
(

f , x
)

nk
+ o

(
n−q) (n→∞) ,

with the coefficients ck
(

f , x
)
=

2k∑
s=2

f (s) (x)
s!

k∑
j=0

xs+ j

2 j j!
T
(
s, j, k − j

)
, where

T
(
s, j, ℓ

)
=

s∑
r=1

(−1)s−r
(
s
r

)[
r

r − ℓ

] (
r − 1 + j

)2 j . (3)

Here and in the following
[
r
ℓ

]
denote the (signless) Stirling numbers of the first kind. We follow the

convention that
[
r
ℓ

]
= 0 if ℓ < 0 or if ℓ > r. A definition and several properties of the Stirling numbers can be

found in Section 3. For the convenience of the reader we explicitly present the initial part of the expansion:(
Cn,n f

)
(x) = f (x) +

x2 (1 + x)
2n

f (2) (x)

+
12x3 f (2) (x) + 4x3

(
3x2 + 6x + 2

)
f (3) (x) + 3x4 (1 + x)2 f (4) (x)

24n2 +O
(
n−3

)
(n→∞) .

In the special case q = 1, we obtain the following Voronovskaja-type result.

Corollary 1.5. Let x ∈ (0,∞). For each function f ∈ K [2; x], the operators Cn,n satisfy the asymptotic relation

lim
n→∞

n
[(

Cn,n f
)

(x) − f (x)
]
=

x2 (1 + x)
2

f ′′ (x) .

This limit is not unexpected. It is well known that exponential operators Ln have Voronovskaja-type
limit limn→∞ n

[(
Ln f

)
(x) − f (x)

]
= p (x) f ′′ (x) /2. Noting that Cn,n = Qn ◦ Pn it holds

lim
n→∞

n
[(

Cn,n f
)

(x) − f (x)
]
= lim

n→∞
n
[(

Pn f
)

(x) − f (x)
]
+ lim

n→∞
n
[(

Qn f
)

(x) − f (x)
]
=

x2

2
f ′′ (x) +

x3

2
f ′′ (x) .
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2. The moments

Firstly, we study the moments of the operators Cn,n. Throughout the paper, let er denote the monomials,
given by er (x) = xr (r = 0, 1, 2, . . .). Furthermore, define ψx = e1 − xe0, for x ∈ R. The following integral
formula is essential for the evaluation of the moments of the operator Cn,n.

Lemma 2.1. For real a > 0 and complex ν with Re (ν) > −1, it holds∫
∞

0
Kν

(
a
√

2u + 1
)

(2u + 1)−ν/2 uµdu =
Γ
(
µ + 1

)
aµ+1 Kν−µ−1 (a) .

Proof. For real a, z > 0 and complex ν with Re (ν) > −1, Sonine’s formula [10, p. 147, Eq. (6)] states that∫
∞

0
Kν

(
a
√

t2 + z2
) (

t2 + z2
)−ν/2

t2µ+1dt =
2µΓ

(
µ + 1

)
zν−µ−1aµ+1 Kν−µ−1 (az) .

The change of variable t2 = 2u and choosing z = 1 leads to the desired formula.

A direct consequence is the following representation of the moments of the operators Cn,n.

Lemma 2.2. The moments of the operators Cn,n are given by

(
Cn,ner

)
(x) =

√
2
π
Γ (n + r)
Γ (n)

(x
n

)r−1/2
en/xK1/2−r

(n
x

)
(x > 0, r = 0, 1, 2, · · · ) .

Proof. By definition, we have

(
Cn,ner

)
(x) =

√
2
π

en/x

Γ (n)

(n
x

)n+1/2 ∫
∞

0
(1 + 2u)−n/2−1/4 Kn+1/2

(n
x

√

1 + 2u
)

un−1+rdu,

such that the desired representation follows from Lemma 2.1.

For ν = n + 1/2 (n = 0, 1, 2, . . .), the modified Bessel function of the second kind has the explicit
representation ([10, p. 80, Eq. (12)] or [4, entry 8.468, p. 967])

Kn+1/2 (z) =

√
π
2z

e−z
n∑

k=0

(n + k)!
k! (n − k)!

(2z)−k (z > 0) ,

in particular, K1/2 (z) =
√
π/ (2z)e−z. Using the symmetry K−ν (z) = Kν (z), we obtain Cn,ne0 = e0 and

(
Cn,ner+1

)
(x) =

Γ (n + r + 1)
Γ (n)

r∑
k=0

(2r − k)!
2r−kk! (r − k)!

(x
n

)2r+1−k
. (4)

Hence, for r ≥ 1, the moment Cn,ner is a polynomial of degree 2r − 1, being a multiple of er.

3. The asymptotic expansion

We make use of the Stirling numbers and certain of their properties. Recall that, the quantities
[
m
j

]
denote the (signless) Stirling numbers of the first kind defined by zm =

m∑
j=0

(−1)m− j
[
m
j

]
z j, (m = 0, 1, 2, · · · ),

where z0 = 1, zm = z (z − 1) · · · (z −m + 1), m ∈ N, are the falling factorials. Using (−z)m = (−1)m(z +m − 1)m

we obtain the relations

(z +m − 1)m =

m∑
j=0

[
m
j

]
z j (m = 0, 1, 2, · · · ) . (5)



U. Abel et al. / Filomat 38:25 (2024), 8789–8794 8793

We recall some known facts about Stirling numbers which will be useful in the sequel. The Stirling numbers
of the first kind possess the representation[

r
r − ℓ

]
= (−1)ℓ

2ℓ∑
j=ℓ

s2
(
j, j − ℓ

) (r
j

)
, (6)

for 0 ≤ ℓ ≤ r, (see [3, page 226–227, Ex. 16]). The coefficients s2
(
j, j − ℓ

)
, called associated Stirling numbers

of the first kind, are independent of r.

Lemma 3.1. The moments of the operators Cn,n are given by Cn,ne0 = e0 and, for r ≥ 1, by

(
Cn,ner

)
(x) =

2r−1∑
k=0

1
nk

∑
j+ℓ=k

[
r

r − ℓ

] (
r − 1 + j

)2 j

2 j j!
xr+ j

Proof. We have Γ (n + r) /Γ (n) = (n + r − 1)r =

r∑
ℓ=0

[
r

r − ℓ

]
nr−ℓ. By Eq. (4), we obtain, for r ≥ 1,

(
Cn,ner

)
(x) =

r∑
ℓ=0

[
r

r − ℓ

]
nr−ℓ

r−1∑
j=0

(
r − 1 + j

)
!

2 j j!
(
r − 1 − j

)
!

(x
n

)r+ j
=

2r−1∑
k=0

1
nk

∑
j+ℓ=k

[
r

r − ℓ

] (
r − 1 + j

)2 j

2 j j!
xr+ j

with the convention that
[

r
r − ℓ

]
= 0 if ℓ > r.

Lemma 3.2. The central moments of the operators Cn,n are given by Cn,nψ0
x = e0 and, for s ≥ 1, by

(
Cn,nψ

s
x
)

(x) =
2s−1∑
k=1

1
nk

∑
j+ℓ=k

xs+ j

2 j j!
T
(
s, j, ℓ

)
,

where T
(
s, j, ℓ

)
is as defined in (3). For each x > 0 and s = 0, 1, 2, . . ., the central moments satisfy the relation(

Cn,nψ
s
x
)

(x) = O
(
n−⌊(s+1)/2⌋

)
(n→∞) . (7)

Proof. Plainly, Cn,nψ0
x = Cn,ne0 = e0. Let s ≥ 1. Since

(
Cn,ner

)
(x) = xr +O

(
n−1

)
as n→∞we have

(
Cn,nψ

s
x
)

(x) =
s∑

r=0

(
s
r

)
(−x)s−r (Cn,ner

)
(x) =

2s−1∑
k=1

1
nk

∑
j+ℓ=k

xs+ j

2 j j!
T
(
s, j, ℓ

)
with T

(
s, j, ℓ

)
as defined in Eq. (3). To prove the second part (3), we show that T

(
s, j, ℓ

)
= 0 if 1 ≤ j+ ℓ < s/2.

Using the representation (6) and taking advantage of the binomial identity
(s

r
)(r

j
)
=

(s
j
)(s− j

r− j

)
we obtain

T
(
s, j, ℓ

)
= (−1)ℓ

2ℓ∑
i=ℓ

s2 (i, i − ℓ)
(
s
i

) s∑
r=i

(−1)s−r
(
s − i
r − i

) (
r − 1 + j

)2 j .

The inner sum is equal to

s−i∑
r=0

(−1)s−i−r
(
s − i

r

) (
r + i − 1 + j

)2 j
= 0

if 2 j < s − i. This is the case, for ℓ ≤ i ≤ 2ℓ, if 2 j < s − 2ℓ, i.e., j + ℓ < s/2.
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For the convenience of the reader we list some instances:(
Cn,nψ

0
x

)
(x) = 1,

(
Cn,nψ

1
x

)
(x) = 0,

(
Cn,nψ

2
x

)
(x) =

x2 (1 + x)
n

+
x3

n2 ,(
Cn,nψ

3
x

)
(x) =

x3
(
3x2 + 6x + 2

)
n2 +

3x4 (3x + 2)
n3 +

6x5

n4 ,(
Cn,nψ

4
x

)
(x) =

3x4 (1 + x)2

n2 +
3x4

(
5x3 + 18x2 + 14x + 2

)
n3 +

3x5
(
30x2 + 47x + 12

)
n4 +

15x6 (11x + 6)
n5 +

90x7

n6 .

A direct consequence is the following estimate of the second central moment:∣∣∣∣(Cn,nψ
2
x

)
(x)

∣∣∣∣ ≤ x2 + 2x3

n
. (8)

Proof of Theorem 1.4. In order to derive Theorem 1.4, a general approximation theorem due to Sikkema will
be applied. Let q ∈ N and x ∈ (0,∞). By Sikkema’s theorem [9, Theorem 3], we have, for each function
f ∈ K

[
2q; x

]
,

(
Cn,n f

)
(x) =

2q∑
s=0

f (s) (x)
s!

(
Cn,nψ

s
x
)

(x) + o
(
n−q) (n→∞) .

By Lemma 3.1 and observing that
(
Cn,nψ1

x

)
(x) = 0, it follows that

(
Cn,n f

)
(x) = f (x) +

q∑
k=1

1
nk

2q∑
s=2

f (s) (x)
s!

∑
j+ℓ=k

xs+ j

2 j j!
T
(
s, j, ℓ

)
+ o

(
n−q)

as n→∞. The final form follows by Eq. (7).
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