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A note on additive formulas for the Drazin inverse of matrices and
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Abstract. In this paper, we investigate the additive properties of the Drazin inverse for complex matrices.
We derive new additive formulas for the Drazin inverse, which generalize some previous results on the

subject. Furthermore, we give a new representation for the Drazin inverse of a block matrix, which extends
some known representations.

1. Introduction

Throughout this paper, we use C"™" to denote the set of all n X n complex matrices. For A € C"™", by
R(A), N(A) and rank(A), we denote the range, the null space and the rank of a matrix A, respectively. The
index of amatrix A, denoted by ind(A), is the smallest nonnegative integer k, such that rank(A*1) = rank(AX).
For every matrix A € C"™", such that ind(A) = k, there exists the unique matrix A4 e €™ which satisfies
following relations:

AFIAT = AF ATAAT = AT, AAT = AYA.

The matrix A? is called the Drazin inverse of A [1]. By A™ = I — AAY, we denote the projection on N (A¥)
along R(AF). Also, we suppose that A? = I, where [ is the identity matrix of an appropriate size. Moreover,
if the lower limit of a sum is greater than its upper limit, we define the sum to be 0.

Suppose P,Q € C™". In 1958, Drazin [2] investigated additive properties of the Drazin inverse (in the
concept of associative rings and semigroups) and proved that (P + Q)¢ = P4 + Q? holds when PQ = QP = 0.
In 2001, Hartwig, Wang and Wei reopened this problem and offered the formula for (P + Q)?, which is
valid when PQ = 0 [3]. Since then, this topic attracts a great attention and many authors have studied this

problem, which still remains open (we refer the reader to see the review [4] on this subject). Some of the
conditions, under which is obtained a formula for (P + Q)? are as follows:
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(i) P2Q = 0and Q? = 0[5, Theorem 2.2];
(ii) P?Q = 0and Q?P = 0 [6, Theorem 3.1];

)
)
(iii) P2QP =0, P3Q = 0 and Q? = 0 [7, Theorem 3.3]; (a)
(iv) PQP? =0, PQ?P =0, PQ® = 0, QP® = 0, QPQ? = 0 and P?Q? = 0 [8, Theorem 3.2];

(v) PQP? =0, PQ?* = 0and QP® = 0 [9, Theorem 3.1].

In this paper, we give the explicit formula for (P + Q)? under conditions PQP? = 0, PQ*P = 0, PQ® = 0
and QP® = 0 (Theorem 2.1). Also, we derive its symmetrical formulation, that is the explicit formula for
(P + Q) under conditions P2 QP = 0, PQ*P = 0, Q°P = 0 and P?Q = 0 (Theorem 2.3). Note that these
conditions generalizes the conditions (i)-(v) from the list (a).

Consider the following 2 X 2 complex block matrix
A B
ue[2 2] o

where A and D are square matrices, not necessarily of the same size. The problem of finding the Drazin
inverse of M was opened in 1979, by Campbell and Meyer [10]. Since then, many authors have studied this
problem and offered some formulas for M?, when blocks of matrix M satisfy some certain conditions (see
[4] for a development of this subject). In some papers on this topic, authors considered the block matrix
of the form (1.1), for which generalized Schur complement S = D — CA“B is equal to zero. Some of the
conditions, under which is derived the formula for M?, are given in the following list:

(i) CA"=0,A"B=0and S =0[11];
(ii) ABC =0and S = 0[5, Theorem 3.6];
(iii) ABCA™ =0, A"TABC =0and S = 0 [6, Theorem 4.1]; (b)
(iv) A2BCA™A =0, A2BCA™B =0, A"ABC =0 and S = 0 [8, Theorem 4.1];
(v) AYBC =0, CAA™BC =0, A2A™B =0 and S = 0 [9, Theorem 3.4].

In this paper, in Theorem 2.4, as an application of our new additive result, we derive the formula for
M4, when conditions A’BCA™A = 0, A“BCA™B = 0, A"A2BC = 0, CA"ABC = 0 and S = 0 are satisfied. We
remark that these conditions are weaker than conditions (i)—(v) from the list (b).

Before we give our results, we state the following auxiliary lemmas.
Lemma 1.1. [1] Let A € C™", B € C"™". Then (AB)? = A((BA)?)?B.
Lemma 1.2. [3, Theorem 2.1] Let P, Q € C™" be such that ind(P) = r and ind(Q) = s. If PQ = 0 then

s—1 r—1
(P + Q)d — Z QnQi(Pd)i+1 + Z(Qd)i+1pipn-
i=0 i=0

Lemma 1.3. [12, Theorem 2.1] Let P, Q € C™" be such that ind(P) = r, ind(Q) = s. If PQP = 0 and PQ* = 0,
then

(P+Q)" = Y1+ Y2 + (Va(P) + QY2 - QP — (Q'YP') PQ,

where Y1 and Y, are defined as follows

s—1 r—1
Yl - Z QHQI(Pd)Hll YZ — Z(Qd)i+1pipn-
i=0 i=0
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Lemma 1.4. [13, 14] Let My and M, be block matrices of a form:

A0 B C
Ml‘[c B]’ Mz‘[o A]’

where A and B are square matrices, with ind(A) = k, ind(B) = . Then max {k,I} <ind(M;) < k+1, fori € {1,2},
and

Al 0 BY X
wi=| % p )= G 4]

X B 0 A4
where
-1 k-1
X = X(B,C,A) = Z(Bd)i+2CAiA“ + 2 B™BIC(A%)*2 — BiCA".
i=0 i=0

Lemma 1.5. [15, Theorem 3.2] Let M be matrix of a form (1.1) such that BCA = 0, ABD = 0 and CBD = 0. Then

QB + BD(F1Q + (D%)?F,)B
AQ + B(Pl + Pz)

M = +B(D%)? — BDY(CA + DC)Q)*B
CQ + D(F; + F») D? + (F1 + F»)B
where
V4—1 V1—1
Q= (AZ + Bc)d — Z(Ad)2i+2(BC)i(BC)n + ZA‘/IAZi((BC)d)Hl,
i=0 i=0

Vz—l
F = Z D"D*(CA + DC)Q)*?,
=0

V3*1 V3
Fy= ) (D'Y**(CA + DO)(A? + BCY(BO)™ - ) | (D)}***(CA + DO)AYQ),
i=0 i=0

v1 = ind(A?), v, = ind(D?), v3 = ind(A? + BC) and v4 = ind(BC).

Lemma 1.6. [11] Let M be matrix of a form (1.1), such that S = 0. If A"B = 0 and CA™ = 0, then

M =[ qud ]((AW)d)ZA[ 1 AB ],

where W = AA? + ABCA“.

2. Results

In 2017, Yang et al. offered a formula for (P + Q)¢, which is valid when conditions PQP? = 0, PQ*P = 0,
PQ? =0, QP® = 0, QPQ? = 0 and P*QQ*> = 0 hold [8, Theorem 3.2]. In the following theorem we prove that
conditions QPQ? = 0 and P*(Q*> = 0 from the previously mentioned result are superfluous for finding the
explicit formula for (P + Q)?. Namely, we derive the formula for (P + Q)?, which is valid when conditions
PQP? =0, PQ?P = 0, PQ® = 0 and QP? = 0 are satisfied.
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Theorem 2.1. Let P,Q € C™". If PQP? = 0, PQ?P = 0, PQ® = 0 and QP® = 0, then

(PT[P21+1 + QT[Q21+1) (((PQ)d)Hl + ((QP)d)i+1 (I + (QP)dQZ))

et

(P+Q) =

i

-1
2-1-1

EDMCEC (P ()™ + 2 (@Py) ™ (1+ @P Q)

i

i}
- (=}
N

H

S—

+ ((Pd>2’+1 + (@)% ) ((PQY(PQ)™ + (QPY/(QP)")

(N
= O

: 1)
+ ) Q¥ (QP(PQ) (PQ)™ + PH(QP)(QP)")

i=

w
,_.o

+ \- ((Pd)2i+3 + (Qd)2i+5p2 + (Qd)2i+3) (QP)Z(QP)TLQZ
i=0
- P1-2Q" - (Q")’P - Q"PX(QP)" - Q"QP(PQ)" - Q"P(PQ)'Q
PYQPY'Q* - Q(QP)'Q* - (Q)°P*(QP)'Q%,
T2 — 1

where r1 = ind(P), r, = ind(Q), s1 = ind(PQ), s, = ind(QP), ¥ = max {Vlz_ 1-‘ ,[ >

tr <[]
i

] we have

w} and s = max{sy, s»}.

Proof. Using Lemma 1.1, we have that

wror=(r ][] <1 e

I

I
3 P2+ QP Q*+PQ
=| P Q][P2+QP Q2+PQH
2

IfwedenotebyE:[ 811; 1128 ]ansz[ gi 82

P+Q' =[P Q](E+F)d“]. (2.2)

By the hypothesis of the theorem, we get that EFE = 0 and EF?> = 0. Hence, matrices E and F satisfy the
conditions of Lemma 1.3 and therefore

(E+F)! = Zy + Zy + (Z1(E*)? + (F'Z, - FU(EY)? - (F')*EY) EF, (2.3)
where
th—1 t1—1
Zy = Z FrE(EY)*, 7, = Z(Fd)”lEiE”, i =ind(E) and f, = ind(F). (2.4)
i=0 i=0

Thus, we should find the expressions of E/, F!, (E?)' and (F?), for every i € N, and also E™ and F*. Using the
induction by i and by the hypothesis of the theorem, we get:

X Pi P P)(P i-1 '
j - [ EgP;i Epg I 813;2138;1;1 ], for everyi > 2, 2.5)
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- (PZ + QZ)i*lPZ (P2 + QZ)i71Q2

Fi = (P2 + O 1P (P2 4 QP10 ], for every i > 1. (2.6)

In order to find the expression for E¢, denote by E; = [ 8 ig ] and E; = [ 8? 8 ] Obviously,

E = E; + E;. Moreover, since PQ?P = 0, we have that E{E, = 0. Thus, matrices E; and E, satisfy the
conditions of Lemma 1.2 and after applying this lemma we get:

my—1 mi—1
El = Z EFEL(ED* + Z(Eg)l’“z—:gz—:;ﬁ .7)
i=0 i=0
where m; = ind(E;) and m; = ind(E;). One can easily check that:

i [0 (PQ) ] i [ @py oo
El‘[o Q) | E2‘[<QP)" 0

Also, using Lemma 1.4, we get:

}, foreveryi > 1.

i_[ 0 (PQY ] [ «apdy o
€D ‘[ 0 (eQry | ™ ‘[ @Yy 0

], foreveryi > 1.
Moreover, we obtain:

E} =

I —PQ(PQ)? ~_| @pr 0
O R

Using the above expressions, we have that

sp—1
-1 0 ) (@QP(QPY(PQ")™!
Y BEENT = 5
= 0 ) (@QP QP (PQ))™*!
i=0

Since PQP? = 0, we have that (QP)/(PQ)? = 0, for every i > 2. Therefore, we obtain
y

O i i _ | O (PQ+ QP)(PQY'
X BB B = [ 0 (PQ+QPN(PQ? ] 28)
Further, we have
s1—1
ot (QPY ) (QPY)*1(PQ)(PQ)™ - (QP)*
D (ESELET = .
=0 (QPY ) QP (PQ)(PQ)™ - (QPY’
i=0
From PQP? = 0, it follows that (QP)?PQ = 0 and thereby
mi—1 1 P d 0
ZO] (E)*'EVE] = [ Egpgd 0 ] 29)
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Substituting (2.8) and (2.9) into (2.7), we get

El = [ (QP)Y*  (PQ + QP)((PQY")*
(QPY*  (PQ + QP)((PQ)")?

Using the induction by i, we obtain

[ (@PYY (PQ+QP)(PQYY ! .
(E) ‘[ (QPY)  (PQ+ QP)(PQYYY*! ] for i=1. (2.10)

Moreover, we get

n_ Qp)" —(PQ + QP)(PQ)*
k _[ —QP(QP)* I-(PQ + QP)(PQ)* ] (2.11)

In order to find the expression for F? notice that matrix F satisfies the conditions of Lemma 1.5. Hence,

01Q* + QUG + (Q)*Gy)Q?

2 2
pio | DOQOTR) i goiet+ @2pi0ce |, 12)
P2Q; + Q%G1 + G) Q) + (G1 + G2)Q?
where
V-1 =1
Ql — Z(Pd)4(i+1)(Q2P2)i(Q2P2)7I + Z PTLP4i((Q2P2)d)i+l/

i=0 i=0
Vz*l

Gy = Z QT QY(P* + szz)Qz;z’
.
G, = Z(Qd)4(i+2)(P4 + QP PY)(P* + Q2P Q2P — Y QYD (P 1 Q2PA)PHQ,,
i=0 i=0
vy = ind(P*), v, = ind(Q*), v3 = ind(P* + Q*P?) and v4 = ind(Q?*P?). Since PQ*P = 0, we get P*(Q?P?)' = 0,
for i > 1. Moreover, since (Q*P?)? = 0, we have (Q*P?)? = 0 and (Q*P?)™ = I. Thus,
Q; = (P (2.13)
Further, since QP? = 0 and PQ?P = 0 we obtain:
G =PH* and G, = (Q%)°P%. (2.14)
After substituting (2.14) and (2.13) into (2.12), we get

p_ [ @D+ @)DPE (P +(QH)Q +(Q)°P2Q? ]
TPt @)HP (P +(QDNQ + (Q)PQ? |

Using the induction by i, we obtain

Fd i ((Pd)z(z:ﬂ) + (Qd)z(l:+1))P2 ((Pd)2(1:+1) + (Qd)Z(sz))Qz + (Qd)z(l:+2)P2Q2 ] 915
( ) = ((pd)2(1+1) +(Qd)2(1+1))P2 ((Pd)Z(H-l)+(Qd)2(z+1))Q2+(Qd)2(1+2)P2Q2 ’ ( . )

for every i > 1. Moreover, we get

pr_ [ 1-PPI- QPP —QQ - (PPQ? - (QY)PRQ2 )16
- _de _ (Qd)2p2 I-— QQd _ (Pd)ZQZ _ (Qd)4P2Q2 . ( . )
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In order to find the expressions for Z; and Z, from (2.4), we note the following. Using the hypothesis of the
theorem, we get:

(PQ+QP)' = (PQ + QP)(PQ)™" + (QP), for i>2,

) ) ) . . . 2.17
(P2 + QZ)Z — PZZ + PZI—ZQZ + Q21—4P2Q2 + QZI—ZPZ + QZ!I for i > 3. ( )

Moreover, since PQ?P = 0, using Lemma 1.2 we obtain
(PQ +QP)" = (PQ + QP)((PQ)*)* + (QP)".
Further, since PQ?*P = 0 and PQ?® = 0, using Lemma 1.3 we get
(P2 + Q)7 = ((P)* +(@)*) (P* + Q) + (Q)°P*Q™ (218)
Using the induction by i, we obtain:

i

((PQ+QPY!) = (PQ + QPX(PQY)™! + (QPYYY, for i>1,

(P2 + Q) = (P42 + (@) (P2 + @) + (@PHPPQ2, for i 1. Y
In addition, we have:
(PQ+QP)" =1-((PQ + QP)(PQ)" + QP(QPY), 2.20)
(P + Q)" =1~ (PP + QQ" +(Q)°P* + (P)°Q* + (Q)*P*Q").
Also,
(PQ +QP)(PQ + QP)" = PQ — (PQ + QP)PQ(PQ)" + QP(QP)", 020

(PQ + QP)(PQ + QP)" = (PQ + QP)(PQ) " (PQ)™ + (QP)'(QP)", for ix>2.
Now, we can determine the expressions for Z; and Z,. Using (2.6), (2.15),(2.16) and (2.20), we get:
(P> + Q)™(QP)Y*  (P* + Q)™ (PQ + QP)(PQ)')?
(P> +Q)™(QP)*  (P*+ Q*)™(PQ + QP)(PQ)")?
(P> + QY™ (P* + Q¥)'((QP))*! (P> + Q%)™ (P> + Q*)/(PQ + QP)(PQ)?)"*2 l

FT[Ed —

FnFi(Ed)(i+l) — ' , ' , ,
(P> + Q)™ (P* + Q1)'((QPY)™ (P* + Q1)"(P* + Q%) (PQ + QP)((PQ)*)™*2

fori > 1. Hence,

=1 =1

NP2+ Q)P+ Q@)Y (PP + QP + Q) (PQ + QP)(PQY)
:—01 :—01 ’
Z(Pz + Q)™ (P* + QY ((QP))™*! Z(PZ + Q)™ (P* + Q*)(PQ + QP)((PQ)")™*?

i=0 i=0

Z =

where u1 = ind(P? + Q?).
Now, we need to determine Z,. By (2.11) and (2.15), we have

((PH* +(QNHP? (P! +(QYHQ* + (Q)°P>Q?
. —((P)* + (Q)HP* + QHQPQP)T  =((PH* + (QNH(P* + Q) + (Q)°P*Q*)(PQ + QP)(PQ)
FE™ =
((PH* +(QNHP? (P)* +(QNHQ* + (Q))°P*Q?
—((P)* + QP>+ QHQPQP)"  —((PH* + (QHH(P* + Q%) + (Q)°P*Q*)(PQ + QP)(PQ)*
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Using (2.18), we get that the entry (1.1) (and also (2.1)), for matrix F/E™, is (P?> +Q?)*(QP)™ — (P*)* +(Q%)*)Q*-
(Q%)°P2Q2. Further, by (2.20), we have that —(PQ + QP)(PQ)* = (PQ + QP)™ — (QP)™. Thereby, the entry (1.2)
(and also (2.2)), for matrix FYE™, is ((PY)* + (Q1)*)Q? + (Q4)°P2Q? + (P? + Q*)4(PQ + QP)™ — (P + Q*)*(QP)™.
Hence,

(P* + Q)"(QP)"™ (P! +(QNHQ* + (Q)°P*Q?
, (P +(Q)HQ* = (Q)°P2Q*  +(P*+ Q) (PQ + QP)" — (P> + Q)(QP)"
F'E™ =
(P> + Q)(QP)" ((P* +(QNHQ* + (Q)°P>Q?
(P +(Q)HQ* = (Q)°P*Q*  +(P*+ Q) (PQ + QP)" — (P> + Q})*(QP)"

Further, by (2.11), (2.15) and (2.19), we have

(Fd)ZEET[

(F1Y? [ QP(QP)"  PQ - (PQ + QP)PQ(PQ)’
QP(QP)"  PQ - (PQ + QP)PQ(PQ)

(P> + QA)?QP(QP)™ (P> + Q) (PQ — (PQ + QP)PQ(PQ)?) }
(P2 + Q))?QP(QP)™ (P> + Q)*(PQ - (PQ + QP)PQ(PQ)) |

By (2.21), we have that PQ — (PQ + QP)PQ(PQ)* = (PQ + QP)(PQ + QP)™ — QP(QP)". Thereby

(Fd)ZEEn a ((PZ + Q2)d)2QP(QP)” ((P2 + QZ)d)z(PQ + QP)(PQ + Qp)n _ ((PZ + Qz)d)ZQP(QP)n }

(P> + Q))?QP(QP)" (P> + Q) (PQ + QP)(PQ + QP)™ — ((P* + Q*)")*QP(QP)"

Moreover, by (2.5), (2.11) and (2.15), for i > 2 we have

(Fy A BT (Fd)m[ (QPY(@P)"  (PQ+QP)(PQ)(PQ"

(QPY(QP)™ (PQ + QP)(PQ)(PQ)"

((P* + Q)HQPY(QP)™ (P + QA (PQ + QP)(PQ)(PQ)™
((P* + Q)™ (QPY(QP)™  ((P* + Q)™ (PQ + QP)(PQ)" (PQ)"

Using (2.21), we have (PQ + QP)(PQ)"(PQ)™ = (PQ + QP)'(PQ + QP)™ — (QP)/(QP)™ and thereby

2 ooyt opyicapye (P2 Q)NFH(PQ + QP)(PQ + QP
. ((P + Q ) ) (QP) (QP) —((P2 + Qz)d)l“(QP)’(QP)”
(P )H— ElETl =
2+ it vy (P2 + QODFH(PQ + QPY(PQ + QP)"
((P + Q ) ) (QP) (QP) _((PZ + Qz)d)H'l(QP)I(QP)n

for i > 2. Therefore, we get
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((PO* +(Q@)HQ* + (Q)°P*Q?
sp—1
ZZ':«Iﬂ + Q)1 (QP) (QP)" = ) (P + ) HQPY(QPY"
i=0
=1
_((Pd) + (Qd)4)Q2 (Qd)6P2Q2 + Z((PZ + QZ)d)i+l(PQ + QP)Z(PQ + Qp)n
i=0
Z, =

((PH* +(Q@HHQ* + (QH)°P*Q?

§y— -1 52—1

Y+ @@y - L@+ QP QPiQPY
i=0

p2-1
_((Pd) + (Qd)4)Q2 (Qd)6P2Q2 + Z((PZ + QZ)d)i+1(PQ + QP)I(PQ + Qp)ﬂ
i=0

where i = ind(PQ + QP). In order to find the expression for (E + F)?, given in (2.3), we also need to
determine Z,EF, (F*)>Z,EF, F*EF and (F?)2E?EF. We obtain:

-1 |
0 Z + QY (P? + QY (QPY) 2@
Z\EF =
-1
0 ) (P + QY (P+ QY ((QPY) Q2
L i=0 )
21
0 ) ((P*+ Q) (PQ+ QP)'(PQ + QP)"QPQ?
(F)*Z,EF = )

0 Y ((P*+ Q)3 (PQ + QP)(PQ + QP)"QPQ?
i=0

[0 (P2+Q)QPYQ?
FIETF = [ 0 (P +Q)UQPYQ? ]

and

0 P2 2\H)2(OPYOPO?
(F'Y’E*EF = [ 0 EEPQ I gzgd;zggpgdgpgz ] :
Substituting the above equalities in (2.3), we get:
(E +F)* =[ o a2 ]

S (2.22)
where
=1
ar =) (P + Q" (P? + QY ((QP)y™*!
i=0
sp—1

' Z<<P2 + Q)N HQP)(QP)"
- «Pd>4 +(@YHQ - (@) PQ?
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and
-l
a = Z(P2 + QY™ (P* + Q)(PQ + QP)((PQ)")™*?
i=0
uz—1

+ Z((lﬂ + QO *(PQ + QPY(PQ + QP)"
i=0
+((PY)* +(Q@)HQ* + (Q)°P*Q?

521

Z 2+ QY (QP)(QP)"

p-1

+ ) (P2 QY (P + QY (QPY) P Q?
i=0

pa—1

+ Z‘((P2 + Q) (PQ + QP)'(PQ + QP)"QPQ’
i=0
- (P> + QH(QPY'Q* - ((P* + @) (QP)"QPQ*.
Now, after substituting (2.22) in (2.2), we obtain

=1

(P+Q"=(P+ Q)( Z(Pz + Q) (P* + QY (PQ + QP!
i=0

t2—1

+ Z ((P* + Q)H™(PQ + QPY(PQ + QP)"
i=0

=1

+ Z(PZ + QZ)‘H(PZ + QZ)i((QP)d)i+2Q2 (223)
i=0
uz—1

+ Y ((P*+ Q)™ (PQ + QP)'(PQ + QP)"QPQ?

i=0
- (P + QY(QPY'Q* - (P* + Q) (QP)'QPQ? .

Using (2.17), (2.19), (2.20), (2.21) and after some computation, we get:

-l

(P+Q) Z (P> + Q*)"(P* + Q*)((PQ + QPY)*! =

i=0

H

r—

(PTLPZH—l + QnQ21+1> (((PQ)d>i+1 4 ((QP)d)H—l)

I
o

i

1’2—1 1’2—1

QnQ2i+1P2((QP)d)i+2 + Z QTLQZi+2P((PQ)d)i+2
i=0

+

i=0

- Q"PX(QPY,
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t2—1

(P+Q) Z ((P* + Q)*(PQ + QP)'(PQ + QP)" =

s—1

= Y ((PH*1 4+ (@121 (PQY(PQ)™ + (QPY(QPY)
i=0
sp—1

s1—1
+ ) (@) PA(QP)(QP)" + Z(Qd)2”2P(PQ)i(PQ)”
i=0 i=0
+(P’Q% + Q'Y PQ* - QQ'P(PQ)" — (Q)*P - Q" - P*

-1

(P+Q) Z (P2 + QO)"(P* + QY (QP)')*2Q* =

,_.

r—

(PnP21+1 + Qanm) ((Qp)d)lﬂ Q>

Iy
(=}

i

|
—

+ Z QnQ2i+1P2((QP)d)i+3Q2 _ QdP(PQ)dQ

i=0

uz—1
(P+Q) Z ((P* + Q)" (PQ + QP)'(PQ + QP)"QPQ’
i=0
sp—1

— Z ((Pd)2i+5 + (Qd)2i+7p2 + (Qd)2i+5) (Qp)i+l (QP)T(QZ,
i=0

(P + Q)(P* + @O (QP)Y'Q* = PYQP)'Q* + (Q")’PX(QP)'Q* + Q*(QP)"Q*

and

(P +Q)(P* + Q))(QP)Y'QPQ* = (P/)’QP(QPY'Q* + (")’ P*QP(QP)'Q* + (Q)’QP(QP)' Q™.

9019

Substituting the previously obtained expressions into (2.23), we get that the additive formula (2.1) is

valid.
[

In the following example, we analyze two matrices P and Q, which do not satisfy the conditions of [8,

Theorem 3.2], but which satisfy the conditions of the previously proved theorem.

Example 2.2. Let P, Q € C> be such that:

0110 O 1 00
0011 1 0 01
P=10 0 0 0 O and Q=|0 0 O
0 00 0 1 010
0 00 0 -1 0 00

OO O oo

SO O oo
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We have that PQP? = 0, PQ?P = 0, PQ?® = 0 and QP? = 0. Meanwhile, QPQ? # 0 and P>Q? # 0, so we can
not apply the formula for (P + Q)? from [8, Theorem 3.2]. However, we have that the conditions of Theorem
2.1 are satisfied and therefore we can apply the additive formula (2.1). In order to determine the expression

for (P + Q)%, we have the following. We get that ind(P) = 3, ind(Q) = 3 and:

0 00 0 O 10 0 00

0 00 0 O 0 00O0O

PP={0 000 O, Q@=|00000

000 0 1 000O0TO

000 0 -1 000O0TO

Moreover, we obtain ind(PQ) = 2, ind(QP) = 2 and:

00 0O0O 0 00 0O
01000 000 00O
(PQ¥=|10 0 0 0 0|, (QPf'=[0 0 0 0 0
000 O0O 00111
00 0O0O 000 00O

After applying the formula (2.1) and after some computation, we get that

10 -1 -1 -1
00 2 1 1
P+Q¥=l0 0 0 0 0
01 0 0 1
00 0 0 -1

Now we give a symmetrical formulation of Theorem 2.1. We note that this result extends the result from
[8, Theorem 3.1], where the formula for (P + Q) is given under conditions P>?QP = 0, PQ?*P = 0, Q°P =0,

P3Q =0, Q*PQ = 0 and Q2P? = 0.

Theorem 2.3. Let P,Q € C"™". If P2QP = 0, PQ*P = 0, Q*P = 0 and P3Q = 0, then

r—1
P+Q'=)"
=0

Rl i+2 i+2 .
+ (((QP)d) PQ+ (I + Q2(PQ)d) ((pQ)d) pz) QY1

i=0

i+1

((QP)d)M + (I 4 Qz(PQ)d) ((PQ)d) )(P21+1Pn + Q2i+1Qn)

—

—_

S—

+ ((QP)n(QP)i + (PQ)”(PQ)i) ((pd)2i+1 " (Qd)2i+1)

w o~
= O

+ Y ((QPY"(QPYPQ + (PQ)™(PQ)'P?) (Q)**?
0
s1—1
+ QZ Z(PQ)H(PQ)I ((Pd)2i+3 + PZ(Qd)2i+5 + (Qd)2i+3)
i=0
- P* - 20" - P(Q%)* - (PQ)P*Q" - (QP)'PQQ" — Q(QP)"PQ*
- Q*(PQ)'P* - Q*(PQ)'Q" — Q*(PQ)"PX(Q?),

1

where r1 = ind(P), r, = ind(Q), s1 = ind(PQ), s, = ind(QP), ¥ = max {[T

1’1—1-‘ "7‘2—1

(2.24)

5 w} and s = max{sy, s»}.
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In the following theorem we give a new representation for a block matrix M of a form (1.1), as an
application of Theorem 2.3.

Theorem 2.4. Let M be a complex block matrix of a form (1.1), such that S = 0. If AY“BCA™A = 0, AYBCA™B = 0,
ATA%BC = 0and CATABC = 0, then

(A"BC)™ — AA™B((CA™B)?2CA™A —A"BC(A™BC)?A’B — AA™B(CA™B)“
—(CATB)ICA™A (CA™B)™
[ A"A? — AATB(CA™B)ICA™A AATB(CA™B)" ] Py’
t

+

0 0
-1

+
i=0

((ATBC)*)*1 + ATAB((CA™B)*)*3CATA  ((ABC)'y*1A’B + AA™B(CATB)")*2
(( AnB)d)z+2CAnA ((CAnB)d)iH :

0 0

(P21+1Pn [
[ (A"BO(A™BC)'  (A"BC)"(A™BC)'A'B }(Pd)zm

AnA21+1 ATIAZiB })

+

i

(CA™B)"(CA™B)~1CA™A  (CA™B)"(CA™B)

<

2

+

AATB(CA™B)"(CA™B)-1CA™A AAT™B(CA™B)*(CA™B)' ](pd)2i+3
0 0 ’

i=1

where

b | A%AT AalB
“| ¢ caB

Py = (Pl (HP?[ o o D

(P) =[ cAl ]((AW)")Z”A[ I A'B |, W=AA"+ A'BCA",

for every i € IN and for r1 = ind(P), t; = ind(A), t = max {rl 2_ L w , [%”, v1 = ind(A™BC) and v, = ind(CA™B),
v = max {v1, 02}.

Proof. Let the assumptions of the theorem hold. If we denote by

2 Ad d
P:[AA AAYB

AA™ A"B
C CAdB] and Q= [ ]

0

we have that M = P + Q. Moreover, we have that P?°Q = 0, PQ?*P = 0 and QP = 0. Therefore, we can apply
Theorem 2.3. In order to find the expression for M*, we need to determine P?, Q%, (PQ)* and (QP)?. If we

use notation:
A?AY AAYB 0 0
Pl‘[CAAd catp | ™ P2=lcyqn g |

we have that P = P; + P,. Since P,P; = 0 and P% =0, we can apply Lemma 1.2 and we get pt = P‘f + (P‘li)2P2.
By induction, we get

(P = (PY) + (PY)*'P,, fori> 1. (2.25)
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In order to determine P‘f, notice that matrix P; satisfies the conditions of Lemma 1.6 (we have (A2A%)? = A%)
I
CA?
Moreover, since (AW)?AAY = (AW)? and by induction, we derive

and after applying this lemma, we get P! = [ ]((AW)d)ZA[ I A‘B |, where W = AA? + A?BCA".

(P) = [ Cllqd ]((AW)d)iHA[ I A'B ], for every i € IN.

Further, we have that

[ ATAl ATAIB

Q' = 0 0 ], for every i € N. (2.26)

Thereby, matrix Q is (t; + 1)-nilpotent, where t; = ind(A). Therefore, Q% = 0 and Q™ = I. Furthermore, by
induction we obtain:

. ) b i n iAd
(P :[ (CA”B)9_1CA”A (CAO”B)i ] and (QPY =[ W T (2.27)

for every i € N. Moreover, after applying Lemma 1.4, we get:

i 0 0
((PQ)d) - [ ((CAnB)d)H—lCAnA ((CAnB)d)i ] ’ 28
((A™BC)Yy ((A™BC)')'A“B ] 229

0 7

(Qpyy = [ 0

foreveryi € IN. It remains to apply the expressions (2.25), (2.26), (2.27) and (2.28) into the following formula
r—1 . X
P+ =Y (@)™ +(1+ @@y Q)" ) (P1P + @211
i=0
s—1 s1—1
+ ) (@Py@P) + (PQ™(PQY) (P! + Q2 Y (PQY™ (PQ) (P23 - P — QX(PQ)'P,
0

i= i=0

where r; = ind(P), r, = ind(Q), s1 = ind(PQ), s, = ind(QP), r = max {[

After some computation, we get that the statement of the theorem is true.
O

1"1—1“ "1’2—1
2 7

> w} and s = max{s1, s»}.

Now we give the following example, to illustrate Theorem 2.4.

Example 2.5. Let M € C77, M = [ 4 B ], where:

C D
O Do 1100 10 1

A= , B= , C=|0 1 01| and D=|0 0 0]
000 1 11 0 0 0 0o 0 o d
0100 11 1

We have that S = D — CAYB = 0. Also, we have that A"ABC # 0 and A“BC # 0. Thereby, we can not
apply formulas for M given under conditions (i)~(v) from the list (b). However, since A’BCA™A = 0,
AYBCA™B = 0, A*A%BC = 0 and CA™ABC = 0, we can apply Theorem 2.4. We have that ind(A) = 3 and

100 0
Al =

o O O

0 0O
0 0O
0 0O
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Moreover, we get that ind(AW) = 1, ind(P) = 2 and

r101 1 17
18°%271°%7
1 00 00O0O0O
000 0 000O0O0O
AW =] 0 0 0 0|, PP={ 0 0 0 O 0 0 O
0000 1 1 1 1
0000 1890973097
00 00O0TO0O
[0 000 0 0 0]
After applying Theorem 2.4, we get
11 1 17
2 309 30 3
0 000 00 ©O0
3 17 1 1
28 %t 3t g
1 3 1 1
Mi=| = 2 - Z
2 300 31 3
1 1 1 1
: 3009 30 3
1 1 1 1
28 01 203
| 0 000 00 O]
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