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Abstract. A new two-step iteration method is constructed to solve complex symmetric linear systems
inspired by the CRI method, and we call it as the ICCRI method by using two linear subsystems with
identical coefficient matrices in each iteration. We present the elaborate discussion of the spectral radius
of the iteration matrix for the ICCRI method, and obtain the quasi-optimal parameter. Particularly, the
spectral radius of the iteration matrix is no more than 0.5 when the quasi-optimal parameter is used for the
ICCRI method. Moreover, to make comparison with the CRI method, we also give detailed analyses on
the quasi-optimal parameter and the corresponding convergence factor of the CRI method, which are not
proved in the original article. Some numerical experiments are implemented and the results show that the
new ICCRI method is more efficient than the PMHSS and the CRI methods.

1. Motivation and construction of the new ICCRI method

In this paper, we consider a class of complex symmetric linear systems which is given by

Ax := (W + iT)x = b, (1)

with the imaginary unit i =
√
−1, the constant vector b ∈ Cn and the unknown x ∈ Cn. Throughout the

paper, assume that W,T ∈ Rn×n are symmetric positive semi-definite matrices, and W ∈ Rn×n is positive
definite. Here we only study the case T , 0, otherwise the complex system (1) becomes a real symmetric
linear system Wx = b. This kinds of systems are widely used in applications, see [1–5].

For solving the system (1) numerically, a well-known Hermitian and skew-Hermitian splitting (HSS)
method was introduced in [6], and a modified HSS (MHSS) iteration algorithm was proposed in[2]. More-
over, a preconditioned MHSS (PMHSS) method was proposed in [7], which can be given as(αV +W)x(k+ 1

2 ) = (αV − iT)x(k) + b,

(αV + T)x(k+1) = (αV + iW)x(k+ 1
2 )
− ib,

(2)

where a constant α > 0 is given and a prescribed matrix V ∈ Rn×n is symmetric positive definite.
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Later, a mass of HSS-type methods were constructed one after another, which can be referred as lopsided
version of PMHSS iteration algorithm [8], new HSS iteration algorithm [9], single-step HSS (SHSS) iteration
algorithm [10], parameterized SHSS (PSHSS) iteration algorithm [11], the PSS and the BTSS methods in
[12], and the QHSS method [13]. For more methods, the readers can refer to [14–20].

In addition, by letting x = u + iv and b = p + iq with the vectors u, v, p, q ∈ Rn, then the complex linear
system (1) can be transformed to the following form[

W −T
T W

] [
u
v

]
=

[
p
q

]
, (3)

where u, v ∈ Rn are unknown real vectors. To get the numerical solution of (3), Salkuyeh et al. [21]
used the efficient generalized successive overrelaxation (GSOR) method first constructed in [22]. Later,
the symmetric SOR (SSOR) method [23], the preconditioned GSOR (PGSOR) method [24], the accelerated
GSOR (AGSOR) method [25], and a preconditioned AGSOR (PAGSOR) method [26], were proposed one
after another.

Recently, for solving the complex symmetric linear system (1), a scale-splitting (SCSP) method was
proposed in [27], and it was extended to a two-step version in [28] named TSCSP, which is also called as
the double-step scale splitting (DSS) method [29]. Later, the DSS method was generalized to a real-valued
method [30], and the TSCSP method was extended to a two-parameter version (TTSCSP) in [31], which
is also named the accelerated DSS (ADSS) method [32]. Furthermore, a modified TSCSP method was
introduced in [33]. For more latest research results, please see [34–38].

Additionally, Wang et al.[39] proposed a combination method by using the real part and imaginary part
of the coefficient matrix A, which is called CRI method and can be given by(αT +W)xk+ 1

2 = (α − i)Txk + b,
(αW + T)xk+1 = (α + i)Wxk+ 1

2 − ib,
(4)

where the parameter α > 0. Wang et al.[39] proved that the CRI method is more efficient than the PMHSS
method. Later, a generalised CRI (GCRI) method with two parameters(αT +W)xk+ 1

2 = (α − i)Txk + b,
(βW + T)xk+1 = (β + i)Wxk+ 1

2 − ib,
(5)

was introduced in [40], where α and β are given parameters. A modified CRI (MCRI) method with two
parameters was proposed in [41], and the MCRI method is given by(αT +W)xk+1 = (1 − ω)(αT +W)xk + ω(α − i)Tyk + ωb,

(αW + T)yk+1 = (1 − ω)(αW + T)yk + ω(α + i)Wxk+1
− iωb,

(6)

where α and ω ∈ (0, 2) are two positive constants. A single step iterative scheme using the real part and
imaginary part of the coefficient matrix A was proposed in [42], which is named SSRI method and can be
given by

(αT +W)xk+1 = (iα + 1)Wxk
− iαb, (7)

with the parameter α > 0.
Now, let us go back to the CRI method (4). Notice that when α , 1, we must solve two linear subsystems

with two different coefficient matrices αT +W and αW + T in each iteration by using the CRI method.
However, notice the fact that

(αW + T)x = α(−iTx + b) + Tx = (1 − αi)Tx + αb.
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Then, we can establish the following so-called ICCRI iteration scheme, by solving two linear subsystems
with identical coefficient matrices which are the combination of the real part and imaginary part of the
coefficient matrix A.

The ICCRI Iteration method: Choose a starting value x(0)
∈ Cn, for k = 0, 1, 2, . . . until the sequence of

iterations {x(k)
} converges, compute x(k+1) with the scheme:(αW + T)xk+ 1

2 = (1 − αi)Tx(k) + αb,

(αW + T)xk+1 = (α + i)Wxk+ 1
2 − ib,

(8)

where the parameter α > 0.

In the following Section 2, we are going to analyze the convergence properties of the new ICCRI method
and discuss the quasi-optimal parameter α∗. In Section 3, we also explore the quasi-optimal parameter of
the CRI method and then make a simple comparison between the CICRI and the CRI methods. In Section
4, several numerical tests are carried out to show the effectiveness of the ICCRI method. Finally, we make
a brief conclusion of this work in Section 5.

2. Convergence properties and quasi-optimal parameter of the ICCRI iteration scheme

It is obvious that the ICCRI iteration scheme (8) can be rewritten as

x(k+1) =M(α)x(k) + G−1(α)b, k = 0, 1, 2, . . . ,

with

M(α) = [2α + (1 − α2)i](αW + T)−1W(αW + T)−1T

= [2α + (1 − α2)i]W−
1
2 M̃(α)W

1
2 , (9)

and

G−1(α) = (αW + T)−1[(α2 + αi)W(αW + T)−1
− iI]

= (αW + T)−1(α2W − iT)(αW + T)−1,

where

M̃(α) = [W
1
2 (αW + T)−1W

1
2 ]2W−

1
2 TW−

1
2

= (αI +W−
1
2 TW−

1
2 )−2W−

1
2 TW−

1
2 . (10)

Let H(α) = G(α) − A, i.e.,

H(α) = [2α + (1 − α2)i](αW + T)(α2W − iT)−1W(αW + T)−1T,

then it is clear that the iteration matrix M(α) = G−1(α)H(α) and

A = G(α) −H(α)

defines a splitting way of the coefficient matrix A. Therefore, we can use the splitting matrix

G(α) = (αW + T)(α2W − iT)−1(αW + T)

as a preconditioner for the coefficient matrix A ∈ Cn×n.
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It is clear that all the eigenvalues of the symmetric positive semi-definite matrix W−
1
2 TW−

1
2 are nonneg-

ative real numbers. For convenience of later studies, we use the following notations

TW =W−
1
2 TW−

1
2 and λmax = max

λ j∈sp(TW)
{λ j}, (11)

where sp(B) represents the spectral set of matrix B. For the ICCRI iteration method, we obtain the following
results.

Theorem 2.1. Assume that W ∈ Rn×n is symmetric positive definite and T ∈ Rn×n is symmetric positive semi-
definite.
(i) If λmax ≥ α, then we have

ρ(M(α)) ≤ δ1(α) :=
α2 + 1

4α
.

Particularly, if 2 −
√

3 < α < 2 +
√

3 then δ1(α) < 1, i.e., the ICCRI scheme is convergent.
(ii) If λmax ≤ α, then we have

ρ(M(α)) = δ2(α) :=
(α2 + 1)λmax

(α + λmax)2 .

Particularly, if 2−
√

3 < α < 2+
√

3 then δ2(α) < 1; if 0 < α ≤ 2−
√

3 or α ≥ 2+
√

3 then δ2(α) < 1 provided that

λmax <
(α − 1)2

−

√
(α − 1)4 − 4α2

2
=: h(α). (12)

Proof. From the relational expression (9), we have

ρ(M(α)) = (α2 + 1) · ρ(M̃(α)) = (α2 + 1) · max
λ j∈sp(TW)

λ j

(α + λ j)2 .

Let

1(x) =
x

(α + x)2 for x ≥ 0. (13)

By direct calculation, we obtain the derivation

1′(x) =
α − x

(α + x)3 ,

which implies that 1′(α) = 0, and the function 1(x) is monotonically increasing in [0, α] and decreasing in
[α,+∞).

(i) If λmax ≥ α, then we have

ρ(M(α)) ≤ (α2 + 1) · 1(α) =
α2 + 1

4α
.

Moreover, it is easy to see that if 2 −
√

3 < α < 2 +
√

3 then δ1(α) < 1.
(ii) If λmax ≤ α, then we have

ρ(M(α)) = (α2 + 1) · 1(λmax) =
(α2 + 1)λmax

(α + λmax)2 .

Moreover, δ2(α) < 1 is equivalent to

λ2
max − (α − 1)2λmax + α

2 > 0. (14)
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If 2 −
√

3 < α < 2 +
√

3, we can see that the discriminant

∆ = (α − 1)4
− 4α2 = (α2 + 1)(α2

− 4α + 1) < 0

of the quadratic function defined on the left hand side of (14), and the inequality (14) is always true.
On the other hand, if 0 < α ≤ 2 −

√
3 or α ≥ 2 +

√
3, which is equivalent to

α2
− 4α + 1 ≥ 0, (15)

and thus the discriminant
∆ = (α2 + 1)(α2

− 4α + 1) ≥ 0.

Then by solving the inequality (14), we obtain

λmax >
(α − 1)2 +

√
(α − 1)4 − 4α2

2

or

λmax <
(α − 1)2

−

√
(α − 1)4 − 4α2

2
.

However, we can show that

(α − 1)2 +
√

(α − 1)4 − 4α2

2
≥ α and

(α − 1)2
−

√
(α − 1)4 − 4α2

2
≤ α.

In fact,
(α − 1)2 +

√
(α − 1)4 − 4α2 − 2α ≥ α2

− 4α + 1 ≥ 0,

and

(α − 1)2
−

√
(α − 1)4 − 4α2 − 2α

=
√

α2 − 4α + 1(
√

α2 − 4α + 1 −
√

α2 + 1) ≤ 0,

where we have used (15). In a word, if 0 < α ≤ 2 −
√

3 or α ≥ 2 +
√

3, the inequality (14) is equivalent to

λmax <
(α − 1)2

−

√
(α − 1)4 − 4α2

2
.

Thus, we have completed the proof of this theorem.

Proposition 2.2. Assume that W ∈ Rn×n is symmetric positive definite and T ∈ Rn×n is symmetric positive semi-
definite. Then for any α ∈ (2 −

√
3, 2 +

√
3), we have ρ(M(α)) < 1, i.e., the ICCRI scheme is unconditionally

convergent.
Moreover, if λmax ≥ 1, then the quasi-optimal parameter is α∗ = 1, and the corresponding spectral radius satisfies

ρ(M(α∗)) ≤ δ1(α∗) = δ1(1) =
1
2
. (16)

If λmax < 1, then the quasi-optimal parameter is α∗ = 1/λmax, and the corresponding spectral radius satisfies

ρ(M(α∗)) = δ2

( 1
λmax

)
=
λmax

1 + λ2
max
< δ2(1) =

2λmax

(1 + λmax)2 <
1
2
. (17)
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Proof. According to the results of Theorem 2.1, it is clear that for any α ∈ (2 −
√

3, 2 +
√

3), we have
ρ(M(α)) < 1. Moreover, since

δ1(α) − δ2(α) =
α2 + 1

4α
−

(α2 + 1)λmax

(α + λmax)2

= (α2 + 1)
(α + λmax)2

− 4αλmax

4α(α + λmax)2

= (α2 + 1)
(α − λmax)2

4α(α + λmax)2 ≥ 0,

we know that δ1(α) ≥ δ2(α) holds true for any α > 0 and δ1(α) = δ2(α) if and only if α = λmax.
By taking differentiations for δ1(α) and δ2(α), we get

δ′1(α) =
α2
− 1

4α2 (α ≤ λmax),

δ′2(α) =
2λmax(αλmax − 1)

(α + λmax)3 (α ≥ λmax).

Then it is apparent that the function δ1(α) achieves the minimum at the point α = 1, and δ2(α) achieves the
minimum at the point α = 1/λmax.

Therefore, if λmax ≥ 1, according to the left hand side plots in Figure 1, we know that the quasi-optimal
parameter is α∗ = 1, and (16) holds true. If λmax < 1, according to the right hand side plots in Figure 1, we
know that the quasi-optimal parameter α∗ = 1/λmax provided that ρ(M(1/λmax)) < 1, which is true according
to the following analysis.
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Figure 1: The plots of δ1(α) and δ2(α) for the ICCRI method varying with α ∈ (0.27, 3.73) for λmax ≥ 1 on the left and λmax < 1 on the
right, respectively.

Next, we are going to confirm that ρ(M(1/λmax)) < 1 when λmax < 1. If 2 −
√

3 < λmax < 1, then the
quasi-optimal parameter α∗ = 1/λmax ∈ (1, 2 +

√
3) and then ρ(M(1/λmax)) < 1 holds true according to

Theorem 2.1.
On the other hand, if λmax ≤ 2 −

√
3, i.e., α∗ = 1/λmax ≥ 2 +

√
3, in this case,

λmax < h
( 1
λmax

)
=

(1 − λmax)2
−

√
(1 − λmax)4 − 4λ2

max

2λ2
max

always holds true, which implies ρ(M(1/λmax)) < 1 in terms of Theorem 2.1, here the function h(x) is defined
in (12). In fact, for 0 < λmax ≤ 2 −

√
3 ≈ 0.268, we have

(1 − λmax)2
− 2λ3

max > 0,
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since
(1 − λmax)2 > 0.72 > 2 × 0.33 > 2λ3

max.

In addition, the inequality λmax < h
(

1
λmax

)
is true because

2λ2
max

[
h
( 1
λmax

)
− λmax

]
= (1 − λmax)2

− 2λ3
max −

√
(1 − λmax)4 − 4λ2

max > 0,

where we have used the fact that

[(1 − λmax)2
− 2λ3

max]2
− [(1 − λmax)4

− 4λ2
max]

= 4λ2
max(λ4

max + 2λ2
max + 1 − λ3

max − λmax)

= 4λ2
max(λ2

max + 1)(λ2
max − λmax + 1) > 0,

since
λ2

max − λmax + 1 > 0

is always true. In a word, if λmax < 1, then the quasi-optimal parameter α∗ = 1/λmax, and it is easy to show
that (17) holds true.

Now we have completed the proof.

Remark 2.3. According to the result given in Proposition 2.2, the best choice of the parameter for the ICCRI method
is α ∈ [1, 2 +

√
3). In addition, there is a symmetric version of the ICCRI iteration method in (8) which is given by(ωT +W)x(k+ 1

2 ) = (ω − i)Tx(k) + b,

(ωT +W)x(k+1) = (1 + ωi)Wx(k+ 1
2 )
− iωb,

(18)

with the parameter ω > 0.

However, by letting ω = 1
α and multiplying the both sides of the two equations in (18) by α, then the

symmetric version in (18) is exactly the same as the ICCRI iteration scheme in (8). Therefore, we do not
need to analyze the iteration scheme (18) here.

3. Comparison with the CRI method

Next we shall make a simple comparison between the ICCRI and the CRI methods. Actually, the spectral
radius ρ(T (α)) for the CRI method [39] is bounded by

δ̂(α) :=
α2 + 1

(α + 1)2 , (19)

where
T (α) = (α2 + 1)(αW + T)−1W(αT +W)−1T

is the iteration matrix of the CRI method.
It is pointed out in [39] that when α = 1, the upper bound δ̂(α) in (19) of the spectral radius ρ(T (α))

reaches its minimum value, however the detailed theoretical analyses on the quasi-optimal parameter α∗
and the corresponding spectral radius ρ(T (α∗)) are not given. Next, we will complete this task.

In our case, let W ∈ Rn×n be symmetric positive definite and T ∈ Rn×n be symmetric positive semi-
definite, we have

T (α) = (α2 + 1)W−
1
2 T̂ (α)W

1
2 , (20)
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where

T̂ (α) = (αI +W−
1
2 TW−

1
2 )−1(αW−

1
2 TW−

1
2 + I)−1W−

1
2 TW−

1
2 . (21)

With the same definition in (11), we have the following results.

Theorem 3.1. Assume that W ∈ Rn×n is symmetric positive definite and T ∈ Rn×n is symmetric positive semi-
definite. Then the CRI scheme is convergent for any α > 0.
(i) If λmax ≥ 1, then we have

ρ(T (α)) ≤ δ̂1(α) :=
α2 + 1

(α + 1)2 < 1.

(ii) If λmax ≤ 1, then we have

ρ(T (α)) = δ̂2(α) :=
(α2 + 1)λmax

(α + λmax)(αλmax + 1)
< 1.

Proof. From the relational expression (20), we obtain

ρ(T (α)) = (α2 + 1) · ρ(T̂ (α)) = (α2 + 1) · max
λ j∈sp(TW)

λ j

(α + λ j)(αλ j + 1)
.

Let

1̂(x) =
x

(α + x)(αx + 1)
, for x ≥ 0. (22)

By direct calculation, we have

1̂′(x) =
α(1 − x2)

(α + x)2(αx + 1)2 ,

which implies that 1̂′(1) = 0, and the function 1̂(x) is monotonically increasing in [0, 1] and decreasing in
[1,+∞).

(i) If λmax ≥ 1, then we have

ρ(T (α)) ≤ (α2 + 1) · 1̂(1) =
α2 + 1

(α + 1)2 < 1,

for any α > 0.
(ii) If λmax ≤ 1, then we have

ρ(T (α)) = (α2 + 1) · 1̂(λmax) =
(α2 + 1)λmax

(α + λmax)(αλmax + 1)
< 1.

Thus, we have completed the proof.

Proposition 3.2. Assume that W ∈ Rn×n is symmetric positive definite and T ∈ Rn×n is symmetric positive semi-
definite. If λmax ≥ 1, then the quasi-optimal parameter for the CRI method is α∗ = 1, and the corresponding spectral
radius

ρ(T (α∗)) ≤ δ̂1(α∗) = δ̂1(1) =
1
2
. (23)

If λmax ≤ 1, then the quasi-optimal parameter for the CRI method is also α∗ = 1, and the corresponding spectral radius

ρ(T (α∗)) = δ̂2(1) =
2λmax

(1 + λmax)2 ≤
1
2
. (24)
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Proof. According to the results of Theorem 3.1, since

δ̂1(α) − δ̂2(α) =
α2 + 1

(α + 1)2 −
(α2 + 1)λmax

(α + λmax)(αλmax + 1)

= (α2 + 1)
(α + λmax)(αλmax + 1) − (α + 1)2λmax

(α + 1)2(α + λmax)(αλmax + 1)

= (α2 + 1)
α(λmax − 1)2

(α + 1)2(α + λmax)(αλmax + 1)
≥ 0,

we know that δ̂1(α) ≥ δ̂2(α) holds true for any α > 0 and δ̂1(α) = δ̂2(α) if and only if λmax = 1.
By taking differentiations for δ̂1(α) and δ̂2(α), we get

δ̂′1(α) =
2(α − 1)
(α + 1)3 (λmax ≥ 1),

δ̂′2(α) =
(α2
− 1)λmax(λ2

max + 1)
(α + λmax)2(αλmax + 1)2 (λmax ≤ 1).

Then it is apparent that both the functions δ̂1(α) and δ̂2(α) achieve the minimum at the point α = 1.
Therefore, it is easy to show that (23) and (24) holds true. Now we have completed the proof.

Corollary 3.3. Assume that W ∈ Rn×n is symmetric positive definite and T ∈ Rn×n is symmetric positive semi-
definite. If λmax ≥ 1, then the quasi-optimal parameters for the CRI and ICCRI methods are the same, i.e., α∗ = 1, and
the corresponding spectral radius is no more than 1

2 . If λmax < 1, then for the CRI and ICCRI methods with different
quasi-optimal parameters, we have

ρ(M(α∗)) = δ2

( 1
λmax

)
=
λmax

1 + λ2
max
< ρ(T (α∗)) = δ̂2(1) =

2λmax

(1 + λmax)2 . (25)

Proof. From the results given in Propositions 2.2 and 3.2, we can easily draw the conclusion.

Remark 3.4. It is obvious that the ICCRI method is the same as the CRI method when α = 1, and the quasi-optimal
parameter for the CRI method is always α∗ = 1. However, if λmax < 1, the optimal parameter for the ICCRI method is
α∗ = 1/λmax > 1, and the corresponding sequence of iterations converges faster.

4. Numerical results

In this section, we shall test the efficiency of the ICCRI method by solving some complex linear systems,
and compare it with the PMHSS [7] and the CRI [39] iteration methods, based on the iteration steps
(denoted as IT) and CPU times (denoted as CPU) in seconds. The programs are performed in a personal
computer with the processor, Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz Microsoft Windows
10 Professional with the 64-bit Operating System and RAM 8.00 GB. The programming package is Matlab
R2014a (8.3.0.532) with 4096 digits.

In our experiments, similar as in [39], we choose V = W for the PMHSS method, then the PMHSS
method can be transformed to the following single-step iteration method

(αW + T)xk+1 =
α + i
1 + α

(αW − iT)xk +
α(1 − i)
1 + α

b.

In addition, we compute the matrix inversions in the considered iteration methods with the Cholesky
decomposition, and the initial value x(0) = 0 is always fixed for all the methods with the stopping criteria

ERR :=
∥b − Ax(k)

∥2

∥b∥2
≤ 10−6,

where x(k) is the approximation after k-th iterations.
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Example 4.1. Consider the following complex Helmholtz equation [5, 8, 11, 24]

−∆u + σ1u + iσ2u = f ,

where the function u satisfies the Dirichlet boundary conditions in the domain D = [0, 1]× [0, 1]. By discretizing this
complex Helmholtz equation with finite differences on an m ×m grid with mesh size h = 1/(m + 1), a complex linear
system

[(K + σ1I) + iσ2I]x = b,

is obtained, where the matrix K ∈ Rn×n is the sum of tensor-product

K = I ⊗ Bm + Bm ⊗ I with Bm =
1
h2 tridia1(−1, 2,−1) ∈ Rm×m.

In our tests, we set σ1 = 100, σ2 = 10 and the constant vector b = (1 + i)A1, where all the entries of the vector 1 are
equal to 1. By multiplying both sides by h2, we obtain a normalization of the complex linear system.

Example 4.2. Consider the complex linear system [2]

[(K − ϖ2M) + i(CH + ϖCV)]x = b,

which arises from direct frequency domain analysis. For more details, please see [4, 43].
Here, we consider the linear system [(

K − ϖ2I
)
+ i
(
βK + 10ϖI

)]
x = b,

where the two parameters ϖ, β ∈ R are known, and the matrix

K = I ⊗ Bm + Bm ⊗ I with Bm =
1
h2 tridia1(−1, 2,−1) ∈ Rm×m.

In our tests, we choose ϖ = 0.5, β = 0.2, and the constant vector b with its j-th entry

b j =
(1 + i) j

h2( j + 1)2 , j = 1, 2, . . . ,n.

Furthermore, by multiplying both sides by h2, we obtain a normalization of the complex linear system.

Example 4.3. Consider the complex linear system Ax = b, where A has quasi-tridiagonal form [42]

A =



1 + ωi 1
8 0 · · · 0 1

2

1
8 1 + ωi 1

8
. . .

... 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . . 1

8 0

0
...

. . . 1
8 1 + ωi 0

1
2 0 · · · 0 1

8 1 + ωi


n×n

and the right hand side vector b can be determined when the exact solution is

x∗ =
[
1,

1
2
, · · · ,

1
n − 1

,
1
n

]
.

Here, we let n = m2 and choose ω = 0.2.
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Table 1: Numerical results for the considered schemes by solving Example 4.1 when σ1 = 100, σ2 = 10.
Method Grid

32 × 32 64 × 64 128 × 128 192 × 192 256 × 256
PMHSS α∗ 1.0 1.0 1.0 1.0 1.0

IT 40 40 40 40 40
CPU(s) 0.013085 0.179380 1.670092 4.057580 12.261971

CRI α∗ 1.0 1.0 1.0 1.0 1.0
IT 7 6 6 6 5
CPU(s) 0.007257 0.053230 0.510335 1.222703 3.431233

ICCRI α∗ 2.0 2.0 2.0 2.0 3.0
IT 6 5 5 5 4
CPU(s) 0.007153 0.048121 0.428986 1.087861 2.892065

Table 2: Numerical results for the considered schemes by solving Example 4.2 when ϖ = 0.5, β = 0.2.
Method Grid

32 × 32 64 × 64 128 × 128 192 × 192 256 × 256
PMHSS α∗ 0.5 0.5 0.5 0.5 0.5

IT 25 25 25 25 25
CPU(s) 0.010314 0.102970 0.935825 2.865143 9.106758

CRI α∗ 1.0 1.0 1.0 1.0 1.0
IT 15 14 13 12 12
CPU(s) 0.010991 0.111618 0.940385 2.685790 8.539651

ICCRI α∗ 2.0 2.0 2.0 2.0 2.0
IT 13 12 11 11 11
CPU(s) 0.010064 0.098414 0.796742 2.429729 7.862425

Table 3: Numerical results for the considered schemes by solving Example 4.3 when ω = 0.2.
Method Grid

32 × 32 64 × 64 128 × 128 192 × 192 256 × 256
PMHSS α∗ 0.5 0.5 0.5 0.5 0.5

IT 28 28 28 28 28
CPU(s) 0.005313 0.016506 0.057196 0.106444 0.242996

CRI α∗ 1.0 1.0 1.0 1.0 1.0
IT 15 15 15 15 15
CPU(s) 0.007123 0.016936 0.043028 0.082240 0.194431

ICCRI α∗ 2.5 2.5 2.5 2.5 2.5
IT 12 12 12 12 12
CPU(s) 0.004909 0.014700 0.034760 0.067385 0.180144
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Figure 2: Iteration steps varying with the parameter α for Example 4.1, the left figure is for the ICCRI, the CRI and the PMHSS
methods when m = 128, and the right one is for the ICCRI method when m = 32, 64, 128, respectively.
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Figure 3: Iteration steps varying with the parameter α for Example 4.2, the left figure is for the ICCRI, the CRI and the PMHSS
methods when m = 128, and the right one is for the ICCRI method when m = 32, 64, 128, respectively.
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Figure 4: Iteration steps varying with the parameter α for Example 4.3, the left figure is for the ICCRI, the CRI and the PMHSS
methods when m = 128, and the right one is for the ICCRI method when m = 32, 64, 128, respectively.

Tables 1-3 show the numerical results of experiments by applying the PMHSS, the CRI and the ICCRI
iteration schemes when the optimal experimental parameters α∗ are used, with various problem sizes of
Examples 4.1-4.3, respectively. We can see that the considered PMHSS, CRI and ICCRI iteration schemes
are convergent. Moreover, it can be seen that the CRI and the ICCRI iteration schemes have significant
advantages over the PMHSS method, since they converge faster with less iteration steps and CPU times,
meanwhile the ICCRI method is superior to the CRI method by comparison of iteration steps and CPU
times. Notice also that the optimal experimental parameter of the CRI method is always α∗ = 1, which
coincides with the results given in Section 3. In addition, we also find an interesting phenomenon that for
the CRI and the ICCRI iteration schemes, the iteration steps decrease with the growth of the problem size
n = m2, particularly in the Examples 4.1-4.2.

On the other hand, Figures 2-4 show the plots of iteration steps varying with the parameter α ∈ (0.5, 2.5)
for the considered three methods for Examples 4.1-4.3, respectively. The left figures are for the ICCRI, the
CRI and the PMHSS methods when m = 128, and the right ones are only for the ICCRI method when
m = 32, 64, 128, respectively. It is clear that the optimal experimental parameters given in the Tables 1-3 can
be verified according to these figures. Moreover, we can see that the ICCRI method needs more iteration
steps than the CRI method when 0 < α < 1, while needs less iteration steps when α > 1. However, the
ICCRI method requires only one matrix inversion for any α, the CRI method requires two matrix inversions
as long as α , 1, and these two methods are the same when α = 1.

5. Conclusions

In this work, we construct a so-called ICCRI method for solving complex symmetric linear systems,
based on the CRI method. The spectral radius of the iteration matrix and the quasi-optimal parameter of the
ICCRI scheme are discussed elaborately. Furthermore, the quasi-optimal parameter and the corresponding
convergence factor of the CRI method are also given detailed analysis, for the purpose of comprison.
Numerical results confirm that the ICCRI scheme is superior to the PMHSS and CRI methods.
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