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Abstract. Our focus in this study revolves around investigating a Kirchhoff problem involving the p(x)-
biharmonic operator. The purpose is to study the existence and multiplicity of weak solutions for our
problem without assuming the Ambrosetti-Rabinowitz condition. By using the mountain pass theorem
with Cerami condition, we show the existence of non-trivial weak solutions for the considered problem.
Furthermore, our second purpose is to determine the precise positive interval of λ for which the problem
admits at least two nontrivial solutions. Finally, the existence of infinitely many solutions is proved by
employing the fountain theorem.

1. Introduction

Recently, there has been a lot of attention devoted to the study of differential equations and variational
problems with variable exponent. Indeed, Some of these equations originate from diverse domains of
applied physics and mathematics such like Micro-Electro-Mechanical systems, surface diffusion on solids,
flow in Hele-Shaw cells. Additionally, this class of equations can describe the static from the change of beam
or the sport of rigid body, there are plenty of authors who have draw attention to that kind of non-linearity
furnishes a model to study traveling waves in suspension bridges, for more details, see [1, 8, 18, 30, 31].

In the present article, we mainly study the following Kirchhoff-type problem involving the p(x)-
biharmonic operator of the form:

m
(∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx

) (
∆2

p(x)u + d(x)|u|p(x)−2u
)
= λ f (x,u) in Ω,

u = ∆u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded open domain with smooth boundary ∂Ω, N ≥ 3, λ > 0 is a real number,
d ∈ L∞(Ω) such that inf

x∈Ω
d(x) = d− > 0, m ∈ C([0,+∞),R+), f : Ω × R → R is a Carathéodory function and

∆2
p(x)u := ∆(|∆u|p(x)−2∆u) is the p(x)− biharmonic operator
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The differential operator
∆2

p(x)u := ∆(|∆u|p(x)−2∆u)

is a natural generalization of the classical p−biharmonic operator ∆(|∆u|p−2∆u) when p > 1 is a real constant.
However, the p(x)-biharmonic operator has a more complicated nonlinearity than the p-biharmonic operator,
due to the fact that p(x)-biharmonic operator is not homogeneous. This fact involves certain difficulties, for
example, we cannot use the Lagrange Multiplier theorem to solve many problems involving this operator.

Problem (1) is a nonlocal problem due to the presence of the term m, which implies that the equation
in (1) is no longer pointwise identities. Note that the problem (1) is similar to the stationary problem
introduced by Kirchhof in [22]:

ρ
∂2u
∂t2 −

(
ρ0

h
+

E
2L

∫ L

0
|
∂u
∂x
|dx

)
∂2u
∂x2 = 0.

More precisely, Kirchhoff proposed this model as an extension of D’Alembert’s classical wave equation,
taking into account the effects of variations in string length during vibration. Furthermore, S. Woinowsky-
Krieger in [33] considered the Kirchhoff-type evolution equation:

utt + ∆
2u −M(∥∇u∥2)∆u = 1(x,u),

which is a model for the deviation of an extensible beam.
A problem involving the p(x)-biharmonic operator was firstly investigated by A. Ayoujil and A.R. El

Amrouss in [7], the authors studied the spectrum of the following problem:∆2
p(x)u = λ|u|

p(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,

and they proved the existence of infinitely many eigenvalue sequences and supΓ = +∞, where Γ is the set of
all eigenvalues. Afterwards, various authors studied the existence and multiplicity of solutions for problems
of type (1) and a plenty of results have been obtained, see for instance L. Kong [23], A.R. El Amrouss and
A. Ourraoui [14], M. Alimohammady and F. Fattahi [4], O. Darhouche [11], G. A. Afrouzi, N. T. Chung and
M. Mirzapour [3], R. Ayazoglu, G. Alisoy and I. Ekincioglu [6], K. Kefi [20] and M. Khodabakhshi, S. M.
Vaezpour and A. Hadjian [21] and the references therein. In [23], L. Kong considered the problem(1) in the
particular case when m ≡ 1 and f (x,u) = a(x)|u|γ(x)−2u− c(x)|u|α(x)−2u, where a, c, γ, α ∈ C(Ω) are nonnegative
functions. By using variational arguments and the theory of the generalized Lebesgue-Sobolev spaces,
the author proved that the problem considered has at least one nontrivial weak solution. Moreover, O.
Darhouche [11] studied the existence and multiplicity of weak solutions of problem (1) with d ≡ 0 and λ = 1
under the following compactness condition:
(AR) There exist K > 0 and θ > l such that

0 < θF(x, t) ≤ t f (x, t), for all |t| ≥ K and a.e. x ∈ Ω,

where F(x, t) =

t∫
0

f (x, s)ds and l is a precise constant.

As we know, the (AR)-condition plays a pivotal role in the application of the variational method, which
is used extensively to ensure the boundedness of the Palais-Smale sequences and the energy functional has
a mountain pass geometry, but in many cases, cannot be satisfied. For example, in the case p(x) = p, the
function f (x, t) = |t|p−2t ln(1 + |t|) does not satisfy (AR)-condition but it satisfies certain weaker conditions.
So, a natural question arises, can we ensure the existence and multiplicity of nontrivial solutions without
assuming the (AR)-condition? Some researchers have answered this question for some problems involving
the p(x)−biharmonic. L. Li and C. Tang in [26] consider the following condition
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(AR)0 There exists a constant θ ≥ 1, such that for any s ∈ [0, 1] and t ∈ R, the inequalities

1
p+

f (x, st)st − F(x, st) ≤
θ
p+

f (x, t)t − F(x, t)

hold for a.e. x ∈ Ω, where F(x, t) =

t∫
0

f (x, τ)dτ;

This condition was introduced by L. Jeanjean [19] in the case p(x) = 2. Recently, the researchers G. A.
Afrouzi, N. T. Chung and M. Mirzapour in [2] consider the following condition:

(AR)1 f ∈ C(R,R) and there exist a constant s0 ≥ 0 and a decreasing function θ(s) ∈ C (R\ (−s0, s0) ,R) such
that

0 <
(
p+ + θ(s)

)
F(s) ≤ f (s)s, ∀|s| ≥ s0,

where θ(s) > 0, lim
|s|→+∞

θ(s)|s| = +∞, lim
|s|→+∞

|s|∫
s0

θ(t)
t

dt = +∞ and F(s) =

s∫
0

f (t)dt;

Then, the goal of this article is to show the existence and multiplicity of nontrivial solutions to (1) without
assuming the (AR)-condition on nonlinearity f , using the condition more general than (AR)0 and overcome
the difficulties generated by the Kirchhoff-type problem.
Before outlining our main results, we list some assumptions imposed on the functions m and f such that:

(Hp) p ∈ C(Ω) and 1 < p− := min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < p∗2(x) for all x ∈ Ω, where

p∗2(x) :=

 Np(x)
N−2p(x) if p(x) < N

2

+∞ if p(x) ≥ N
2 .

(m0) m ∈ C([0,+∞),R+) and there exists m∗ > 0 such that inf
t≥0

m(t) ≥ m∗.

(m1) There exists µ ∈
[
1,

1
p+

min
x∈Ω

p∗2(x)
]

such that for all t ∈ R+, tm(t) ≤ µm̂(t),

where m̂(t) =
∫ t

0
m(τ)dτ.

(m2) m is a decreasing function on [0,+∞).

( f1) There exists a function s ∈ C(Ω) which satisfies

1 < p− ≤ p+ < s− := min
x∈Ω

s(x) ≤ s+ := max
x∈Ω

s(x) < p∗2(x) on Ω,

and a positive constant C > 0 such that

| f (x, t)| ≤ C(1 + |t|s(x)−1) for all (x, t) ∈ Ω ×R.

( f2) f (x, t) = ◦(|t|p+−1) as t→ 0 uniformly for a.e. x ∈ Ω.

( f3) lim inf
|t|→∞

F(x, t)
|t|µp+ = +∞ uniformly a.e x ∈ Ω, where µ comes from (m1) above.

( f4) There are real numbers θ1 ≥ p+ and θ2 ≥ 1 such that

1
θ1

f (x, t)t − F(x, t) ≤ θ2

 1
θ2

1

f (x, s)s − F(x, s)

 ,
a.e x ∈ Ω and ∀ (t, s) ∈ R+ ×R+,with t ⩽ s.
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( f5) f (x,−t) = − f (x, t) for all (x, t) ∈ Ω ×R.

Remark 1.1. Our assumption ( f4) is more general than hypothesis introduced by L. Jeanjean [19] and L. Li and C.
Tang in [26] in the case p(x) = 2 and θ1 = p+ = 2. In fact, if f (·, t) ≥ 0 for all t ≥ 0, we have

1
2

f (x, t)t − F(x, t) ≤ θ2

[
1

(p+)2 f (x, s)s − F(x, s)
]
≤ θ2

[1
2

f (x, s)s − F(x, s)
]

a.e x ∈ Ω and ∀ (t, s) ∈ R+ ×R+, with t ⩽ s.

Now, we present the main results of this paper.

Theorem 1.2. Suppose that (m0) − (m2), (Hp) and ( f1) − ( f4) hold. Then for all λ > 0, problem (1) has at least one
nontrivial weak solution in X.

Theorem 1.3. Suppose that (m0) − (m2), (Hp), ( f1) and ( f3) − ( f4) hold. Then, there exists λ0 > 0 such that for any
λ ∈ (0, λ0), problem (1) admits at least two distinct weak solutions in X.

Theorem 1.4. Suppose that (m0)− (m2), (Hp), ( f1) and ( f3)− ( f5) hold. Then, for all λ > 0, problem (1) has infinitely
many weak solutions (un) ⊂ X such that I(un)→ +∞ as n→ +∞.

2. The functional setting and tools

In this section, we review some necessary definitions and basic properties of the spaces Lp(x(Ω) and
Wk,p(x)(Ω) (see [12, 15–17, 24]) and some useful properties of the p(x)-biharmonic operator, which we will
use later.

Let p ∈ C+(Ω) :=
{

p ∈ C(Ω) : p− := inf
x∈Ω

p(x) > 1
}

, we define the variable exponent Lebesgue space by

Lp(x)(Ω) =
{
u : Ω→ R is measurable and

∫
Ω

|u(x)|p(x)dx < +∞
}
,

equipped with the Luxemburg norm

|u|p(x) = inf
{
λ > 0 :

∫
Ω

∣∣∣∣∣u(x)
λ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

Proposition 2.1. (See [17])

1. The Lebesgue space (Lp(x)(Ω), |.|p(x)) is Banach, separable, uniformly convex, reflexive and its conjugate space is
Lq(x)(Ω), where q(x) is conjugate to p(x), i.e., 1

p(x) +
1

q(x) = 1.

2. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∣∫
Ω

uv dx
∣∣∣∣∣ ≤ (

1
p−
+

1
q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

On Lp(x)(Ω), we define the modular ρ : Lp(x)(Ω)→ R as follows

ρ(u) =
∫
Ω

|u|p(x)dx.

The relationship between ρ and |.|p(x) is established by the next result.

Proposition 2.2. (See [17]) For u ∈ Lp(x)(Ω) and (un) ⊂ Lp(x)(Ω), we have
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1. |u|p(x) < 1 (= 1;> 1)⇐⇒ ρ(u) < 1 (= 1;> 1) .
2. For u , 0, |u|p(x) = λ⇐⇒ ρ( u

λ ) = 1.

3. |u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x).

4. |u|p(x) < 1 =⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

5. The following affirmations are equivalent to each other.
(a) lim

n→∞
|un − u|p(x) = 0.

(b) lim
n→∞
ρ(un − u) = 0.

(c) un → u in measure in Ω and lim
n→∞
ρ(un) = ρ(u).

6. lim
n→∞
|un|p(x) = ∞⇐⇒ lim

n→∞
ρ(un) = ∞.

Next, for any k ∈N∗, as in the case of constant exponent, we can define the variable exponent Sobolev space
as

Wk,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where k is an integer, α = (α1, ..., αN) is a multi-index, |α| =
N∑

i=1
αi and Dαu = ∂|α|u

∂α1 x1...∂αN xN
.

The space Wk,p(x)(Ω) endowed with the norm ∥u∥k,p(x) =
∑
|α|≤k
|Dαu|p(x) is a Banach, separable and reflexive

space.

Proposition 2.3. ( [17, 28]) For p, γ ∈ C+(Ω) such that γ(x) ≤ p∗k(x) for all x ∈ Ω, there is a continuous embedding

Wk,p(x)(Ω) ↪→ Lγ(x)(Ω).

In addition, if γ(x) < p∗k(x) for all x ∈ Ω, then, the embedding is compact. Hereafter, denote p+ = max
x∈Ω

p(x),

p− = min
x∈Ω

p(x) and for all x ∈ Ω,

p∗(x) :=

 Np(x)
N−p(x) if p(x) < N,
+∞ if p(x) ≥ N,

p∗k(x) :=

 Np(x)
N−kp(x) if p(x) < N

k ,

+∞ if p(x) ≥ N
k .

We denote by Wk,p(x)
0 (Ω) the closure of C∞0 (Ω) in Wk,p(x)(Ω). Notice that problem (1) is modeled in the working

space X =W2,p(x)(Ω) ∩W1,p(x)
0 (Ω) equipped with the norm

∥u∥d = inf
{

t > 0 :
∫
Ω

(∣∣∣∣∣∆u
t

∣∣∣∣∣p(x)

+ d(x)
∣∣∣∣ut ∣∣∣∣p(x)

)
dx ≤ 1

}
.

Remark 2.4. ([14])

1. (X, ∥.∥d) is a Banach space separable and reflexive space.
2. The norms ∥.∥2,p(x), |∆.|p(x) and ∥.∥d are equivalent.
3. There is a continuous and compact embedding of X into Lγ(x)(Ω) where γ(x) < p∗2(x) for all x ∈ Ω.

Proposition 2.5. ([9]) Let ρd(u) =
∫
Ω

(
|∆u|p(x) + d(x)|u|p(x)

)
dx. For u,un ∈ X, we have,

1. ∥u∥d ≤ 1 =⇒ ∥u∥p
+

d ≤ ρd(u) ≤ ∥u∥p
−

d .

2. ∥u∥d ≥ 1 =⇒ ∥u∥p
−

d ≤ ρd(u) ≤ ∥u∥p
+

d .
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3. ∥un∥d → 0⇐⇒ ρd(un)→ 0.
4. ∥un∥d → +∞⇐⇒ ρd(un)→ +∞.

Now, we can define the weak solution of problem (1).

Definition 2.6. We call u ∈ X a weak solution of problem (1) if

m
(∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx

) ∫
Ω

(
|∆u|p(x)−2∆u∆w + d(x)|u|p(x)−2uw

)
dx

= λ

∫
Ω

f (x,u)wdx, for all w ∈ X.

In order to prove the main results, we introduce the energy functional I : X → R of problem (1) as follows
I(u) = J(u) − λφ(u), where

J(u) = m̂
(∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx

)
and φ(u) =

∫
Ω

F(x,u) dx,

with F(x, t) =
∫ t

0
f (x, s)ds and m̂(t) =

∫ t

0
m(τ)dτ. It is easy to prove that I ∈ C1(X,R) and its critical points

are solutions to problem (1).

Let the functional B : X→ R be defined by

B(u) =
∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx. (2)

Proposition 2.7. ([14])

1. The functional B is sequentially weakly lower semi continuous, B ∈ C1(X,R) and it’s Fréchet derivative is
given by

⟨B
′(u), v⟩ =

∫
Ω

(
|∆u|p(x)−2∆u∆v + d(x)|u|p(x)−2uv

)
dx,

for all u, v ∈ X.

2. The mapping B′ : X −→ X∗ is a strictly monotone, bounded homeomorphism and it is of type (S+), that is, for
every sequence (un) ⊂ X and for every u ∈ X which satisfy

un ⇀ u weakly in X and lim sup
n→+∞

⟨B (un) ,un − u⟩ ≤ 0,

then un → u strongly in X.

3. φ is a C1 in Lα(x)(Ω) and φ′ is weakly-strongly continuous, i.e. un ⇀ u implies φ′(un) −→ φ′(u) .

Remark 2.8. Note that u ∈ X is a weak solution of problem (1) if and only if we have

m (B(u)) ⟨B′(u),w⟩ = λ
∫
Ω

f (x,u)wdx, for all w ∈ X.

All through this paper, the letters Ci, ci, i = 1, 2, 3... denote positive constants which may change from line to line.
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3. Cerami condition

We now give the definition of the compactness condition of the Cerami which was introduced by G. Cerami in [10].

Definition 3.1. Let (X, ∥.∥) be a real Banach space and I ∈ C1(X,R). If any sequence (un) ⊂ X fulfilling

(I(un)) is bounded and ∥I′(un)∥X∗ (1 + ∥un∥)→ 0 as n→ +∞

has a strong convergent subsequence in X, then, we say that I satisfies the Cerami condition (we denote (C)− condition)
in X.

We are going to show that the functional I fulfills the (C)−condition. First, a technical result.

Lemma 3.2. The following statements hold.

(i) The conditions (m0) and (m1) imply that

m̂(t) ≤ m̂(1) ∀ t ∈ [0, 1], and m̂(t) ≤ m̂(1)tµ ∀ t ∈ (1,+∞).

Hence,
m̂(t) ≤ m̂(1)(1 + tµ), ∀ t ∈ [0,+∞).

(ii) Given the number κ ∈ [0, 1] then, the condition (m2), implies that t 7→ m̂(t)−κm(t)t is an increasing function,
where t ≥ 0.

(iii) The condition ( f3) implies that given D1 > 0 there is a positive constant D2 = D2(D1) such that

F(x, t) ≥ D1tµp+
−D2, for all (x, t) ∈ Ω ×R.

Proof. To prove (i) note that, if 0 ≤ t ≤ 1, since the function m̂(.) is strictly increasing on [0,+∞), then m̂(t) ≤ m̂(1),

and if t ≥ 1. Now, we consider the function K(t) =
m̂(t)
tµ

. By direct calculation, it is clear that t 7→ K(t) is strictly

decreasing on [1,+∞), then m̂(t) ≤ m̂(1)tµ.

To prove the second item we are going to consider s > t and that (m2) holds, then

m̂(s) − κ m(s)s >

∫ t

0
m(σ)dσ +

∫ s

t
m(t)dσ − κ m(s)s

> m̂(t) + κ m(t)(s − t) − κ m(s)s

> m̂(t) − κ m(t)t

Next, the assumption ( f3) means that given D1 > 0 there exists a positive constant t1 such that

F(x, t) > D1|t|µp+ for all (x, |t|) ∈ Ω × (t1,+∞) .

Since F(x, t) is continuous at t ∈ [−t1, t1], there is a constant D2 > 0 such that

|F(x, t)| ≤ D2 for all (x, t) ∈ Ω × [−t1, t1] .

Therefore, the result follows.

Proposition 3.3. Assuming the assumptions (m0)− (m2), (Hp), ( f1) and ( f3)− ( f4) are fulfilled. Then, the functional
I fulfills the (C)−condition.
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Proof. Let (un) ⊂ X be a Cerami sequence for I, that is,

(I(un)) is bounded and ∥I′(un)∥X∗ (1 + ∥un∥d)→ 0 as n→ +∞, (3)

which implies that

sup
n∈N
|I(un)| ≤M and ⟨I′(un),un⟩ = ◦n(1), (4)

where ◦n(1)→ 0 as n→ +∞ and M is a positive constant. Let (un) ⊂ X be a bounded sequence satisfying (3). Then
there exists u0 ∈ X such that up to a subsequence, still denoted by (un), we have by Remark 2.4 that

un ⇀ u0 in X;
un → u0 in Lγ(x)(Ω), for all γ ∈ C+(Ω) with γ(x) < p∗2(x) in Ω,
un(x)→ u0(x) a.e. x ∈ Ω,

(5)

Hence, by ( f1), (5), the Hölder inequality and Proposition 2.2, we obtain∣∣∣∣∣∫
Ω

f (x,un)(un − u0)dx
∣∣∣∣∣ ≤ C

∫
Ω

|un − u0|dx

+C
(∫
Ω

|un|
s(x)dx

) s(x)−1
s(x)

(∫
Ω

|un − u0|
s(x)dx

) 1
s(x)

→ 0, as n→ +∞.

(6)

On the other hand, using (m0) and (m2), we obtain

m (B(un)) ∈ (m∗,m(0)) ∀ n ∈N, (7)

where B is given in (2). Next, since un ⇀ u0, from (3), we have

⟨I′(un),un − u0⟩ → 0, as n→ +∞.

Then, by (6),

m (B(un)) ⟨B′(un),un − u0⟩ = ⟨I′(un),un − u0⟩

+λ

∫
Ω

f (x,un)(un − u0)dx→ 0, as n→ +∞

Since B′ is a mapping of type (S+) (see Proposition 2.7) and (7) holds, we can conclude that un → u0 strongly in X.

Next, to complete the demonstration, it remains to show that (un) is bounded in X. To this end, assume the
contrary that the sequence (un) is unbounded in X. Without loss of generality, we may suppose that ∥un∥d > 1 and
∥un∥d → +∞ as n→ +∞. By (4), (Hp), (m0), (m1) and Proposition 2.5, for n large enough, we get

M ≥ I(un)

= m̂
(∫
Ω

|∆un|
p(x) + d(x)|un|

p(x)

p(x)
dx

)
− λ

∫
Ω

F(x,un)dx

≥
m∗

µp+

∫
Ω

(|∆un|
p(x) + d(x)|un|

p(x))dx − λ
∫
Ω

F(x,un)dx

≥
m∗

µp+
ρd(un) − λ

∫
Ω

F(x,un)dx

≥
m∗

µp+
∥un∥

p−

d − λ

∫
Ω

F(x,un)dx.
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Since ∥un∥d → +∞ as n→ +∞, we get∫
Ω

F(x,un)dx ≥
m∗

λµp+
∥un∥

p−

d −
M
λ
→ +∞. (8)

On the other hand, using (m0) we have that m̂(.) is strictly increasing on [0,+∞). Then, by and Proposition 2.5,

I(un) = m̂
(∫
Ω

|∆un|
p(x) + d(x)|un|

p(x)

p(x)
dx

)
− λ

∫
Ω

F(x,un)dx

≤ m̂
(∫
Ω

(|∆un|
p(x) + d(x)|un|

p(x))dx
)
− λ

∫
Ω

F(x,un)dx

≤ m̂(∥un∥
p+

d ) − λ
∫
Ω

F(x,un)dx.

Thus, we obtain

λ

∫
Ω

F(x,un)dx ≤ m̂(∥un∥
p+

d ) − I(un) ≤ m̂(∥un∥
p+

d ) +M.

Since m̂(.) is strictly increasing on [0,+∞) and ∥un∥d → +∞ as n→ +∞, we have

lim sup
n→+∞

∫
Ω

F(x,un)

m̂(∥un∥
p+

d )
dx

 ≤ 1. (9)

Let us define the sequence (βn) ⊂ X by βn =
un
∥un∥d

for any n ∈ N. Then, up to subsequences, for some β ∈ X, we
have 

βn ⇀ β in X,

βn → β in Lµp+ (Ω),

βn → β in Ls(x)(Ω),
βn(x)→ β(x) a.e. in Ω,

(10)

where s(.) comes from ( f1). Define the set Θ = {x ∈ Ω : β(x) , 0}. If x ∈ Θ, from (10), we obtain

|un(x)| = |βn(x)|∥un∥d → +∞.

Then, by Lemma 3.2 and n large enough, we obtain

F(x,un)

m̂(∥un∥
p+

d )
≥

F(x,un)

m̂(1)∥un∥
µp+

d

=
F(x,un)

m̂(1)|un(x)|µp+
|βn(x)|µp+

→ +∞.

Hence, if meas(Θ) , 0 (where meas(Θ) means the Lebesgue measure of Θ), we have, using Fatou’s Lemma and (8),

+∞ =

∫
Θ

lim inf
n→+∞

F(x,un(x))

m̂(∥un∥
p+

d )

 dx ≤ lim inf
n→+∞

∫
Ω

F(x,un)

m̂(∥un∥
p+

d )
dx


≤ lim sup

n→+∞

∫
Ω

F(x,un)

m̂(∥un∥
p+

d )
dx

 .
But, this contradicts (9). Therefore, we can conclude meas(Θ) = 0 and β(x) = 0 almost every x ∈ Ω.
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As ξ 7→ I(ξun) is continuous in [0, 1], for all n ∈N, then, there is ξn ∈ [0, 1] such that

I(ξnun) := max
ξ∈[0,1]

I(ξun). (11)

Put (Lk)k∈N ⊂ R be sequence such that Lk > 1 for any k and Lk → +∞ as k→ +∞. Then,

∥Lkβn∥d = Lk > 1, ∀k,n ∈N.

Let k be fixed. As βn → 0 in Ls(x)(Ω) and βn(x) → 0 a.e. x ∈ Ω as n → +∞. Using ( f1) and Lebesgue’s dominated
convergence theorem, we get∫

Ω

F(x,Lkβn)dx→ 0 as n→ +∞. (12)

Because ∥un∥d → +∞ as n→ +∞, then we have ∥un∥d > Lk for n large enough, which means that Lk
∥un∥d

∈ (0, 1) for n
large enough. Thus, from (m0) − (m1), Proposition 2.5, (11) and (12) we obtain

I(ξnun) ≥ I
( Lk

∥un∥d
un

)
= I(Lkβn)

= m̂
(∫
Ω

|∆Lkβn|
p(x) + d(x)|Lkβn|

p(x)

p(x)
dx

)
− λ

∫
Ω

F(x,Lkβn)dx

≥
m∗

µp+
ρd(Lkβn) − λ

∫
Ω

F(x,Lkβn)dx

≥
m∗

µp+
∥Lkβn∥

p−

d − λ

∫
Ω

F(x,Lkβn)dx

≥
m∗

µp+
Lp−

k

for n large enough. Then,

lim inf
n→+∞

I(ξnun) ≥
m∗

µp+
Lp−

k , ∀ k ∈N. (13)

Next, we claim that, for n large enough, ξn ∈ (0, 1). In fact, by (13), we have ξn > 0, for n large enough. On the
other hand, if there is (ξ j) ⊂ (ξn) such that ξ j = 1 for all j. Then, using (4) and (13),

m∗

µp+
Lp−

k ≤ I(u j) ≤M, for all j and k,

which it is a contradiction, because Lk → +∞, as k→ +∞. Therefore, we can consider, for n large enough,

ξn ∈ (0, 1) and ⟨I′(ξnun), ξnun⟩ = 0.

On the other hand, it follows from Remark 2.8, (Hp) and ( f4) that

1
θ2

I(ξnun) =
1
θ2

I(ξnun) −
1
θ2θ1

⟨I′(ξnun), ξnun⟩

≤
1
θ2

m̂
(∫
Ω

|∆(ξnun)|p(x) + d(x)|ξnun|
p(x)

p(x)
dx

)

−
1
θ2θ1

m
(∫
Ω

|∆(ξnun)|p(x) + d(x)|ξnun|
p(x)

p(x)
dx

) ∫
Ω

(
|∆(ξnun)|p(x) + d(x)|ξnun|

p(x)

p(x)

)
dx

+λ

∫
Ω

[
1

(θ1)2 f (x,un)un − F(x,un)
]

dx.
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Hence, using Lemma 3.2,

1
θ2

I(ξnun) ≤
1
θ2

[
m̂

(∫
Ω

|∆un|
p(x) + d(x)|un|

p(x)

p(x)
dx

)

−
1
θ1

m
(∫
Ω

|∆un|
p(x) + d(x)|un|

p(x)

p(x)
dx

) ∫
Ω

(
|∆un|

p(x) + d(x)|un|
p(x)

p(x)

)
dx

]

+λ

∫
Ω

[
1

(θ1)2 f (x,un)un − F(x,un)
]

dx

≤ m̂
(∫
Ω

|∆un|
p(x) + d(x)|un|

p(x)

p(x)
dx

)

−
1

(θ1)2 m
(∫
Ω

|∆un|
p(x) + d(x)|un|

p(x)

p(x)
dx

) ∫
Ω

(
|∆un|

p(x) + d(x)|un|
p(x)

)
dx

+λ

∫
Ω

[
1

(θ1)2 f (x,un)un − F(x,un)
]

dx

= I(un) −
1

(θ1)2 ⟨I
′(un),un⟩.

Then, letting n→ +∞ we have
lim

n→+∞
I(ξnun) ≤ θ2M,

which contradicts (13). The proof is complete

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the application of the mountain pass theorem given by Ambrosetti-Rabinowitz
in [5]. By Lemma 3.3, I satisfies the (C)−condition. According to definition of I, we have I(0) = 0. Then, to apply the
mountain pass theorem, we are going to show that I has a mountain pass geometry.

First, we claim that there exist α, R > 0 such that

I(u) ⩾ α, ∀ u ∈ X with ∥u∥d = R. (14)

In fact, by (m0) − (m1) and Proposition 2.5, for ∥u∥d < 1, we obtain

I(u) ≥
m∗

µp+
ρd(u) − λ

∫
Ω

F(x,u)dx

≥
m∗

µp+
∥u∥p

+

d − λ

∫
Ω

F(x,u)dx.
(15)

Since p+ < p∗2(x) and s(x) < p∗2(x) for all x ∈ Ω in view of conditions (m1) and ( f1), respectively , we have from
Remark 2.4 that X ↪→ Lp+ (Ω) and X ↪→ Ls(x)(Ω). So, there exist c6, c7 > 0 such that

|u|p+ ≤ c6∥u∥d and |u|s(x) ≤ c7∥u∥d, ∀u ∈ X.

From ( f1) and ( f2), given ε > 0 there is a positive constant Cε = C(ε) such that

F(x, t) ≤ ε|t|p
+

+ Cε|t|s(x), ∀(x, t) ∈ Ω ×R. (16)
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Therefore, for ∥u∥d < 1 small enough, the relations (15) and (16) yields

I(u) ⩾
m∗

µp+
∥u∥p

+

d − λε

∫
Ω

|u|p
+

dx − λCε

∫
Ω

|u|s(x)dx

⩾
m∗

µp+
∥u∥p

+

d − λεc
p+

6 ∥u∥
p+

d − λCεcs−
7 ∥u∥

s−
d

≥

(
m∗

µp+
− λεcp+

6

)
∥u∥p

+

− λCεcs−
7 ∥u∥

s− .

Since s− > p+ and choosing ε <
m∗

λcp+

6 µp+
, we obtain

lim inf
∥u∥d→0+

I(u)

∥u∥p
+

d

⩾ 0,

which implies that (14) holds.
Next, we affirm that there exists σ ∈ X with ∥u∥d > µ such that

I(σ) < 0. (17)

In fact, let ϕ ∈ X \ {0} such that ∥ϕ∥ = 1 and l > 1 be large enough, using Lemma 3.2, we obtain

I(lϕ) = m̂
(∫
Ω

|∆lϕ|p(x) + d(x)|lϕ|p(x)

p(x)
dx

)
− λ

∫
Ω

F(x, lϕ)dx

≤ m̂(1)
(∫
Ω

|∆lϕ|p(x) + d(x)|lϕ|p(x)

p(x)
dx

)µ
− λ

∫
Ω

F(x, lϕ)dx

≤ m̂(1)
(

lp+

p−

∫
Ω

(|∆ϕ|p(x) + d(x)|ϕ|p(x))dx
)µ
− λD1lµp+

∫
Ω

|ϕ|µp+ dx

+ λD2meas(Ω)

≤ lµp+
(

m̂(1)
(p−)µ

lp
+(1−µ)

− λD1

∫
Ω

|ϕ|µp+dx
)
+ λD2meas(Ω)

(18)

where µ comes from (m1). As
m̂(1)
(p−)µ

− λD1

∫
Ω

|ϕ|µp+dx < 0,

for sufficiently large D1 , we find
I(lϕ)→ −∞, as l→ +∞.

Therefore, there exists t0 > 1 and σ = t0ϕ ∈ X \ BR(0) such that I(σ) < 0. The proof of Theorem 1.2 is complete.

5. Proof of Theorem 1.3

In order to prove Theorem 1.3, we shall use the following theorem and prove the technical lemma.

Theorem 5.1. [27, Theorem 2.6] Let X be a real Banach space, A,B : X → R be two continuously Gateaus
differentiable functionals such that A is bounded from below and A(0) = B(0) = 0. Let η > 0 be fixed, if for any

λ ∈ Γ0 :=

0,
η

sup
u∈A−1((−∞,η))

B(u)

 ,
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the functional I = A−λB satisfies the (C)-condition for all λ > 0 and is unbounded from below. Then, for any λ ∈ Γ0,
the functional I admits two distinct critical points.

Lemma 5.2. The following assumptions hols.

(a0) Let hypotheses (m0) and (m1) be satisfied. Then, the functional J defined by

J(u) = m̂
(∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx

)
is bounded from below.

(a1) Let hypothesis ( f1) be satisfied. Then, there exists λ0 > 0 such that

sup
u∈J−1((−∞,1))

φ(u) <
1
λ0
,

where φ(u) =
∫
Ω

F(x,u)dx.

(a2) The functional I = J − λφ is unbounded from below, for all λ > 0.

Proof. Using (m0) and (m1), we obtain

J(u) = m̂
(∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx

)
≥

m∗

µp+

∫
Ω

(|∆u|p(x) + d(x)|u|p(x))dx

≥
m∗

µp+
ρd(u).

According to Proposition 2.5(4), we deduce that J is coercive. Consequently, J is bounded from below.
To check (a1) we are going to use ( f1) and Proposition 2.5. Thus, we can find a positive constant c8 such that

φ(u) =
∫
Ω

F(x,u)dx

≤ C
∫
Ω

(
|u| +

1
s(x)
|u|s(x)

)
dx

≤ c8∥u∥d + c8 max{∥u∥s
+

d , ∥u∥
s−
d }.

(19)

On the other hand, for all u ∈ J−1((−∞, 1)), according to (m0) − (m1) and Proposition 2.5, we find

µp+ ≥ µp+ J(u) = µp+m̂
(∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx

)
≥

m∗µp+

µp+

∫
Ω

(|∆u|p(x) + d(x)|u|p(x))dx

≥ m∗ρd(u)

≥ m∗∥un∥
q
d.

where q = p− or q = p+. Hence,

∥u∥d ≤ c9 := max
{(µp+

m∗

) 1
p−

,

(
µp+

m∗

) 1
p+ }
.
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In view of (19), we have

sup
u∈J−1((−∞,1))

φ(u) ≤ c8c9 + c8 max{cs+
9 , c

s−
9 } (20)

Let us denote
λ0 = c8c9 + c8 max{cs+

9 , c
s−
9 }.

Then, from (20), one yields

sup
u∈J−1((−∞,1))

φ(u) ≤
1
λ0
<

1
λ
,

this finished the proof item (a1).
Now, we are going to show the proof of the lemma. For this, let ϕ ∈ X \ {0} and l > 1 be large enough. Then, using

the same arguments as in (18), we can infer that

I(lϕ)→ −∞, as l→ +∞.

Consequently, I is unbounded from below.

Now, we continue with the proof of Theorem 1.3. Let A = J, B = φ and η = 1. In view of the definition of J and
φ, we have J(0) = φ(0) = 0. According to Lemma 3.3, I satisfies the (C)- condition. To apply Theorem 5.1, it suffices
to use Lemma 5.2.

Since all assumptions of Theorem 5.1 are satisfied. Then, for all λ ∈ (0, λ0) ⊂ Γ0, the problem (1) admits at least
two distinct weak solutions in X.

6. Proof of Theorem 1.4

Let X be a real, reflexive, and separable Banach space, then there exist ( f j) j∈N ⊂ X and ( f ∗j ) j∈N ⊂ X∗ such that

X = span{ f j : j = 1, 2, ...}, X∗ = span{ f ∗j : j = 1, 2, ...},

and
〈

f ∗i , f j

〉
= 1 if i = j,

〈
f ∗i , f j

〉
= 0 if i , j.

We denote X j = span{ f j}, Yk =
k⊕

j=1
X j and Zk =

+∞⊕
j=k

X j.

Theorem 6.1. (See [32] ) Let I ∈ C1(X,R) be an even functional and fulfills the (C)−condition. For every k ∈ N,
there exists γk > ηk > 0 such that

(A1) bk := inf{I(u) : u ∈ Zk, ∥u∥ = ηk} → +∞ as k→ +∞.

(A2) ck := max{I(u) : u ∈ Yk, ∥u∥ = γk} ≤ 0.

Then, I has a sequence of critical values tending to +∞.

Lemma 6.2. (See [13]) For s ∈ C+(Ω) such that s(x) < p∗2(x) for all x ∈ Ω. Then, lim
k→+∞

δk = 0, where δk = sup{|u|s(x) :

∥u∥ = 1,u ∈ Zk}.

Lemma 6.3. (See [13]) For all s ∈ C+(Ω) and u ∈ Ls(x)(Ω), there exists y ∈ Ω such that∫
Ω

|u|s(x) dx = |u|s(y)
s(x) . (21)
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Now, we continue with the proof of Theorem 1.4. To this end, based on the fountain Theorem 6.1, we will show that the
problem (1) possesses infinitely many of solutions with unbounded energy. Evidently, according to ( f5), I is an even
functional. By Lemma 3.3, we know that I satisfies the (C)-condition. Then, to prove Theorem 1.4, it only remains to
verify the following assertions:

(A1) bk := inf{I(u) : u ∈ Zk, ∥u∥d = ηk} → +∞ as k→ +∞;

(A2) ck := max{I(u) : u ∈ Yk, ∥u∥d = γk} ≤ 0.

To prove (A1), we are going to take u ∈ Zk such that ∥u∥d = ηk > 1. It follows from (m0), (m1), ( f1), Proposition
2.5 and Lemma 6.3 that

I(u) = m̂
(∫
Ω

|∆u|p(x) + d(x)|u|p(x)

p(x)
dx

)
− λ

∫
Ω

F(x,u)dx

≥
m∗

µp+
∥u∥p

−

d − λC
∫
Ω

|u| dx − λC
∫
Ω

|u|s(x)

s(x)
dx

≥
m∗

µp+
∥u∥p

−

d − λc8∥u∥d −
λC
s−
|u|s(y)

s(x) .

On the other hand, by Lemma 6.2,

|u|s(y)
s(x) ≤


1 if |u|s(x) ≤ 1

(δk∥u∥d)s+ if |u|s(x) > 1.

Hence,

I(u) ≥
m∗

µp+
∥u∥p

−

d − λc8∥u∥d −
λC
s−

(δk∥u∥d)s+
−
λC
s−

≥ ∥u∥p
−

d

[
m∗

µp+
− λc8∥u∥

1−p−

d −
λC
s−
δs+

k ∥u∥
s+−p−

d −
λC
s−
∥u∥−1

d

]
.

Let us fix ∥u∥d = ηk = δ−1
k . Then, we obtain

I(u) ≥ δ−p−

k

[
m∗

µp+
− λc8δ

p−−1
k −

λC
s−
δp+

k −
λC
s−
δk

]
.

Since 1 < p− < s+ and δk → 0 as k→ +∞, we conclude that ηk → +∞ as k→ +∞. Finally, I(u)→ +∞ as k→ +∞.
Therefore, (A1) holds.

To prove (A2), let us suppose by contradiction that (A2) is not fulfilled for some given k, that is, then there exists a
sequence (un) in Yk such that

∥un∥d → +∞ and I(un) ≥ 0. (22)

Put vn =
un

∥un∥d
, then ∥vn∥d = 1. Because Yk has finite dimension, there exists v ∈ Yk \ {0} such that up to a

subsequence,
∥vn − v∥d → 0 and vn(x)→ v(x) a.e. in Ω.

If v(x) , 0, then |un(x)| → +∞. Hence, from ( f3), we have

lim
n→+∞

F(x,un(x))

∥un∥
µp+

d

= lim
n→+∞

F(x,un(x))
|un(x)|µp+ |vn(x)|µp+ = +∞,
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for all x ∈ Θ = {x ∈ Ω : v(x) , 0}. Then, by Fatou’s Lemma,

+∞ =

∫
Θ

lim inf
n→+∞

F(x,un(x))

∥un∥
µp+

d

 dx ≤ lim sup
n→+∞

∫
Θ

F(x,un(x))

∥un∥
µp+

d

dx. (23)

Consequently, by Lemma 3.2, for ∥un∥d > 1, we get

I(un) = m̂
(∫
Ω

|∆un|
p(x) + d(x)|un|

p(x)

p(x)
dx

)
− λ

∫
Ω

F(x,un)dx

≤ m̂
(

1
p−

∫
Ω

(|∆un|
p(x) + d(x)|un|

p(x))dx
)
− λ

∫
Θ

F(x,un)dx

≤ m̂(1)
(
1 +

1
(p−)µ

(∫
Ω

(|∆un|
p(x) + d(x)|un|

p(x))dx
)µ)
− λ

∫
Θ

F(x,un)dx

≤ m̂(1)

1 +
∥un∥

µp+

d

(p−)µ

 − λ∫
Θ

F(x,un)dx.

Using (23), we can deduce that

lim sup
n→+∞

I(un)

∥un∥
µp+

d

≤ lim sup
n→+∞

m̂(1)∥un∥
−µp+

d +
1

(p−)µ
− λ

∫
Θ

F(x,un)

∥un∥
µp+

d

dx

 = −∞.
which contradiction to (22). Finally, the assertion (A2) is also valid. This completes the proof.
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