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The core inverse of the sum in a ring with involution
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Abstract. We present a necessary and sufficient condition under which the sum of two commuting core
invertible elements in a *-ring is core invertible. As applications, we establish various conditions under
which a block complex matrix with core invertible subblocks is core invertible.

1. Introduction

An involution of a ring R is an anti-automorphism whose square is the identity map 1. Thus an
involution of a ring R is an operation ∗ : R→ R such that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x for all
x, y ∈ R. A ring R with involution ∗ is called a *-ring.

Let R be a *-ring. An element a in R has group inverse provided that there exists x ∈ R such that

xa2 = a, ax2 = x, ax = xa.

Such x is unique if it exists, denoted by a#, and called the group inverse of a. As is well known, an element
a ∈ R has group inverse if and only if it is strongly regular (i.e., Abelian regular). A square complex matrix
A has group inverse if and only if rank(A) = rank(A2). Group invertibility was extensively studied in ring,
matrix and operator theory (see [2, 6, 12, 13, 21]).

An element a ∈ R has core inverse if there exists some x ∈ R such that

xa2 = a, ax2 = x, (ax)∗ = ax.

If such x exists, it is unique, and denote it by a #O.
Core inverse for complex matrices was firstly introduced by Baksalary and Trenkler in [1]. An element

a ∈ R has (1, 3)-inverse provided that there exists some x ∈ R such that a = axa and (ax)∗ = ax. We denote x
by a(1,3). We list several characterizations of core inverse in a *-ring.

Theorem 1.1. (see [6, Theorem 2.8], [6, Theorem 2.14], [7, Theorem 3.4] and [18, Theorem 2.6]). Let R be a *-ring,
and let a ∈ R. Then the following are equivalent:

(1) a has core inverse.
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(2) There exists x ∈ R such that axa = a, x = xax, xa2 = a, ax2 = x, (ax)∗ = ax.
(3) There exists x ∈ R such that axa = a and aR = xR = x∗R.
(4) There exists some p2 = p = p∗ ∈ R such that pa = 0 and a + p ∈ R is invertible.
(5) a ∈ R has group inverse and Ra = Ra∗a.
(6) a ∈ R has group inverse and a ∈ R has (1, 3)-inverse.

In this case, a #O = x = a#aa(1,3).

The core invertibility in a *-ring is attractive. Many authors have studied such problems from many
different views, e.g., [1, 3, 6, 8–11, 16, 18, 22].

In [18, Theorem 4.3], Xue, Chen and Zhang proved that a + b ∈ R has core inverse under the conditions
ab = 0 and a∗b = 0 for two core invertible elements a and b in R.

In [21, Theorem 4.1], Zhou et al. considered the core inverse of a + b under the conditions a2a #Ob #Ob =
baa #O, ab #Ob = aa #Ob in a Dedekind-finite ring in which 2 is invertible.

In this paper, we present a new additive result for the core inverse in a ring with involution. We give a
necessary and sufficient condition under which the sum of two commuting core invertible elements is core
invertible.

Let Cn×n be a *-ring of n × n complex matrices, with conjugate transpose as the involution. A matrix
A ∈ Cn×n has core inverse X if and only if AX = PA and R(X) ⊆ R(A), where PA is the projection on the
range space R(A) of A (see [1, Definition 1]). As applications, we establish various conditions under which
a block complex matrix with core invertible subblocks is core invertible.

Throughout the paper, all *-rings are associative with an identity. An element p ∈ R is a projection
provided that p2 = p = p∗. Let a ∈ R# and aπ = 1 − aa#. Let p2 = p ∈ R, and let x ∈ R. We write
x = pxp + px(1 − p) + (1 − p)xp + (1 − p)x(1 − p), and induce a Pierce representation given by the matrix

x =
(

pxp px(1 − p)
(1 − p)xp (1 − p)x(1 − p)

)
p
. We use R# and R #O to denote the sets of all group and core invertible

elements in R, respectively. A∗ stands for the conjugate transpose A
T

of the complex matrix A.

2. The main result

We begin with some elementary results which will be repeatedly used in the next sequel.

Lemma 2.1. (see [5, Corollary 3.4])) Let a, b ∈ R #O. If ab = ba and a∗b = ba∗, then a #Ob = ba #O.

Lemma 2.2. Let a ∈ R #O and b ∈ R. Then the following are equivalent:

(1) (1 − a #Oa)b = 0.
(2) (1 − aa #O)b = 0.
(3) (1 − aa#)b = 0.

Proof. (1)⇔ (2) See [16, Lemma 2.4].
(1)⇒ (3) Since (1 − a #Oa)b = 0, we have b = a #Oab = a#aa(1,3)ab = a#ab. Then (1 − aa#)b = 0, as required.
(3)⇒ (1) Since (1 − aa#)b = 0, we have b = aa#b = a#aa(1,3)ab = a #Oab; hence, (1 − a #Oa)b = 0. This completes

the proof.

Lemma 2.3. (see [18, Theorem 4.3]) Let a, b ∈ R #O. If ab = a∗b = 0, then a + b ∈ R #O and (a + b) #O = bπa #O + b #O.

Lemma 2.4. (see [5, Theorem 3.5])) Let a, b ∈ R #O. If ab = ba and a∗b = ba∗, then ab ∈ R #O and (ab) #O = a #Ob #O.

We are ready to prove:

Theorem 2.5. Let a, b ∈ R #O. If ab = ba and a∗b = ba∗, then the following are equivalent:

(1) a + b ∈ R #O and aπ(a + b) #Oa = 0.
(2) 1 + a #Ob ∈ R #O and (1 + a #Ob)πa(1 − aa #O) = 0.
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Proof. (1)⇒ (2) Since ab = ba and a∗b = ba∗, it follows by Lemma 2.1 that a #Ob = ba #O. We observe that

1 + a #Ob = (1 − aa #O) + (aa #O + a #Ob)
= (1 − aa #O) + (aa #O + ba #O)
= (1 − aa #O) + (a + b)a #O

Let p = aa #O. Obviously, pπ(a + b)p = 0. Then

a + b =
(

p(a + b)p p(a + b)pπ

0 pπ(a + b)pπ

)
p
.

Since (1−aa#)(a+b) #Oa = 0, by using Lemma 2.2, (1−aa #O)(a+b) #Oa = 0. Then pπ(a+b) #Op = [(1−aa #O)(a+b) #Oa]a #O = 0.
Thus, we have

(a + b) #O =

(
α β
0 γ

)
p
.

Set x = a + b, c1 = p(a + b)p and x1 = α. In light of Theorem 1.1, we have

x = xx #Ox, (xx #O)∗ = xx #O, x #Ox2 = x, x(x #O)2 = x #O.

Hence, c1 = c1x1c1, (c1x1)∗ = c1x1, x1c2
1 = c1, c1x2

1 = x1. Therefore c1 = aa#(a+ b)aa#
∈ R #O and [p(a+ b)p] #O = c #O

1 =
x1 = α. Thus, (a + b)aa #O

∈ R #O. We easily check that

[(a + b)aa #O]a #O = a2[a #O]2 + ba[a #O]2

= aa #O + ba #O

= aa #O + b(a #Oaa #O)
= [a #Oa2]a #O + a #O(baa #O)
= a #O[(a + b)aa #O].

In view of [16, Lemma 2.1], (a + b)a #O = [(a + b)aa #O]a #O
∈ R#. Set y = [(a + b)aa #O] #O. Then

(a + b)aa #O = (a + b)aa #Oy(a + b)aa #O, [(a + b)aa #Oy]∗ = (a + b)aa #Oy.

We verify that
[(a + b)a #O](a2a #Oy)[(a + b)a #O]

= [(a + b)aa #O]y[(a + b)aa #O]a #O

= [(a + b)aa #O] #O

= (a + b)a #O

and
[(a + b)a #O(a2a #Oy)]∗

= [(a + b)aa #Oy]∗

= (a + b)aa #Oy
= (a + b)a #O(a2a #Oy).

Therefore (a + b)a #O has (1, 3)-inverse a2a #Oy. By virtue of Theorem 1.1, (a + b)a #O
∈ R #O. Obviously, we have

(1 − aa #O)(a + b)a #O = (1 − aa #O)∗(a + b)a #O = 0.

According to Lemma 2.3, 1 + a #Ob ∈ R #O.
Since (a + b)(a + b) #O(a + b) = a + b, we have

p(a + b)pπ = p(a + b)pαp(a + b)pπ + [p(a + b)pβ + p(a + b)pπγ]pπ(a + b)pπ.

Moreover, we have [(a + b)(a + b) #O]∗ = (a + b)(a + b) #O, we have

p(a + b)pβ + p(a + b)pπγ = 0.
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Then
p(a + b)pπ = p(a + b)pαp(a + b)pπ,

and then [p(a + b)p]πp(a + b)pπ = [p(a + b)p]π[p(a + b)]pαp(a + b)pπ = 0. It is easy to verify that

(a2a #O)a #O = aa #O = a #O(a2a #O),
a #O(a2a #O)a #O = a #O(aa #O) = a #O,

(a2a #O)a #O(a2a #O) = (aa #O)(a2a #O) = a2a #O.

Thus [a2a #O]# = a #O. Since p(a + b)p = a2a #O + baa #O = (1 + a #Ob)a2a #O, we have

[p(a + b)p]# = (1 + a #Ob)#(a2a #O)# = (1 + a #Ob)#a #O.

Hence,
[p(a + b)p]π

= 1 − [p(a + b)p][p(a + b)p]#

= 1 − [(1 + a #Ob)a2a #O][(1 + a #Ob)#a #O]
= 1 − [(1 + a #Ob)(1 + a #Ob)#][a2a #Oa #O]
= 1 − (1 + a #Ob)(1 + a #Ob)# + (1 + a #Ob)(1 + a #Ob)#(1 − aa #O)
= (1 + a #Ob)π + (1 + a #Ob)(1 + a #Ob)#(1 − aa #O).

Thus we check that
(1 + a #Ob)πa(1 − aa #O)

= (1 + a #Ob)πaa #Oa(1 − aa #O)
= [p(a + b)p]πaa #O(a + b)(1 − aa #O)
= [p(a + b)p]πp(a + b)pπ

= 0.

Therefore (1 + a #Ob)πa(1 − aa #O) = 0.
(2)⇒ (1) Let z = (1 + a #Ob) #O. Then we verify that

[(1 + a #Ob)a][a #Oz][(1 + a #Ob)a]
= aa #O[(1 + a #Ob)z(1 + a #Ob)]a
= aa #O(1 + a #Ob)a
= (1 + a #Ob)a.

Since (1 + a #Ob)aa #O = aa #O(1 + a #Ob) and (aa #O)∗ = aa #O, we have

aa #O(1 + a #Ob)∗ = (1 + a #Ob)∗aa #O.

In light of Lemma 2.1, we get aa #Oz = zaa #O.
Step 1. By the argument above, a2a #O

∈ R#. In view of Theorem 1.1, 1 + a #Ob ∈ R#. Since

(1 + a #Ob)a2a #O

= a2a #O + b(a #Oa2)a #O

= (a + b)aa #O

= a2a #O + aa #Ob
= a2a #O(1 + a #Ob),

it follows by [16, Lemma 2.1] that (1 + a #Ob)a2a #O
∈ R# and

[(a + b)aa #O]π

= [(1 + a #Ob)a2a #O]π

= 1 − (1 + a #Ob)a2a #O(1 + a #Ob)#a #O

= 1 − (1 + a #Ob)(1 + a #Ob)#aa #O.
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Step 2. We check that
[(1 + a #Ob)a2a #O](a #Oz)

= [(1 + a #Ob)z](aa #O).

Hence,
[(1 + a #Ob)a2a #O(a #Oz)]∗

= (aa #O)∗[(1 + a #Ob)z]∗

= (aa #O)[(1 + a #Ob)z]
= [(1 + a #Ob)z](aa #O)
= [(1 + a #Ob)a2a #O](a #Oz).

So (1 + a #Ob)a2a #O has a (1, 3) inverse a #Oz.
Accordingly, (a + b)aa #O = (1 + a #Ob)a2a #O

∈ R #O. Let p = aa #O. Then pπbp = (1 − aa #O)baa #O = (1 − aa #O)aba #O = 0.
Similarly, pbpπ = 0. So we get

a =
(

a1 a2
0 0

)
p
, b =

(
b1 0
0 b4

)
p
.

Hence

a + b =
(

a1 + b1 a2
0 b4

)
p
.

Here a1 + b1 = a(a #Oa2)a #O + aa #Obaa #O = a2a #O + b(aa #O)2 = (a+ b)aa #O, b4 = pπ(a+ b)pπ = bpπ. Since bpπ = pπb, b∗pπ =
(pπb)∗ = (bpπ)∗ = pπb∗. In light of Lemma 2.4, b4 = bpπ ∈ R #O and b #O

4 = b #Opπ.
Let

x =
(

(a1 + b1) #O
−(a1 + b1) #Oa2b #O

4
0 b #O

4

)
p
.

Since (1 + a #Ob)πa(1 − aa #O) = 0, we verify that

a2 − (a1 + b1)(a1 + b1) #Oa2
= [1 − (a1 + b1)(a1 + b1) #O]aa #Oa(1 − aa #O)
= [1 − (1 + a #Ob)(1 + a #Ob)#aa #O]aa #Oa(1 − aa #O)
= (1 + a #Ob)πa(1 − aa #O)
= 0.

That is, (a1 + b1)πa2 = 0. In view of [12, Theorem 2.1], a + b ∈ R# and

(a + b)# =

(
(a1 + b1)#

∗

0 (b4)#

)
p
.

Then we we have
(a + b)x

=

(
a1 + b1 a2

0 b4

)
p

(
(a1 + b1) #O

−(a1 + b1) #Oa2b #O

4
0 b #O

4

)
p

=

(
(a1 + b1)(a1 + b1) #O 0

0 b4b #O

4

)
p
.

Hence [(a + b)x]∗ = (a + b)x. We further verify that

(a + b)x(a + b)

=

(
(a1 + b1)(a1 + b1) #O 0

0 b4b #O

4

)
p

(
a1 + b1 a2

0 b4

)
p

= a + b.

Thus a + b ∈ R(1,3). According to Theorem 1.1, a + b has core inverse.



H. Chen, M. Sheibani Abdolyousefi / Filomat 38:26 (2024), 9203–9211 9208

Moreover, we have

(a + b) #O

= (a + b)#(a + b)x

=

(
(a1 + b1)#

∗

0 (b4)#

)
p

(
(a1 + b1)(a1 + b1) #O 0

0 b4b #O

4

)
p

=

(
∗ ∗

0 ∗

)
p
.

We infer that pπ(a + b) #Oa = pπ(a + b) #Opa = 0. In light of Lemma 2.2, aπ(a + b) #Oa = 0, as asserted.

An element a ∈ R has dual core inverse if there exists some x ∈ R such that

a2x = a, x2a = x, (xa)∗ = xa.

If such x exists, it is unique, and denote it by a #O (see [7]).

Corollary 2.6. Let a, b ∈ R #O. If ab = ba and a∗b = ba∗, then the following are equivalent:

(1) a + b ∈ R #O and a(a + b) #Oaπ = 0.
(2) 1 + a #Ob ∈ R #O and (1 − aa #O)a(1 + a #Ob)π = 0.

Proof. Since x ∈ R has dual core if and only if x∗ ∈ R has core inverse and x #O = (x∗) #O. In view of Lemma 2.1,
we have a #Ob = ba #O. Therefore we complete the proof by Theorem 2.5.

Recall that a ∈ R is EP, if there exists x ∈ R such that xa2 = a, ax = xa, (ax)∗ = ax. Evidently, a ∈ R is EP if
and only if a ∈ R #O and a #O = a# if and only if a ∈ R #O and (aa#)∗ = aa# if and only if a ∈ R #O

⋂
R #O and a #O = a #O

(see [14, 15, 17]). We now derive

Corollary 2.7. Let a, b ∈ R be EP. If ab = ba and a∗b = ba∗, then the following are equivalent:

(1) a + b ∈ R is EP.
(2) 1 + a#b ∈ R is EP.

Proof. (1) ⇒ (2) Since a + b ∈ R is EP, a + b ∈ R #O and (a + b) #O = (a + b)#. As a ∈ R is EP, a #O = a#. Clearly,
a(a + b) = (a + b)a, and so a#(a + b) = (a + b)a#. Write 1 + a#b = a1 + a2, where a1 = 1 − aa #O and a2 = (a + b)a #O

In view of Lemma 2.1, we have a1, a2 ∈ R #O. Obviously, a1a2 = a2a1 = a∗1a2 = 0. In light of [18, Theorem 4.3],
a1 + a2 ∈ R #O. By virtue of [2, Theorem 2.1], we have (1 + a#b)# = a#

1 + a#
2. Hence,

(1 + a#b)(1 + a#b)# = (a1 + a2)(a#
1 + a#

2)
= (a1 + a2)(a#

1 + a#
2)

= a1a#
1 + (a1a2)(a#

2)2 + (a2a1)(a#
1)2 + a2a#

2
= a1a#

1 + a2a#
2

= (1 − aa #O) + (a + b)(a + b) #Oaa #O,

and then [(1 + a#b)(1 + a#b)#]∗ = (1 + a#b)(1 + a#b)#. Therefore 1 + a#b ∈ R is EP, as required.
(2) ⇒ (1) Since a ∈ R is EP, a ∈ R #O and a #O = a#. Then (1 + a #Ob)πa(1 − aa #O) = 0. In light of Theorem 2.5,

a + b ∈ R #O. One easily checks that
a + b = a(1 + a#b) + (1 − aa#)b.

By hypothesis, we see that a(1 + a#b), (1 − aa#)b ∈ R# and a(1 + a#b)(1 − aa#)b = (1 − aa#)ba(1 + a#b) = 0.
According to [2, Theorem 2.1], we have

(a + b)# = a#(1 + a#b)# + (1 − aa#)b#.

Hence,
(a + b)(a + b)# = aa#(1 + a#b)(1 + a#b)# + (1 − aa#)bb#

= aa #O(1 + a#b)(1 + a#b) #O + (1 − aa #O)bb #O.

Then [(a + b)(a + b)#]∗ = (a + b)(a + b)#, thus yielding the result.
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3. Applications

Let A,B,C,D ∈ Cn×n have core inverses and M =
(

A B
C D

)
. The aim of this section is to present the core

invertibility of the block complex matrix M by using the core invertibility of its subblocks.

Lemma 3.1. If B(CB)π = 0 and C(BC)π = 0, then
(

0 B
C 0

)
has core inverse. In this case,

Q #O =

(
0 (BC)#BCC #O

(CB)#CBB #O 0

)
.

Proof. Let Q =
(

0 B
C 0

)
. Then (CB)(CB)D = (CB)D(CB), (CB)D = (CB)D(CB)(CB)D. Since B(CB)π = 0, we

have CB(CB)π = 0. Hence CB has group inverse. Likewise, BC has group inverse. One directly checks that

Q# =

(
0 B(CB)#

C(BC)# 0

)
.Moreover, we verify that

Q
(

0 In
In 0

) (
B #O 0
0 C #O

)
Q

=

(
0 BB #OB

CC #OC 0

)
= Q;

(Q
(

0 In
In 0

) (
B #O 0
0 C #O

)
)∗

=

(
BB #O 0

0 CC #O

)∗
= Q

(
0 In
In 0

) (
B #O 0
0 C #O

)
.

This implies that Q has (1, 3)-inverse. In light of [16, Lemma 2.1], Q has core inverse. In this case,

Q #O = Q#QQ(1,3)

=

(
0 B(CB)#

C(BC)# 0

) (
BB #O 0

0 CC #O

)
=

(
0 B(CB)#CC #O

C(BC)#BB #O 0

)
=

(
0 (BC)#BCC #O

(CB)#CBB #O 0

)
,

as asserted.

We are now ready to prove:

Theorem 3.2. If AB = BD,DC = CA,A∗B = BD∗,D∗C = CA∗,B(CB)π = 0 and C(BC)π = 0 and A #OBD #OC is
nilpotent, then M has core inverse.

Proof. Write M = P +Q, where

P =
(

A 0
0 D

)
,Q =

(
0 B
C 0

)
.

Since A and D have core inverses, so has P, and that

P #O =

(
A #O 0
0 D #O

)
.
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In view of Lemma 3.1, Q has core inverse. We easily check that

PQ =
(

0 AB
DC 0

)
=

(
0 BD

CA 0

)
= QP.

Likewise, we verify that P∗Q = QP∗. Moreover, we check that

I2n + P #OQ =

(
In A #OB

D #OC In

)
.

It is easy to verify that (
In A #OB

D #OC In

)
=

(
In − A #OBD #OC A #OB

0 In

) (
In 0

D #OC In

)
.

Since A #OBD #OC is nilpotent, we see that In − A #OBD #OC is invertible, and so
(

In A #OB
D #OC In

)
is invertible. This

implies that I2n + P #OQ has core inverse. Additionally, (I2n + P #OQ)π = 0. According to Theorem 2.5, M has
core inverse, as asserted.

Theorem 3.3. If AB = BD,DC = CA,B∗A = DB∗,C∗D = AC∗,B(CB)π = 0 and C(BC)π = 0 and A #OBD #OC is
nilpotent, then M has core inverse.

Proof. Write M = P +Q, where

P =
(

A 0
0 D

)
,Q =

(
0 B
C 0

)
.

Then we check that

Q∗P =

(
0 C∗

B∗ 0

) (
A 0
0 D

)
=

(
0 C∗D

B∗A 0

)
=

(
0 AC∗

DB∗ 0

)
=

(
A 0
0 D

) (
0 C∗

B∗ 0

)
= PQ∗.

Similarly, QP = PQ. Further, we verify that

I2n +Q #OP = I2n +

(
0 (BC)#BCC #O

(CB)#CBB #O 0

) (
A 0
0 D

)
=

(
In (BC)#BCC #OD

(CB)#CBB #OA In

)
.

Since A #OBD #OC is nilpotent, we prove that I2n + Q #OP is invertible; hence, it has core inverse. Additionally,
(I2n +Q #OP)π = 0. In light of Theorem 2.5, M has core inverse, as required.
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[12] N. Mihajlović and D.S. Djordjević, On Group invertibility in rings, Filomat, 33(2019), 6141–6150.
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