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The core inverse of the sum in a ring with involution
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Abstract. We present a necessary and sufficient condition under which the sum of two commuting core

invertible elements in a *-ring is core invertible. As applications, we establish various conditions under
which a block complex matrix with core invertible subblocks is core invertible.

1. Introduction

An involution of a ring R is an anti-automorphism whose square is the identity map 1. Thus an
involution of a ring R is an operation * : R — R such that (x + y)* = x* + v, (xy)* = y*x" and (x*)* = x for all
x,y € R. A ring R with involution * is called a *-ring.

Let R be a *-ring. An element a in R has group inverse provided that there exists x € R such that
xa* = a,ax* = x,ax = xa.

Such x is unique if it exists, denoted by a*, and called the group inverse of a. As is well known, an element
a € R has group inverse if and only if it is strongly regular (i.e., Abelian regular). A square complex matrix

A has group inverse if and only if rank(A) = rank(A?). Group invertibility was extensively studied in ring,
matrix and operator theory (see [2, 6, 12, 13, 21]).

An element a € R has core inverse if there exists some x € R such that

xa® = a,ax’ = x, (ax)* = ax.

If such x exists, it is unique, and denote it by a®.

Core inverse for complex matrices was firstly introduced by Baksalary and Trenkler in [1]. An element
a € R has (1, 3)-inverse provided that there exists some x € R such that a = axa and (ax)" = ax. We denote x
by a1¥. We list several characterizations of core inverse in a *-ring.

Theorem 1.1. (see [6, Theorem 2.8], [6, Theorem 2.14], [7, Theorem 3.4] and [18, Theorem 2.6]). Let R be a *-ring,
and let a € R. Then the following are equivalent:

(1) a has core inverse.
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(2) There exists x € R such that axa = a, x = xax, xa> = a,ax* = x, (ax)* = ax.

(3) There exists x € R such that axa = a and aR = xR = x*R.
(4) There exists some p? = p = p* € R such that pa = 0 and a + p € R is invertible.
(5) a € R has group inverse and Ra = Ra"a.
(6) a € R has group inverse and a € R has (1, 3)-inverse.
In this case, a® = x = a*aa1?).

The core invertibility in a *-ring is attractive. Many authors have studied such problems from many
different views, e.g., [1, 3, 6, 8-11, 16, 18, 22].

In [18, Theorem 4.3], Xue, Chen and Zhang proved that a + b € R has core inverse under the conditions
ab = 0 and a'b = 0 for two core invertible elements 4 and b in R.

In [21, Theorem 4.1], Zhou et al. considered the core inverse of a + b under the conditions a?a®b®b =
baa®, ab®b = aa®b in a Dedekind-finite ring in which 2 is invertible.

In this paper, we present a new additive result for the core inverse in a ring with involution. We give a
necessary and sufficient condition under which the sum of two commuting core invertible elements is core
invertible.

Let C™" be a *-ring of n X n complex matrices, with conjugate transpose as the involution. A matrix
A € C™" has core inverse X if and only if AX = P4 and R(X) € R(A), where P4 is the projection on the
range space R(A) of A (see [1, Definition 1]). As applications, we establish various conditions under which
a block complex matrix with core invertible subblocks is core invertible.

Throughout the paper, all *-rings are associative with an identity. An element p € R is a projection
provided that p> = p = p*. Leta € R* and a™ = 1 —aa*. Letp?> = p € R, and let x € R. We write
x=pxp+px(1—p)+ (1 -pxp+ (1 -px(l-p),and induce a Pierce representation given by the matrix
c=| P px(1=p)

=l aspw a-pxa-p p. We use R* and R® to denote the sets of all group and core invertible

—T
elements in R, respectively. A* stands for the conjugate transpose A of the complex matrix A.

2. The main result
We begin with some elementary results which will be repeatedly used in the next sequel.
Lemma 2.1. (see [5, Corollary 3.4])) Let a,b € R®. If ab = ba and a*b = ba", then a®b = ba®.
Lemma 2.2. Leta € R® and b € R. Then the following are equivalent:
(1) (1 —a®a)b =0.
(2) 1 —-aa®)b =0.
(3) (1 —aa*)b =0.

Proof. (1) & (2) See [16, Lemma 2.4].

(1) = (3) Since (1 — a®a)b = 0, we have b = a®ab = a*aa"?ab = a*ab. Then (1 — aa*)b = 0, as required.

(3) = (1) Since (1 — aa*)b = 0, we have b = aa*b = a*aa"3ab = a®ab; hence, (1 — a®a)b = 0. This completes
the proof. [

Lemma 2.3. (see [18, Theorem 4.3]) Let a,b € R®. Ifab = a*b =0, then a + b € R® and (a + b)® = b"a® + b®.

Lemma 2.4. (see [5, Theorem 3.5])) Let a,b € R®. If ab = ba and a*b = ba*, then ab € R® and (ab)® = a®b®.
We are ready to prove:

Theorem 2.5. Leta,b € R®. If ab = ba and a*b = ba*, then the following are equivalent:

(1) a+ b e R®and a™(a + b)%a = 0.
(2) 1+a® € R® and (1 + a®b)"a(1 — aa®) = 0.
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Proof. (1) = (2) Since ab = ba and a*b = ba’, it follows by Lemma 2.1 that a®b = ba®. We observe that

1+a®b (1 — aa®) + (aa® + a®b)
(1 — aa®) + (aa® + ba®)

(1 — aa®) + (a + b)a®

Let p = aa®. Obviously, p™(a + b)p = 0. Then

_( pla+bp pla+bp”
a+b—( 0 p™(a+b)p™ )p

Since (1—aa")(a+b)®a = 0, by using Lemma 2.2, (1—aa®)(a+b)®a = 0. Thenp™(a+b)®p = [(1—aa®)(a+b)®ala® = 0.

Thus, we have
o_[ @ P
(a+Db) —( 0 y )p.

Setx =a+b,c; =p(a+b)pand x; = a. Inlight of Theorem 1.1, we have
x = xx®x, (xx®) = xx®, ¥¥x% = x, x(x?)? = x®.

Hence, ¢1 = c1x101, (C121)" = c1x1, X165 = ¢1, ¢1%7 = x1. Therefore ¢; = aa*(a + b)aa* € R® and [p(a + b)p]® = ¢} =
x1 = a. Thus, (a + b)aa® € R®. We easily check that

[(a + b)aa®]a® a?[a®]? + ba[a®]?
aa® + ba®

aa® + b(a®aa®)
[a®a®]a® + a®(baa®)
a®[(a + b)aa®].

In view of [16, Lemma 2.1], (a + b)a® = [(a + b)aa®]a® € R*. Set y = [(a + b)aa®]®. Then
(a + b)aa® = (a + b)aa®y(a + b)aa®, [(a + b)aa®y]" = (a + b)aa®y.

We verify that

[(a + b)a®](@2a®y)[(a + b)a®]
[(a + D)aa®]y[(a + b)aa®]a®
[(a + b)aa®]®

(a + b)a®

and

[(@ + b)a®(a*a®y)I
[(a + b)aa®y]*

(a + b)aa®y

(a + b)a®(aa®y).

Therefore (a + b)a® has (1, 3)-inverse a%a®y. By virtue of Theorem 1.1, (a + b)a® € R®. Obviously, we have
(1 -aa®)(@a + b)a® = (1 — aa®)*(a + b)a® = 0.

According to Lemma 2.3, 1 + a®b € R®.
Since (a + b)(a + b)®(a + b) = a + b, we have

pla+b)p™ = pla+ b)pap(a + b)p™ + [p(a + b)pp + p(a + L)p"ylp™(a + bp"™.
Moreover, we have [(a + b)(a + b)®]* = (a + b)(a + b)®, we have

pla+b)pp +pla+bp™y =0.
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Then
p@+bp™ = pla +bjpap(a + b)p",
and then [p(a + b)p]™p(a + b)p™ = [p(a + b)p]™[p(a + b)lpap(a + b)p™ = 0. It is easy to verify that

(@%a®)a® = aa® = a®(a*a®),
a®@*a®)a® = a®(aa®) = a®,
(@%a®)a®(@%a®) = (aa®)(a’a®) = a’a®.

Thus [a?a®]* = a®. Since p(a + b)p = a*a® + baa® = (1 + a®b)a’a®, we have

[p(a + b)p]* = (1 + a®b)*(@*a®)* = (1 + a®b)*a®.

Hence,
[p(a + b)pl™
= 1-[p(a+b)pllp(a + b)pl*
= 1-[(1 +a®b)a®a®][(1 + a®b)*a®]
= 1-[(1+a®b)(1 + a®b)*][a%a®a®]
= 1-(1+a®h)(1 +a®b)* + (1 +a®b)(1 + a®b)*(1 — aa®)
= (14a®b)™ + (1 +a®b)(1 + a®b)*(1 — aa®).
Thus we check that

(1+a®b)"a(1 — aa®)

(1 + a®b)"aa®a(1 — aa®)

[pa + b)p]"aa®(a + b)(1 — aa®)
[p(a + b)p]"p(a + b)p™

0.

Therefore (1 + a®b)™a(1 — aa®) = 0.
(2) = (1) Let z = (1 + a®b)®. Then we verify that

[(1 + a®b)a][a®z][(1 + a®b)a]
aa®[(1 + a®b)z(1 + a®b)]a
aa®(1 + a®b)a

(1 + a®b)a.

Since (1 + a®b)aa® = aa®(1 + a®b) and (aa®)* = aa®, we have
aa®(1 + a®b)" = (1 + a®b)*aa®.

In light of Lemma 2.1, we get 2a®z = zaa®.
Step 1. By the argument above, a>a® € R¥. In view of Theorem 1.1, 1 + a®b € R*. Since

(1 + a®b)a’a®
a?a® + b(a®a®)a®
(a + b)aa®

a’a® + aa®b
a%a®(1 + a®b),

it follows by [16, Lemma 2.1] that (1 + a®b)a?a® € R* and

[(a + b)aa®]™

[(1 + a®b)a’a®]™

1— (1 +a®b)a®a®(1 + a®b)*a®
1—(1+a®b)(1 + a®b)*aa®.
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Step 2. We check that
[(1 + a®b)a?a®](a®z)
= [(1 + a®b)z](aa®).

Hence,

[(1 + a®b)a?a®(a®z)]*
(aa®)*[(1 + a®b)z]
(aa®)[(1 + a®b)z]

[(1 + a®b)z](aa®)

[(1 + a®b)a?a®](a®z).

So (1 + a®b)a’a® has a (1, 3) inverse a®z.
Accordingly, (a + b)aa® = (1 + a®b)a*a® € R®. Let p = aa®. Then p"bp = (1 — aa®)baa® = (1 — aa®)aba® = 0.

Similarly, pbp™ = 0. So we get
_ a dp _ bl 0
14 14

_ ﬂ1+b1 ap
u+b—( 0 by )p.

Hence

Here a; + by = a(a®a*)a® + aa®baa® = a*a® + b(aa®)? = (a + b)aa®, by = p™(a + b)p™ = bp™. Since bp™ = p™b, b'p™ =
(p"b) = (bp™)* = p"b". In light of Lemma 2.4, by = bp™ € R® and b] = b®p".

Let
‘= (a1 +b1)® (a1 + b1)®azby .
0 by \

Since (1 + a®b)™a(1 — aa®) = 0, we verify that

az — (a1 + b1)(a1 + b1)®az
= [1=(m1 + b)(@ + b1)®laa®a(l — aa®)
[1=(1+a®b)(1 + a®b)*aa®)aa®a(1 — aa®)
(1 +a®b)"a(1 — aa®)
0.

That is, (a1 + b1)™a = 0. In view of [12, Theorem 2.1],a + b € R¥ and

# *
(Cl + b)# — ( (ﬂl +0b1) (b4)# )p

Then we we have

(a+b)x
[ mt+bh a4 (a1 +b1)®  —(ay + b1)®asby
Lo w0 B )

_ ( (a1 +b)a +b1)® O )
= 5 | -
0 byl )
Hence [(a + b)x]* = (a + b)x. We further verify that

(a+ b)x(a +Db)

_ (@ +b1)@a+01)® O m+b @
- 0 by |\ 0 b))

= a+b.

Thus a + b € R, According to Theorem 1.1, a + b has core inverse.
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Moreover, we have

(a+Db)®
= (a+b)f@a+Db)x
[ @m+b)t x (a1 +b)a +b01)® O
= 0 m) 0 bt ).

“ (o),
P
We infer that p™(a + b)®a = p™(a + b)®pa = 0. In light of Lemma 2.2, a™(a + b)®a = 0, as asserted. [

An element a € R has dual core inverse if there exists some x € R such that

a®’x = a,x’a = x, (xa)" = xa.

If such x exists, it is unique, and denote it by a4 (see [7]).
Corollary 2.6. Leta,b € Ry. If ab = ba and a*b = ba*, then the following are equivalent:

(1) a+beRganda(a+ b)ga™ = 0.

(2) 1+agb € Ry and (1 — aag)a(l + agb)™ = 0.
Proof. Since x € R has dual core if and only if x* € R has core inverse and x4 = (x*)®. In view of Lemma 2.1,
we have a,b = ba,. Therefore we complete the proof by Theorem 2.5. [

Recall that a € R is EP, if there exists x € R such that xa®> = a,ax = xa, (ax)* = ax. Evidently, a € R is EP if
and only if a € R® and a® = 4" if and only if 4 € R® and (aa*)* = aa” if and only if a € R® (R, and a® = a,
(see [14, 15, 17]). We now derive

Corollary 2.7. Leta,b € Rbe EP. If ab = ba and a*b = ba”, then the following are equivalent:

(1) a+ b e RisEP.
(2) 1+a*b € RisEP.

Proof. (1) = (2) Sincea+b € RisEP,a+b € R® and (a + b)® = (a + b)*. Asa € Ris EP, a® = a*. Clearly,
a(a + b) = (a + b)a, and so a*(a + b) = (a + b)a*. Write 1 + a*b = a; + a,, where a; = 1 — aa® and a, = (a + b)a®
In view of Lemma 2.1, we have ay,a, € R®. Obviously, a1a; = axa; = ajay = 0. In light of [18, Theorem 4.3],
a1 + a; € R®. By virtue of [2, Theorem 2.1], we have (1 + a*b)* = a® + a}. Hence,

(1 +a*b)(1 + a*b)* (a1 + ap)(a? + af)

= (m+ ag)(a% +a?)

= awi + () (ah)* + (azm)(a})? + axal
= ma + azag

= (1-aa®)+ (a+Db)(a+ b)%aa®,

and then [(1 + a*b)(1 + a*b)*]* = (1 + a*b)(1 + ab)*. Therefore 1 + a*b € R is EP, as required.
(2) = (1) Since a € R is EP, a € R® and a® = a*. Then (1 + a®b)"a(1 — aa®) = 0. In light of Theorem 2.5,
a+b € R®. One easily checks that
a+b=a(l+a"b)+ (1-aa")b.
By hypothesis, we see that a(1 + a*b), (1 — aa*)b € R* and a(1 + a*b)(1 — aa®)b = (1 — aa*)ba(1 + a*b) = 0.
According to [2, Theorem 2.1], we have

(a+b)* =a*(1 +a*b)* + (1 — aa®)b".

Hence,
(a+b)a+Db)* aa*(1 + a*b)(1 + a*b)* + (1 — aa®)bb*

aa®(1 + a*b)(1 + a*b)® + (1 — aa®)bb®.
Then [(a + b)(a + b)*]* = (a + b)(a + b)*, thus yielding the result. [J
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3. Applications

A B
C D
invertibility of the block complex matrix M by using the core invertibility of its subblocks.

Let A, B,C, D € C™" have core inverses and M = ( ) The aim of this section is to present the core

Lemma 3.1. If B(CB)™ = 0 and C(BC)™ = 0, then ( g g ) has core inverse. In this case,

0 = 0 (BO)*BCC®
~\ (CB)*CBB® 0 ’
Proof. Let Q = g Ig . Then (CB)(CB)P = (CB)’(CB),(CB)P = (CB)P(CB)(CB)P. Since B(CB)™ = 0, we
have CB(CB)™ = 0. Hence CB has group inverse. Likewise, BC has group inverse. One directly checks that

#
Qf = ( C(E?C) “ B(%B) ) Moreover, we verify that

0 I, \(B® 0
o5 )5 &)

~ 0 BB®B
~ \lccee o

= Q;
0 L \(B® 0 \.
Qfn 5% &)
_ (BB 0 Y
0 Cce

B 0 I, B® 0
- o1 §)(% &)
This implies that Q has (1, 3)-inverse. In light of [16, Lemma 2.1], Q has core inverse. In this case,

Q” = Q'QQ"Y
0 B(CB)* BB® 0
C(BC)* 0 0 cco
0 B(CB)*CC®
C(BC)*BB® 0
0 (BC)*BCC®
(CB)*CBB® 0 ’
as asserted. []
We are now ready to prove:

Theorem 3.2. If AB = BD,DC = CA,A’B = BD*,D'C = CA",B(CB)" = 0 and C(BC)™ = 0 and A®BD®C is
nilpotent, then M has core inverse.

B

0|

Proof. Write M = P + Q, where
A 0 0
P=(5 p)e-(e

Since A and D have core inverses, so has P, and that

A0
@ _
P ‘( 0 D®)'
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In view of Lemma 3.1, Q has core inverse. We easily check that

0 AB 0 BD
PQ:(DC 0 ):(CA 0 )zQP'

Likewise, we verify that P*Q = QP*. Moreover, we check that

I, A®B
Ln+PPQ = (D®C I, )

It is easy to verify that

I, A®B\ _(I,-A®BD®C A°®B I, 0
pDeC I, )~ 0 I '

®
Since A®BD®C is nilpotent, we see that I, — ABD®C is invertible, and so ( DI®" C AI B ) is invertible. This
n

implies that I, + P®Q has core inverse. Additionally, (I, + P?Q)™ = 0. According to Theorem 2.5, M has
core inverse, as asserted. [

Theorem 3.3. If AB = BD,DC = CA,B'A = DB*,C'D = AC*,B(CB)" = 0 and C(BC)™ = 0 and A®BD®C is
nilpotent, then M has core inverse.

Proof. Write M = P + Q, where

A 0 0 B
P=(5 p)e-(e )
Then we check that
D 0o C 0
P B* 0 )( D)

Similarly, QP = PQ. Further, we verify that

_ 0 (BOYBCCT \[ A 0
b+ QPP = Ly +( (CBY'CBB® 0 ( 0 D )
L. (BOBCC®D
(CBY'CBB®A I, :

Since A®?BD®C is nilpotent, we prove that I, + Q®P is invertible; hence, it has core inverse. Additionally,
(In + Q®P)™ = 0. In light of Theorem 2.5, M has core inverse, as required. [
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