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Abstract. In this article, we aim to study the existence of x-continuously differentiable solutions for an
integral boundary value problem to sequential differential system involving a mixed derivative in Banach
space. We apply the Monch fixed point theorem combined with the Kuratowski measure of noncompactness

to obtain this result. We also obtain the compactness of the solution set for the given problem, an example
is given to illustrate the results obtained.

1. Introduction

Fractional differential problems with different conditions have been investigated by many Authors, for
example [2, 10, 14, 17], those differential problems still used to understand various phenomena in physical
sciences, engineering, electrochemistry, fluid flow, economic and biomedical sciences, for more details, see
the following references [14, 16, 18] and the references therein.

Fractional differential equations with nonlocal conditions have been discussed in [5, 6, 20]. In [11], Bysze-
waski showed that nonlocal conditions can be more effective than others to describe some physical phe-
nomena. The topological properties of the solution set for differential problems are studied by many
mathematicians, in the references [2—4, 8, 9], Authors studied the compactness and the stability of some
fractional differential problems.

In 1930, Kuratowski introduced the notion of measure of noncompactness. This notion is very useful in the
functional analysis, many researchers have used such notion to study the existence of solutions for sereval

ordinary and fractional differential problems, see [12, 13]. In view of the above considerations, we consider
the following system

RLDLADAy1(E) = (& y1(E), y2(6), S DL (9. DE (),

S £ £ £ _
(S) RLD;/XDXyz(é) - ;—12(5, v1(&), y2(8),€ Z);Ayl(é),c Z)gi’)‘yz(é)), e (&gl
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associated with the following nonlocal integral boundary conditions

Z';pl’XDXw(?) = Z?il GiDYyi(&1j), yi(€) = Aq,

(NIB) T’—pz,,\’ + n -
L7 DYya(E7) = Xyl CaDYya(Ea), y2(E) = Aa,

where RLZ)ZZX denotes the x-Riemann-Liouville fractional derivative of order 0 < p; < 1, i = 1,2, CZ)EQ’X is

the X-Capl;to fractional derivative of order p;, i = 1,2, E is a Banach space, 7; : (&, E] XE* > E, i - 1,2
are a functions satisfying some specified conditions (see, section 3), x € Cl([é,z], R*) satisfied (&) > 0,
forall & € [&,&], DX = S5, & E € R with € < Eand &, &€ (§,8),j=1,---,m,k =1,--- ,ny with
T(p) # X0, Celo(&) = X(@)P i =1,2.

Note that in our problem, the derivative we took is a composition of fractional and ordinary derivatives,
it is clear that the relation RLD;’X Dxy; =Rt Z)gfl’x yi is not correct except in the case y;(&) = 0. This is the
second motivation to consider the (S) — (NIB)iproblem involving a mixed derivatives,

The present work is organized as follows: In Section 2, we give some general results and preliminaries
and in Section 4, we show the existence solution for the problem (S) — (NIB) by applying the fixed point
theorem, also the compactness of the solution set. Finally an example to reinforce our work in Section 5

2. Basic results and Background

In this section, we will give some concepts and notations about the functional spaces, fractional calculus,

noncompactness measure which are used throughout this paper. we denote by C([¢, &) (resp. by LY([¢, 13))
) the space of E-valued continuous functions (resp. the space of E-Bochner’s integrable functions) with the
following norm

llloo = sup {lu(@)ll, & € [£,E1} (resp. Ilull: = L l(E)E).
Let C1—p, ([, E]) be the Banach spaces of functions from (¢, E] into E which is defined as:
Crop (& ED) = {u e CUEED + (x() — X&) Pu() € CUE ELE), i=1,2.

with his norm |[u]|,, ,, that is given by

l[ullo,x = sup (x(&) = x(ED) P llu@l, i=1,2.
Ee(gé]

Next, we denote by C%_p, x((é’ &]) the space of functions y-continuously differentiable defined as folows

Clo (&) ={u: (£E - E: u() € CUE ED and D¥u() € Crp, (€, ED)}, i=1,2

with the norm
1 .
llully, = llulleo + 1D ullp, v, i=1,2.

Let Hl-zzl C! ([&, &]) be the product space (will be denoted in all that follows by H}(([é, &]) ), which is a

1-pix
Banach space with the following norm

1 1 1
(e, u)IIE = max a1}, ol -
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In the following, for all > —1, we pose W(r,s) = (x(r) — x(s))", for all s, r € [¢, &] with r > s and for all n>0,

we put W = (x(&) - x(&))".
First, we introduce the concepts of x- fractional derivative in the Riemann-Liouville and Hilfer sense
and their properties.

Definition 2.1. [14, 19] Let € € LY([, &]) and x € C\([&, £]) such that x'(£) > 0, for all & € [£,&],
(i) the x-Riemann- Liouville fractional integral of order p > 0 of the function ¢ is defined by

1 &
(224 — ’ p-1
TP = 1o fg X 6 WE ) s)ds,

(ii) the x-Riemann- Liouville fractional derivative of order p > 0 of the function { is defined by

DL = T (T

n 3
14 B
(- p) \X'(&) dg) ( fg X E)WPTHE, s)(s)ds |,

where I is the gamma function and n = [p] + 1 ([p] represents the integer part of the real number p).

Lemma 2.2. [14,15] Let p,u € R}, & > é We have then

(i) TPEWHNE, £) = iy W (8, ©).

(ip) REDPIWHL(E, §) = r(ﬁfﬁ)p) WHPT(E, £),0 < p < 1, 1> 1,inthe casewhen p = i, we find RLOPIWII(E, &) =
0. B

Lemma 2.3 ([14, 15]). Let p > 0and 0 <y < 1.If y < p. Then IQ;X is bounded from C,, ([é, E]) into C ([é, E])
Lemma 2.4 ([14,15]). Let0<p <1, 0<y <1L.Ify€Cy, (é, E) and I;p’xy eC, ([é, E]), then

T yEn _
== PN, forall £ € (&),

) D foralie
Next, in this part we begin to give the notion of the Kuratowski measure of noncompactness and its
properties which will be used in the next section, for this purpose, we denote by Set,(E) the set of all
bounded subsets of the Banach space E.

TUREDRIy(E) = y(€) -

Definition 2.5. [7, 12] Let D € Set,(E). The Kuratowski measure of noncompactness 9 of the subset D is defined as
follows:

3(Q) = inf{e > 0 : Q admits a finite cover by sets of diameter < e}.
Lemma 2.6. [7, 12] Let A, B € Set,(E), we have the following properties
(i1) S(A) = 0ifand only if A is relatively compact,
(ir) S(A) = S(A), where A denotes the closure of A,
(i3) S(A + B) < 3(A) + 3(B),
(i) A C B implies S(A) < 9(B),
(i5) 9(a.A) = |al.9(A) foralla e R,
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(ig) S({a} UA) =3(A) foralla e E,
(i) S(A) = 9(Conv(A)), where Conv(A) is the smallest convex that contains A.

Lemma 2.7. [12] If D is a equicontinuous and bounded subset of C([¢, &]), then S(D(.)) € C(&, &, R,)

3 3
8c(D) = max 9(D(5>>,9({ | w(é)dézweD})s L SOEN,

Ee[€é]

where D(&) = {w(¢) : w € D} and S¢ is the Kuratowski measure of noncompactness on the space C([¢, &).

Theorem 2.8. [1] Let E be a Banach space and D a closed and convex subset of E such that D is bounded and contains
0, and let N : D — D be a continuous mapping. If the following implication:

V=NV)U{0} or V=0omoN(V) = piV)=0,

is satisfied for every subset V of D, then N has at least one fixed point.

3. Integral equation

In the content of Lemma below, we will illustrate the equivalence between the problem athand (S)—(NIB)
and the following system of integral equations

A oy cljfiihl(élj,yl EDyE DL (élj)Fﬂgi""yz(él,-)) -

= =+ = - = = 1 P

y (é) 1 T(p1+1)—p1 Z/-:l] G WP1(Eg,6) (é é)
3 , X

+ T [ X WP (E, )i (s, y1(s), y2(5),C DI yn(s),C D y2(s))ds,

A 2 Czkfgi iy (52k,y1(Ezk),yz(tfzk),cﬂgwyl (Ezk),cf)ii"yyz(ffzk)) we
— < < < 1
Y2(&) = Aot T(p2+1)—p2 L2, GrPP1 (&5, ) &%)

< 1,X 2/,
+ oD fé X' (5)¥P2(E, S)hz(S, y1(8), 12(5),¢ Dg Y(5),© Z); X]/z(s))ds-

In all that follows, we put
Ni(E, Y(9)) = (&, 11(E), y2(&),S D 1 (6),C DI o)), i = 1,2,

where Y(.) = (y1(.), y2(.))-

Lemma 3.1. Let 0 < p1, p2 < 1, we assume that 8;(., Y(.)) € C([é, E]),i =1, 2, for all (y1,y2) € H}(([é, E]). Then,
(yl, yz) is a solution of the system (S) — (NIB) if and only if (yl, yz) satisfies the system of integral equations (S*).

Proof. Let (yl, yz) € H}(([é, E]) be a solution of the system (S) — (NIB), We want to prove that (yl, yz) is

a solution of (S*). From Definition of []%; C%—pw([é’ &]), Lemma 2.3 and Definition of I é:pi’x, we have

1-pi,x 1) i = d
L7 Dy() € Cg el)i = 1, 2 and 2

Crp (& ED), i =1, 2.

From Lemma (2.4) we have

(TEDry(©) = DL WE) = N, V() € CE T ©

Ilr:pf'XDXy(é-'—)

DYyi(é) = ZFT‘I’P”l(E,é) +xy(E) + fg’f(&'(é, Y(),i=1,2 3.1)
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Next, we substitute & by &1, & into (3.1), we get

IR E)
D¥y(&1) = =gy — PP (&2, O) + Igl’XN1(51j, Y(&1j), j=1,-,m,
TP pry(et ]

DYy(&x) = é+r(T;‘I’p2_1(52k, o+ fgi'xxz(ézk, Y(Ex), k=1,--- ,no.

By utilizing the second condition (NIB), we obtain

T'(p1) Z;tll Cljjgll)(xl(gljly(élj))

1-p1,x +
DX = T
Ié" y(é ) T(pl)fzj:ll CjWh(&,8)
Il’PN(D)( . I(p2) }:;21 Czkfgi'xxz(ézk/y(&k))
& e = T(p2)=Ly2) G W2 (Eax,9)

By substituting, we deduce that

Z;El Cufgi'xxl (&1j,Y(&1))
T(p)-X7, G WPy E)
Yt Cond 27 Ra(Ear Y (Ear))

(2L, G2 (650, 8)

D¥y(é) = wrlE &) + T gi’X Ri(&, Y(8),

(3.2)

DYy(&) = Wrml(E, &) + T7 R (&, Y(E)).

§+

Next, applying I)é to both sides of each equation of (3.2), we obtain

( L G (& Y (& m)w (€19

T(pr+1)=p1 L 0 W01 (Ey,6)
( 2 szJg% Nz(EZk,Y(gzk)))\Wz (E2x,E) L1 fg
T(pa+1)—p2 ;2 Gk P21 (Ex,6) T(p2+1) Je

n@) = A+ + it X OWPE NS, Yo,

ya(é) = A+ X' ()W (&, 5)Nx(s, Y(s))ds.
Conversely, let (yl, yz) € H}(([é, E]) be a solution of the system (S*), it is clear that yl(é) = A7 and yl(é) =Aq.
By applying Dé to both sides of each equation of (S*), we obtain the system of equations (3.2), Applying
I ;p "* to both sides of the equation

Z';;l Cz’jfgi/x&i(gij/ Y(&ij)

DX = , wrlg TPRUE Y(E)), i=1, 2, 3.3
y(&) M) - X, G (2,0 (& &) + T Ni(E, Y()), i (3.3)

and utilizing Lemma 2.2, we get

o T(p) XL, Cijfgi'xxi(&j, Y(&ij) .
TP DY) = = TYR(E, (), i=1, 2
c y(&) (o) - T G0 1(E, ) +1 (& Y(Q), i

Taking & — 0, we get
. T(p) L., Cijfgi:xxi(éij/ Y(&ij)
TP Dy = —
£ = L(pi) — Xty GWPP1(&i;, )
Substituting and adding side to side in the equation (3.3), we find,
Z';;l Cij]gi/xxi(éij/ Y(&ij)
I'(p;) - Z?;l GiiNi(&ij, Y(&if) =

i=1,2. (3.4)

PN &y, &) + ) T NE Y(E), =1, 2.

j=1

Z GiDYy(&)) =
=)
(3.5)
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From (3.4) and (3.5), we have

I DYY(ED) = Y GDYY(E), i=1, 2.
£ 2.

O

4. Main Results
In this section, we will prove the existence of y-differential solutions of the system (S) — (NIB), also the

compactness of its solution set. We necessarily assume the following hypotheses
(H1) Suppose that 8(., Y(.)) € C([&, £]), for all (y1,y2) € TTL([, £]), and there exists a, B, 7i, 0 € Ry, i =1, 2,
such that
(Hy-1) Forall (y1,y2), (v1,72) € TIL(E, D), € € [£,E]

INI(E, Y()) = Ni(&, YEDII < aillyr (&) = 7@l + Billy2(&) — (&)
+ Yl DX (y1(8) = TiEDN + 0l DX (y2(E) = T i = 1, 2.

(Hy-2) For each nonempty, bounded set {); C C%_phx([é, E]), forall & € (é, E], we have
S(NA(E V(&) < a8( (&) + Bi9((9))
+7i8(CDL 2 (©) + 6:9(“DE ), i=1, 2.

where
Q&) = {yi(®), i€ Cl_,, (& ED} and

Qi) = [“Dyi®), i e €L, (EED), i=1, 2.

I'(p; +2
Wi+? 4,0

(Hz)
[14 i+ D(TCmWE + p) + W) |4y < =E2

where
1
9 = max =1, 2
[forn-rrnov o =2

Ay = maX{(ai +Bi+7iT(p1) + 6T (p2) )yl i =1, 2} and (; = max {Cij-

Define the operator Z : IT,([£, &) - ITL([E, &) by

1(y1/ yZ)r
2(Y1, y2),

(1 [0

E(yh yZ) = {

where, for i =1, 2, we have
Wri(E, §) Z;l;l Cijfgi Ni(&ij, Y(&ij) 1 £

=iy, =A; T "(s)WPi(E, s)Ni(s, Y(s))ds.

(Y1, y2)(&) + T(pi +1) = p L, WP (5, 8) + T(o: + 1)1; X (s)WPI(E, s)Nis, Y(s))ds
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We note that, for all £ € ([é, E] we have

DXEl(yll yz)(é);

D*E(y1, y2)(&) = { DXEx(y1, y2)(&),

where, for i =1, 2, we have

WrE O L ST N(E, YE)

X = =
D -—fl(ylr yZ)(E) - r(Pz) — 27’21 (:ij\l—’/?i’l (éijr é)

&
+ r(lpz-) f X (6)PPHE (s, Y(s)ds.

4.1. Existence Results

In this part, we will present the result concerning the existence of x - continuously differentiable solutions
of the problem (S) — (NIB). First, we will give some useful lemmas to demonstrate this result.

Lemma 4.1. We assume the hypotheses (Hy) and (H-1) are hold. Then

(1) E is bounded and continuous.
(2) E(B) is equicontinuous for all bounded subset B ofH},([é, &)).

Proof. Let us show the axiom (1), we begin to prove that = is bounded operator. Let (y1, y2) € H}(([é, E]), ¢ €
[£, &1, it is clear to see that Z(y1, y2) € ITL([, &1, & € [&, &]. Using (Hy) and (Hi—q), for all y € B, = {(y1,12) €
H}([gil) Iy, yz)”}( <r}i=1 2and & € (é,g], we have

n; v 1 3
I3y, XN <IN+ TWE ) Y IGHTLINGE YED + 7o f X6 WP (E, 5)INi(s, Y(5)) s

j=1

/M \yfl T’AO ] h; \IIEHJ T’AO

) * Pi 1
<Al + T Cimi'P, [F(pi D) T+ D] T +2) T+ 2

where hlf = SUP; e 7 n;(£,0,0,0,0), i =1, 2, we also have, for all £ € (é,g]

I'(p:)

h:\yfl T’AO
F(p, + 1) * F(pl + 1) )

ni ' 1 3
W' Pi(E, DX Ei(y1, y2)E)I Spi‘fz G IR (g, YEDN + 57— fé X (S)WPH(E, 9)IINi(s, Y(s))llds
j:] - =

<(piTCni + \yi‘f’f)[

So,

P A
. X5, “n(p: + WP 1=pi i o
1Z:(0s, Yl + DA Eiys, y2)ly <(T G + W) + W )[r<pi+1) + r(pi+2)}
h;\IIfi+1 T’Ao

T+ T - M

Thus/ ||E(]/1/ ]/2)”1 < maX{MIIMZ}'
Now we will show that = is continuous. Let {(y14(.), ¥2:()}nen be a sequence converges to (y;(.), ¥5(.)) in

IT (& E]), it enough to prove Ei(yin, y2:)() = Eiy;, 13)() asn — 0 in C}_ (& ED), i = 1, 2, from (Hiq)

and Lemma 2.2 we can easily prove that Z;(y1,, y2.)(.) — Ei(yi,yz)(.) in C([é, E]) and DXEi(yin, Y2u)(.) —
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DXE(y;, y5)() in C1p, 1 (&, ED), i = 1, 2, that implies E(y1a, y2u)() = E(y;, y3)() in C1_ o L& &), then Z is
continuous.
Let us show the second axiom (2), it is enough to show that =Z;(B,) (resp. DXZ;(B,)) is equicontinuous on

C(&, &) (resp. on Cip, (&, D), i =1, 2. Let (y1, 2) € By and &1, &3 € (&, &] with & < &, from (Hyq), we
have

w\1sPi

: W,
||Ei<y1,yz)<az>—Ei<y1,yz)<csl>||s‘rc:ni‘lff’[r(".qﬁ 5t +1)](‘1’ (&2, 8) =W (61,9)

pl+1) f NWPI(Ep, 5) = WPI(E, 9)]IINi(s, Y(5))llds

T+ D) (pl D ). XY SING YIS

Tt [ Y e, - e, )
r(p, + 1) r(p,- +1) e e
hi + T’\y* P ‘Ao

)

[\ppwl(gz,é) —Wrrl(E, &) + 2WPHL(E,, 51)]-

As &, tends to &1, the right-hand side of the last inequality tends to 0. Therefore 5i(B,), i = 1, 2 is
equicontinuous on C([é, &]). And, we also have

IW'P(&2, )DXE(y1, y2)(E2) = W' Pi(E1, E)DYE(y1, y2) (€1l <
WIPi(&,, )
T'(p:)
Wlp(E,, )
o f XD (Er, )Ni(s, Y(9)

W=Pi(&y, )
Llp)  Je
WIPi(&y, &) = WIPi(&y, &)

&1
" T() ) fg XD (E,9)INi(s, Y(5)) s

+ w f i X' (5) WP (&, 9)INils, Y(9))llds
F(Pi) & ’ Zl
(7 + PWIP A )W (£, €)
L(pi)

Eo
f WP (E, NG5, Y(s))ds
<

[ vewens - w9 o
&

[ vefeens - v s
3

(7 + PP A ) (WP (&2, &) - WP, €)

&1
— — ’ i—1
. o | v u

(72 + PP A ) WP, &) 1
+ = "(s)WPi—1(&,y, 8)ds
o LX() (,9)
(h; + Y f"'Ao)\y}‘P"

F(p,' + 1)

[WPi(£, &) — WP (&1, &) + 2P (&, &)
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(1 + res P’Ao)wf"

gy Y @ - e, o)

By taking &, tends to &5, the right-hand side of the last inequality tends to 0, and hence DXE;(B,), i =1, 2is
equicontinuous on Cl—Pi/X([éf &)), thus, Z(B,) is equicontinuous on H}(([é, ). O

We denote by 3¢, 9, 8},1, and 9! the Kuratowski measure of noncompactness defined respectively on

C(E ED), Cropa(I&,ED), CL (&, E]) and TTL(E, ED).

1-pi,x
Lemma 4.2. Let B = By X B, be a bounded subset ofl_l}(([é, E]), we have
(i) S;i(Bi) < 3(B) + 9,,(D*B;) < ZS;i(BZ-), i=1, 2
(ii) 81(B) = max {8} (B1), 9%,(B2)}.

Proof. Let B = By X B, be a bounded subset of H}(([é, E]). Let us show the axiom (i), we have B;,i =1, 2isa

1
bounded subset of C,_,

partition Bf , j=1,---m, such that

([é, E])), let € be a strictly positive real number. So, for i = 1, 2. there exists a finite

Diam(B)) < e+ 9} (By), j=1,---m.
Then for all y1, y» in B{, j=1,---mand & € (éa, we have

1y2(€) = (Ol < € + 8;,(B;) and D y2(&) = DXy (&)l < € + 9, (B)).

So, ‘ .
Diam(B)) < € + 9},(B;) and Diam(D*B) < e+ 9}, (By), j=1,---m.

Thus,
3(Bi) + 9,,(DB;) < 2€ +29,,(B,).

Since € is arbitrary, this means that we arrive at
S(Bj) + 9,,(DB;) <23, (B)), i =1, 2. 4.1)

Conversely, we want to prove that S;i(B) < 9(B) + 9,,(D*B), from the definition of Kuratowski measure of

noncompactness, we have, for each € > 0, there are a finite partitions {Bf }j=1,.,m; of B; and {Di.‘}kzl,‘..,m2 of
DXB; such that )
Diam(B)) <€ + 9(B;), and Diam(D}) < e + 9,,(D*By),

it is clear that the partition {BZ n Ig DF}jx belongs to Ci—PirX([él £])) and verifies the following inequality

Diam(B] N LD} + Diam(D¥(B] N I}, D)) < 2¢ + 8(B;) + 8,,(D'By).
As € is arbitrary, we obtain
), (Bi) < 8(Bi) + 9,(D*By), i =1, 2. (4.2)

From (4.1)-(4.2), we get
9,,(B) < 8(B) + 9,,(D*B) < 29,,(B).

Let us prove the second axiom (ii), Let B = B; X B, be a bounded subset of H}(([é, E]), for all € > 0, there
exists a finite partition B/, j = 1,---m, such that,

Diam(B/) < e+ 9L(B), j=1,---m.
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Then for all (x1, y1), (x2, ¥2) in B/ = Bi X Bé, j=1,---mand & € (é, E], we have

max {|lx2() = x1 (&), 1y2(E) = 1 (E)ll} < € + 9}(B),

that implies
llx2(&) = x1 (&)l < € + 9L(B) and  [Ix2(&) — x1(E)I| < € + 9}(B).

So, , ,
. . j 1 -
D1am(Bi) <e+ Si,(B) and Diam(B,) <€+ 9,(B), j=1,---m.

As B; C U]-B{, i=1, 2, we have
max {8},(B)), i =1, 2} < e+ 9L(B).

As € is arbitrary, we obtain
max (8} (By), i =1, 2} < 9L(B). 4.3)

Conversely, for all € > 0, there are a finite partitions {Bj }iz1 .. m Of By and {BX}x=1 ... m, of By such that
y P 117=4m 2 5]

Diam(B]) < e + 9}, (B1), and Diam(B}) < e + 91 (Bo),
it is clear that the partition U B{ x B belongs to ITL([, £]) and verifies the following inequality
Diam(B] x BY) < € + max {oh,), i=1,2].
Since € is arbitrary, we get
91(B) < max {8}, (B), i =1, 2. (4.4)
From (4.3)-(4.4), we have
81(B) = max{9},(By), i=1, 2}.
0

From Lemma 2.7 and Lemma 4.2, we easily show the following inequality

9,,(D) < sup S(D(&)) + sup (W' (£, E)D'D(E)) <29, (D), i=1, 2, (4.5)

elgd] el&él

where D is a bounded and equicontinuous subset of C%_phx([é, E])), D(&) = {y(&) : y € D} and DXD(&) =
{DXy(&) : y € D).
Let )

Br = {(y1, y2) € TLL(E, ED) : iy, vl < R},

We are about to present our main result which is as follows.

Theorem 4.3. Assume that the hypotheses (Hy) — (Hy) are satisfied and that R verifies the following inequality

(pi + D(TCm(WE + pi) + WP )W0T: + WO 4+ AT (i +2) 2} w6
7 l = 7 .

R > max{
P(pi+2) = [1+ (i + D(T WP + pi) + W )] Ao

Then, Problem (S) — (NIB) has at least one solution in H}(([é, &1). In addition, the soluion set SS of the problem
(S) — (NIB) is compact.
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Proof. By using Lemma 3.1, it is clear that the fixed points of the operator = are solutions of the problem
(S) — (NIB). We want to verify that = satisfies the assumptions of Ménch fixed point theorem. First, we will
prove that = is well defined from By to Bg, indeed, let (1, y2) € Br. By using the condition (H;-1) and after

some calculations, for each & € & E], i=1, 2and (y1, y2) € Br, we get

IZi(y1, y2)EN + WP, ODLEW, y2)EN < Al + TWP(E, &) Z ICiijg’;IINi(éij, Y(Ep)I

=1

1 3 , ni ,
+ P j; X (S)WFI(E, 5)IINi(s, Y(s))llds + pfi'Z |Cijlfg+||xi(éij, YEN

j=1
¢ 1
+ — "()WPH(&, 9)|INi(s, Y(5))||ds
Ty J, ¥ OV EIING YO
(i + D(TCmi(PL + i) + WP )PLH: + W0+ AT (i + 2)
= T(p:+2)
[1+ (o + D(T (W0 + py) + W. 7)Ao
+ R.
F(pl + 2)

From (H;) and the inequality (4.6), we obtain
V(yll yZ) € BR : “E(yl/ ]/2)”;1( <R

Note that By is bounded, convex and closed subset of H}(([é, E]) and £ is continuous on Bg. Next, it is
enough to show the following implication

V c cono{EV U {0}} = 9,(V) = 0, for any V C Bg.

Let V = Vi X V;, be a subset of Bg such that V' C conv{ZV U {0}}. By using Lemmas 2.6 and 2.7, for all
&€ (€&l i=1, 2, we obtain

S(EV(E) + 9(Pr1-p (& ODE(V(E)) <

‘I’fiT[ Z Cz’jSI;S(hi(&j, Vi(&ij), Val&ip),© Dgl’xvl(éij),c Dgi'xvz(éij)))]
= - -

1 - !
+ m £ X ()PP, 5)9(711'(5, Vi(s), Va(s),© Dglf Vi(s),© Dgf’X Vz(s)))ds

+piT Z |Gl LT, S(Tii(&jl Vi(&ip), Va(&ip), S DR V&, © @Zi'xvz(&j)))
= - -

&
+ %p) f W, s)S(hi(s, Va(9), Va(s)," D Vi(6),C D'Ei’XVZ(S)))d&

From Lemmas 2.7, 4.1 and 4.2 and the hypotheses (H;-») — (Hy) and inequality (4.5), we arrive at
95,(EiV) < sup S(EV(E)) + sup (1, 9D EV()))
elgé] el
21+ (pi+ D(T W +pi) + 0.77)]Ao
< =V).
= i +2) *nEV)
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From Lemma 4.2, we have

21+ (pi + D(T (WP + py) + W) Ay
I“(pl + 2)

81(EV) < max | =1, 2}9LEV).

By the condition (H;), we get S}((E V) = 0, that means S}C(V) = 0. From the theorem 2.8, the operator =
has at least one fixed point (y1, y2) € Br. By using Lemma 3.1, we conclude that the problem (S) — (NIB)
has at least one solution.

4.2. Compactness of Solution Set
In this part, we will show that the soluion set of the problem (S) — (NIB) is compact subset of I} ([¢, &)).

Let { (y’f, Y5)lneN be a sequence of the solution set, as H}(([é, E]) is compact space, there exists a subsequence
of {(yﬁ’, yZ)}neN (still denoted {(y’ll, yg)}neN ) converges to (y;, y;), it enough to demonstrate that (y;, y;) is a

solution of (S) — (NIB), for each € € (¢, E], i=1, 2, we have
h — . i Y .. 4 . .. n .. 1 é / i . n
i (&) =N+ TWPi(E, é) ]_Zl |Cl]|-z-g+xl(£l]/ Y (51])) + m L X' (S)WP(E, s)Ni(s, Y (s))ds,

and

T'(p:)

S , 1 [ .
D*yi(&) = PiTZ |Cij|Igl+Ni(§ij/ Y'((Ei) + = f X (5)WPH(E, 5)Ni(s, Y"(s))ds.
j=1 = 3
From (H;), we have N;(,, Y*()) = hi<., VIO, ya).c Z)gl’xy?(.),c Z)gi’xyg(.)) simply converges to N;(., Y*(.)) =

hi(v y1 (), ]/E(~)rc Dgi'xyj(.),c Z)gi”(y;(.)) asn — +oo,let £ € (¢, &), form (Hy_q), foralln € N, i =1, 2, we have

X SWP(E,$)IRi(s, Y DI < (15 + (s + Bi + 7iT(pr) + 6T (p2)M)X' () ¥P (£, 5) and
X EWPTHE )N, Y ) < (7 + (i + Bi + yil(p1) + 5T (p2) M) (5) WP (£, 5).

Using Lebesgue’s dominated convergence theorem, for each € € (¢, E], i=1, 2, we obtain

¥i(&) = i + TWP(E, ) ; |Cij|-z-i+8i(éij/ Y (&) + ES)) fé X' (s)WFi(E, 5)Ni(s, Y*(s))ds,

and
* 3 Pi * 1 ¢ ’ i—1 * *
DY) = T Y G Y E) + s [ OWTIE 9N Y 9.
j=1 - e

Thus, the soluion set of the problem (S) — (NIB) is compact subset of H}(([é, ). O

5. Example

We take x(t) = 4"“;“’“, <= O,E =1, p1 =p2=025, ny =ny =1, &1 = &1 = 1 and E the Banach space
defined by

= (1) P11 <),
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with the norm ||y|| = sup,, |y,|, we define the function 8;(., Y(.)), i =1, 2by

R, Y() = (R, YO, - R Y™ (), ), =1, 2

where
" " COLYIE)  CDETYEE)
e L YO p(© e N e
Y= 0 Y 3910 T rnz T orer
V(&) + y3(8) +C DL Y(E) +C DIy ()
82(51 Yn(é)) = — — 12 5 € (0/ 1]

20 + 30e¢

We easily see that for all (yl, yz), (%, ﬁ) e IT([¢, &), &€ (&, HE
IN1(E, Y(E)-Ri(&, YOIl < %[II%(E) = 1O+ lly2(E) = ()l
HICDP X (y1(€) = TIEDN + ISD> X (y2(8) ~ %(5))”] and

IN2(, YE)-Ro(E TN < 55 131(6) = Tl + 1:06) - T

HICDP (1 (&) = I + 1D (ya(£) — %(5))”]-

Next, For all Q; a bounded subset of C%_ Pi/)(([ol 1], we have

(&) + 3(Qu()) + ("D (©)) + (DL ()

m) , and

S(Nil&, Y(9)) <

((©)) + 9(®) + 9(“DL () + 3D ()

50
So, (H1), (H1-1) and (H;—,) are satisfied. A quick calculation gives us, fori = 1, 2, we have

, £€(0,1]

H(Ra(&, v (&) <

[] +(pi + 1)(‘7'(;:7’11'(\1151' +pi) + ‘Pi_f’f)]Ao < r(pi2+ 2) .

So, (H,) holds. Therefore, Theorem 4.3 ensures that the solution set of Problem (S) — (NIB) is nonempty
and compact.
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