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Abstract. We familiarize in this paper a new family of starlike functions in parabolic domain related to
the Mittag-Leffler function (MLF). By using this family of functions with a negative coefficient, we discuss
coefficient estimates, extreme points, distortion bounds, closure theorem, radii of starlikeness and convexity.
Moreover, the neighborhood, partial sums, and integral means of functions for this new family are studied.

1. Introduction and Preliminaries

Let E, be the function defined by
¢ .
E,(0) :ng CeC, j€Cwith Re;>0,

that was presented by Mittag-Leffler [24] and are generally known as the Mittag-Leffler function(MLF).

Wiman [40] defined its two-parameter version E,;; which generalizes widely used Mittag-Leffler function
E, as

- .
E],g((:) ::Z()m’ CEC, ],’KEC, with Re]>0, Re¢ > 0.
n=

When ¢ = 1, itis abbreviated as E,;(C) = E,1(C). Witness that the function E, ; comprises many well-known
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functions as extensions of the exponential, hyperbolic, and trigonometric functions for example,

Ei(Q)=¢, Epn(Q)= & C_ - Ez1 (C?) = cosh,
B (0) =eost, Baa(C) = 5, wa()- T

Eu(0) = (cos (4 cosh (), Es(0) =

ecl/ +2¢72" cos (?Cm)] .

It is of curiosity to note that by fixing j = 1/2 and ¢ = 1 we get
Ey1(0) =€ -erfe(-0),

that is

1
E; (0 =% |1+ _Z n,((2n>+ 5 2n+1].

The MLF have widespread applications in chemistry, physics, biology, engineering, and other applied
sciences. The applications of these functions can be seen in n-fractional differential equations, stochastic
systems, chaotic systems, statistical distributions and dynamical systems.

The MLF rises naturally in the solution of integral and fractional order differential equations, specifically
in the investigations of fractional generalizing of kinetic equation, random walks, Lévy flights, super-
diffusive transport and in the study of complex systems. For a potentially useful further investigation of
generalized MLE, the reader is referred to [1, 2, 5, 6, 8, 11-14, 18-21, 26].

We note that the above generalized Mittag-Leffler function E, ; is not a member of family A, where A
represents the class of functions analytic in the open unit disk U := {C € C : || < 1} whose members are of
the form

fQ=C+) al", CeU, (1)
n=2

and normalized by the conditions f’(0) —1 = 0 = f(0). Let S be the subclass of A whose members are
univalent in U. . Thus, it is natural to consider the following normalization of MLF due to Bansal and
Prajapat [5]:

T(¢)

Ey () = (IO Ey(0) = C+Zl"](n—

D+ ¢ @

that holds for the parameters j, £ € C withRe ¢ > 0, Rej > 0 and C € C. Moreover, Srivastava and Tomovski
[33] introduced the function ET K(C)(C € C) in the form

T,K (T)nkc
E, (©= Z T(n+6)n!’
(7, ¢, 7 € C;R(7) > max{0, R(x) — 1}; R(x) > 0). Lately, Attiya[2] defined

I'(j+9) )
() ')

with (£, 7 € C; R(7) > max{0, R(x) — 1}; R(x) > 0; R(j) = 0 when R(x) = 1 with € # 0) and gave a new linear
operator

MTK(C)

( ; () -

I A— A
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given by
I = M0 + O
where (+) denotes the Hadamard product (or convolution) for functions f, g € A where f be assumed as in

(1) and g(C) = C+ ). b,C", then the Hadamard product (or convolution) of f and g is given by
n=2

(f*g)Q) = C+ ) ab,l", Ce U.
n=2

Thus,
o _ = [(T+ 1) + ¢) ;

IJrf’f(C)_C+;F(T+K)F(n]+€)n!anc cet ©
Shortly ,we let

THf© =0 ) Al @)

n=2

where

A= I'(t + nx)I'(j + £) 5)

" T(t+x)(ng + ) n!

unless otherwise stated. Throughout our study we assume j, £, are real-valued parameters and C € U.

1.1. Subclasses of S :

Robertson [27] defined and studied the two well- known subclasses namely starlike functions of order &
(0 < € < 1), and convex functions of order & (0 < & < 1) as below :

e (SO
S(é)—{feff’{.Re(—f(C))>5,CGIU,}

@y
f(©
respectively. We also write §*(0) =: S, where S” represents the class of functions f € A such that f(ID) is

starlike domain with respect to the origin. Further, K := K(0) signifies the well-known standard class of
convex functions. By Alexander’s duality relation (see [10]), it is a known fact that

‘K(é):{feﬂ:Re( )>§,C61U}

feKoelf'(0)eS.
In1975, Silverman [30] promote a new direction of study by defining a subclass7” of A, comprising of
functions of the form

fO=C-) al" 8,20,CeU (6)
n=2

and discussed extensively for the classes 7 (&) = S*(§) N7 and C(&) = K(E) N T the class of starlike and
convex functions of order £ with negative coefficients. In the year 1993, Goodman [17] hosted the theory of
uniform convexity and uniform starlikeness for functions in A.
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Definition 1.1. A function f(C) is uniformly convex (uniformly starlike) in U if f(C) is in K S* and has the property
that for every circular arc v contained in U, with center £ also in U, the arc f(C) is convex (starlike) with respect to

f(&).

For -1 < ¢ <1land C € U a function f € S is said to be in
(i) the class S (&) - parabolic starlike functions if it satisfies the condition

o o
fesS e 7O 1‘$Re(f(c) 5)

(ii) the class S, (&, k) k—starlike functions if it satisfies the condition

O\ SO
ke ( 0 V) S

1', k>0

and
(iii) the class UCV(k, &), uniformly k—convex functions if it satisfies the condition

‘e ((Cf ) ) e

1) f1(©

Ronning [28] familiarized the class S, = {§ € S : F(C) = CF'(0), f € UCV}. Geometrically Sp is the class of
functions § for which (g’ (C)/§(C) has values in the interior of the parabola in the right half-plane symmetric
almost the real axis with vertex at (1/2,0). Inspired by the earlier works of Goodman[16, 17] and Sokol et

al.,[34] and the techniques followed in [3, 7, 30, 38]), in this article we present a new subclass of k— starlike
functions of order & based on generalized Mittag-Leffler function.

, k>=0.

Definition 1.2. For0< 9 <1,0 <& < 1and k > 0, we let MG(&,9) be the subclass of T~ consisting of functions
of the form (6) and satisfying the analytic criterion

Re {Gs(0) - &} > kGs(C) -1 (7)

where

N1 8
= T sar oy ®

CeU,and I;:}ff(C) is given by (4).

By fixing ¥ suitably, we present few following (new) subclasses of starlike and convex functions based on
MLEF:

Definition 1.3. If 9 = 0, then

USD(EN) = {f € T Re (LT QY - &) > k[eT 7 f@Y -1

—1,C€U}. (10)

, Ceuf )
Definition 1.4. If 9 =1, then
LT FOY

uspe = e re [0
A= fET i Re T

IO
Definition 1.5. If 9 = 0,k = 0 then

6.0 ore| CEEFONY L
=feT : —|>¢, Ce
= ST R T
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Definition 1.6. If 9 =1,k = 0 then

R(E) = {feT :Re(CTFQ)) > CeU).

In this paper we discuss certain characterization properties like results on coefficient bounds, closure
property and extreme points for f € MG, (&, ). Besides for f € MG (&, 9) we discuss , radii properties
under integral transforms, neighborhood results and integral means inequalities. results on subordination
theorem.

2. Characterization Properties

For brevity we let
0<9<1, 0<&<1, k=0,

unless otherwise stated.

Theorem 2.1. Let f be assumed as in (1) and if f € MG(&, D) then
Y [+ k) - SE +BIA, lal <1-&, (1)
n=2

where Ay, is given by (5).
Proof. Since f € MG, (&,9) it is enough show that

k %—1 ~Re (%—1)
<1-¢&.
We have
WypfQr 1‘ e [ oy 1]
(1-9)C+3I 5 f(0) (1 =9+ 917 f(0)

(1+k)

Wy
(1-9C+ST 1 fQ)

(1+8) (1= DAl

1= 2 SAulayliCl™

n=2

(1+K) T (1 - 9)Ala|
n=2

1- Z 8An|”n|

n=2

The previous expression is constrained above by 1 — £ if
Y (145 = (€ + BIA ] <1 &
n=2

and the proof is complete. [

In next theorem, we give necessary and sufficient conditions for f € MG (&, 9).



G. Murugusundaramoorthy et al. / Filomat 38:26 (2024), 9249-9263 9254

Theorem 2.2. Let f € T be of the form (6) and f € MG(&,9) if and only if

Y [+ k) = S+ OIA, lal <1, (12)

n=2
where Ay, are given by (5).

Proof. In interpretation of Theorem 2.1, we require only to show only the necessity. If f € MG;(&,9) and C
is real then

1- Z nAn uncrhl Z (1’1 - S)An IlnCnfl

Re | —22 —&|> k| E—
1- Y SA, a,0"1 1- Y SA, a,0"1

n=2 n=2

Allowing C — 1 along the real axis, we get the desired inequality 12. O

In our current discussions for brevity we let

NS, &Ekn) = [n(1+k) —9E+k)]AM), (13)

RS, EKk2) = [20+k) -9 +K]AQ), (14)
T+ 20I(1+0)

AQ) = 2T'(t + ®)[(2] + £) (15)

unless otherwise stated.
Corollary 2.3. If f € MG (&, 9), then

, 0<9<1,0<&E<Lk>0.
Equality holds for the function f(C) = C - ﬁcn.

Employing the techniques given in([9, 30] for f € MG (&, 9) one can straightforwardly prove the
following results so we state the results without proof.

Theorem 2.4. (Distortion Bounds) Let f be as assumed in (6)and f € MG(&, ), then

_ L 2 -< 2 _
r N(S, E/k,z)r S |f(C)| S r+ —N(S, 5[](,2)1’ 12 |C| =r (16)
and
2(1-¢) , 2(1-¢) ~
FRE ek VO Ry =T 17

Equalities are sharp for f(C) = C - N(;%f(k/z)@, where X(9, &, k,2) is as in (14)

Theorem 2.5. ( Extreme Points):Let
T
NS, &k, n)

where N(k, 9, &, n) is as given in (13) are the extreme points of MG (&, D). Then f € MG (&, D) if and only if it can
be stated as

Q) =Cand f,(C)=C ", for n=234,.... (18)

Q=) 0fu©  @u20, Y w=1 (19)
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Theorem 2.6. (Closure theorem) Let f;(C) (i = 1,2, ...m) be defined by

fO=C=) a, " fora, >0, CeU. (20)
n=2

and f; € MGy(9,&) (i = 1,2,...m) respectively. Then given h(C) = C — ,}7 E (Z an,) " is in MG(&,9), where

n=2 \i=1
E=min{&}and -1 <& < 1.
1<i<m

Proof. Since fi(C) € MG(8,¢&i) (i =1,2,3,...m) and by using Theorem 2.2, we get
(o) 1 m

Z N(k/ ‘9/ ér 7’1) [a Z an,i]

n=2 i=1

1

_ % ; (Zz Nk, 9, €, n)an,f]
5%2;0—£0S1—5

where N(k, 9, &, n) is defined in (13) and again by Theorem 2.2, we have h(C) € MG;(&, 9) , which completes
the proof. [

3. Integral Transform of the class Mg;(é, J)

Now for f € A we show that the class MG (¢, 9) is closed under integral transform

E,(F)(0) = f o

0

where v is a real valued, non-negative weight function normalized as fol n(t)dt = 1. Fixing v(t) = (c + 1)t¢,
¢ > -1, then &, is become as the Bernardi operator[4].If we assume

(c+1)

1(6)

then E,, is called the Komatu operator( see [22]).

1(31
n(t) = tf(lg ) L c>—-1, 520,

In the following theorem we prove that the class MGy (&, 9) is closed under the transform &, (f)(C).
Theorem 3.1. Let f(C) € MG (&, 9). Then E,(f)(C) € MG(E, D).

Proof. By definition, we have

1 (e8]
E/](f)(C) = % (—1)5_1tc(log t)é_l ( - Z ancntn—l] dt

n=2

_ (D) +e? ; " e
— lmlft logt)°1 Z:; a, ('t 1] ‘
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By simple calculation, we get

c+1

© 5
200 =02 () me

We need to prove that

(9]

Z N(k, 9, &,n) (1 +C)6an <1.

1-& c+n

On the other hand by (12), f € MG,(&, 9) if and only if

n=2

(e8]

Z N(k, S, é,n)an <1
n=2 1- E

1+c

where 8(k, 9, &, n) is given in (13). Thus == < 1, so (22) holds and thus we complete the proof.

c+n
The above theorem yields the subsequent theorem.

Theorem 3.2. (i) If f € §(&) then E,(f)(C) € S*(&).
(ii) If f € K(&) is convex of order & then E,(f) € K(E).

Theorem 3.3. Let f € MG (&, 9), then E,(f)(C) is starlike of order 0 < & < 1in |C| < Ry where

R1 = inf

n

5 (1 _ =

R

where 8(k, S, &, n) as given in (13).

Proof. Since E,(f)(C) is starlike of order 0 < & < 1 it suffices to show

CEH(NQ)Y
Ep(H(©)

From (21) we have,

-1l<1-¢.

- + 0 n—
Ta-m(&) ac

CEANOY 1' -
Ei)(f)(C) 1 E (ﬁ)ba cit
= c+n n
L, (1) (£2) aicr?

<

o 5 :

1- gz(ﬁ) a,|C!

The above expression is bounded above by 1 - £ thus,
c+n )‘5 (1= &N, &k, n)

c+1 n-91-¢ -

Hence, the proof is completed. [

e < (

By the fact that f € K & Cf’(C) € S*, we state the following:
Theorem 3.4. Let f € MG (&, ), then E,(f)(C) € K(&) in |C| < Ry where

o [fetny (- ONE, & k)|
Rz_lrnlf (c+1) nn—&)(1-2<) (n22),

where 8(k, 9, &, n) is given by (13).

O

9256

(21)

(22)

(23)
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4. Neighbourhood Results

The concept of neighborhoods of analytic functions was first introduced by Goodman [15] later,
Ruscheweyh [29]. We now recall the definition of 5— neighbourhood [15, 29] and determine neighbour-
hood results for certain families of analytic functions.(also see[35-37]).We now extend the familiar concept
of neighborhoods to the analytic functions of the family f € MG (&, 9) in this section.

First we recall the definition of the 6— neighbourhood of f € 7 is given by

Ns(f) = {h €T h(Q)=C- Z d,C" and 2 nlay — dy| < 5}. (24)
n=2 n=2
Mostly for the identity function e(C) = C, we have
Ns(e) := {h €T g(Q)=C- Zd,,(_,” and Z nld,| < 5}. (25)
n=2 n=2
Theorem 4.1. If
L 21-=¢)
0:= NS, &k, 2) 26)
then M@G(&, 9) C Ns(e), where (9, &, k, 2) is assumed as (14).
Proof. For f € MG (&,9), Theorem 2.2 immediately yields
RO, Ek2)Y an<1-¢,
n=2
so that
IS RG.LeT 7
Additionally, from (12) and (27) that
(k + 1)AQ2) Z na, < 1-&+9(E+AQ) Z ay
n=2 n=2
I(E+ A - A2
S N )
o S(E + AR
= 079 [l "RaTR-SE+ k)]A@]
- 1+k
(k + 1)A(2);nun = 21-9) [[2(1 TPoSET k)]A(Z)]
i I 2(1-¢)
LM T R - SE +RIAQR)
that is
. 20-¢8)
;nan < —N(S, Tk 0 (28)

which, in sight (25) proves Theorem. 4.1. [
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Definition 4.2. Let f € T and we let f € MG (p, 9, &, k) if there exists a function h € MG (p, 9, &, k) such that

nQ T

Theorem 4.3. Ifh € MG (p, 9, &, k) and

f© ‘ , (CeU, 0<p<).

. OR(9, &, k,2)
P27 2IRE, &k 2) - (1-9)]

then
Ns(h) € MG (p, 9, &, k)
where 8(9, &, k, 2) is defined in (14).

Proof. Assume that f € Nj(h), then from (24) we have

(e8]

anan —dy <06

n=2

which infers that

Subsequently i € MG (&, 9), we have

Zd” 9 é,k 2)

n=.

so that
Y n - dn
O 1‘ —”§2 e
h(C) 1 )°:° d,
n=2

_ 0 N®EK2)
-2 N(S/ 5/ k/ 2) - (1 - 5)
< OR(Y, &, k,2)
2[NS, &k 2) - (1= 9)]
= 1 —_ ‘0,

(29)

(30)

(81)

if that p is assumed precisely by (31), consequently by Definition 4.2, f € MG (p, 9, £, k) which concludes

the proof. [

5. Integral Means

In [30], Silverman originate that the extremal over the family 7 isf,(C) =

the integral means inequality given by,

2n 2n
f |[f(re®)|" do < f |fa(re®)|" do,
0 0

- Cz—z . In[31] he conjectured
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forall f € 7,1 > 0and 0 < r <1 and settled in [32] by using the extremal function f,(C). In [32], he also
showed his conjecture for the subclasses 7(£) and C(¢&) .

We recall the subsequent definition and the lemma to show our result on Integral means inequality.

Definition 5.1. (Subordination Principle)[23]: Let f and g be functions analytic in ID. Then, we say that the
function f is subordinated to g, if there exists a Schwarz function @, analytic in U with ®(0) = 0 and |o(z)| < 1,
C € U, such that

f(© =9(@(), Cel,

and we symbolize this subordination by f(C) < g(C). In particular, if the function g is univalent in U, the above
subordination is equivalent to

f(0)=9(0) and f(U) c g(U).
Lemma 5.2. [23] If the functions f, g € A with g < {, then for o > 0,and 0 <r <1,

2n 2n
f |a(re®)| do < f [ire®)|” do. (32)
0 0

Using Lemma 5.2, Theorem 2.2 and Theorem 2.5, we prove the integral means inequality for f € MGy (&, 9).
Theorem 5.3. Suppose f € MG (&,9),0>0,0<98<1,0<& <1, k>0and f,(C) is defined by

_ 1-¢
f(O)=C~ RE.LED)

where N(9, &, k,2) is as in (14). Then for C = re'?, 0 < r < 1, we have

21 21
f [f©) do < f L) do. (33)
0 0

CZI

Proof. For f € T, the inequality (33) is equal to showing that
2n
<

o 0 2n
1— 0
f1 ;mnlc desf'l Ne.trad 1
0 B 0

By Lemma 5.2, it suffices to prove that

1= Y lalc <1- oo C
n=2

N, &, k,2)

Setting

1- Z aafC = mw(@) (34)

and using (12), we obtain

001 = Y, A 0

1-
n=2

NS ,k
<|C|Z ekm,,

<|dl,
which completes the proof . O



G. Murugusundaramoorthy et al. / Filomat 38:26 (2024), 9249-9263 9260
6. Subordination Results
Now due to Wilf [39], we state subordinating factor sequence which are more essential for our discussion.

Definition 6.1. (Subordinating Factor Sequence)[39]: A sequence {b,};" , of complex numbers is said to be a
subordinating sequence if, f € A given by (1) is holomorphic, univalent and convex in U, then

Y bl < f(©), Cel. (35)
n=1

Lemma 6.2. The sequence {b,} ", is a subordinating factor sequence if and only if

1

RE%AQEZM@}>Q Cel. (36)
n=1

Theorem 6.3. Let f € MG,(&,9) and g(C) € K then

N, &k, 2)
2[1 - 5 + N(‘9r ér k/ 2)]

(f * Q) < g(0) (37)

where 0 < &< 1;k>0and0<9<1,and

[1 - é + N(S/ ‘SI k/ 2)]

Re{fOV> -Gk

ceU. (38)

The constant factor 5 B2 k)

ek ory) in (37) cannot be substituted by a greater number.

Proof. Since f € MG,(&,9) and assume that g(C) = C + f b,C" € K. Then
n=2

NS, &, k,2)
2“_5+Nwék£ﬂ0*m@>
B NS, &k, 2) - .,
= T EIRGEET (c + Z:; butnC J . (39)

Therefore, by Definition 6.1, the subordination result holds if

NS, &,k 2) w
2[1-E+N8G, &1/,

is a subordinating factor sequence, with 4; = 1. In sight of Lemma 6.2, this is equal to the subsequent
inequality

. N, &k, 2)
Re {1 nC" , . 4
e{ M erors kel S 4
For n > 2 we note that %‘51’1) is increasing function and in particular

NG, Ek2) Nk S, Em)
1-¢ ~ 1-¢ ' 77
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therefore, for |C| = r < 1, we have

NS, & k,2) SR
e {“ TEEOE P }

n=

NS, &k, 2) - nZ::Z N(S, & k, 2)a,C"

=Re {1+ [1-&+R(@, &k 2)] [1-E+R(S,Ek,2)]

Y NG, 9, &, m)a| "
>1 N(‘9/ élklz) 1’!§2| ( 5 n)a |r

ST —E+RE,ER2] [1-E+8(S,E,K2)]
o NeERD) 1-& .
= T -E+RE,ERD] T T-E+RO,Ek2)]
>0, |(=r<1,

by the assertion (12) of Theorem 2.2 . This clearly proves (40) and hence (37) .
By fixing

C >
g(c>=ﬁ=c+;c ek,

thus 1-¢
* = = — —_ 2
N O
inequality (38) follows from (37) . Subsequently we consider the function
i _ 1 - E 2 *
F(C):=C NO.EED) é,k,Z)C € MGi(&,9).
For this function (37) becomes
N, &k, 2) ¢

M—c+N®, ko] & <7=¢ =90

It is easily verified that

min {Re ( RO, &,k 2) F(C))} = L Cel.

2[1 - &+ NS, &, k,2)] 2’

This proves that the constant Zu_i(&—m

cannot be substituted by a greater number.

9261

Concluding Remarks: Suitably fixing the parameters 9, & and k the results discussed in Theorems2.1 - 6.3
would find additional applications for f € 7 for thefunction classesillustrated in Examples 1.3 to 1.6 which
have not been studied so far. Further by fixing 7 = 1,k = 1;7 = 1/2 and ¢ = 1 we get error functions given

by

1,1 (1) n+
I (C)—e (1+—Zn|(2n+1) 2 1].

which gives new study on the family of Starlike functions we left this as an exercise to interested read-
ers.Miller and Bertram Ross[25] proposed the special function, which is called the Miller-Ross function

defined as

EC(S/ Q) = CsepCY%(Sl 80(;)/
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whereY™ is the incomplete gamma function (p.314, [25]). Using the properties of the incomplete gamma
functions the Miller-Ross function can easily be written as

(G .
EC(S,&{)) = Cszom, S,QGC, Wlth ReS>O, Reg)>0
n=l

Which can be stated as
Ec(s, ) = CEq,145(90)

where in the right hand member E;1.,5(pC) is the Mittag-Leffler of two parameters when j = 1, and
¢ = s +1, as a conclusion in future one may consider Miller-Ross function and discuss the above proved
characteristic functions for the subclasses of S or 7 defined in the unit disc.
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