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Symmetric g-Appel polynomials via determinantal approches
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Abstract. This paper sets out to give a determinantal definition for symmetric g-Appel polynomials
(symmetric under the interchange g © g7!) and justify some properties in the lights of the new definition.

1. Quantum and symmetric quantum calculus

Noteworthy, this study will be based on the forthcoming notions and notations of the g-theory (see
[8] and [9]). Along this work, the parameter g is taken such that 4 > 0 and g # 1.

For all complex number a, the g-shifted factorials are given by

n—-1
@q) =1, @ q)n = H(1 —ag") = (1 -a)(1 - aq)....(1 —ag"™"), n=1,2,... (1)
i=0
The g-analogue of the complex number x € C is defined by
=L, xec 2
X q 1 _ q 7 X € 7 ( )
and
quq_q_l, xeC. 3)
-9

Also, we denote

- @ Dn
[n],! = g[k]q = f_qq)n forn>1 and [0],! = 1 4)
and
[;[]q! = qu forn>1, and [E)iq! =1. (5)

k=1
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The g-binomial coefficient is defined by

n| _ [n],! _
[ k :L_m, k—O,l,...,n. (6)

Similarly we can define the symmetric (symmetric under the interchange g «— g7') g-binomial coefficient
by
[n],!

[ " ] == k=0,1,...,1’l. (7)
“lmm

The following relations are useful in the sequel

1. ’[-;C’]q = mq—l.

2. [x]; = "V x]p.

NpER)

The symmetric g-derivative 5q of a function f is defined by

flgx) = fg"%) .

(Dgf)(x) = e X0 (8)

(Dyf)(0) = f/(0) if f'(0) exists.

54 f and D, are related as follows:

D, f(x) = Dg f(q7"%) 9)
where
_ f() - flgx)
qu(x) = W (10)

The following properties hold ([9])
1. qu” = ﬁqx”’l,
~ I~ n - —~— n-1
2. Dy(x—a), = [n],(x - a),
where (J/c-?z/z)g = (x —g"a)(x — " a)(x — g"a)...(x —g7"*'a) and (m)s =1.

In the special case a = 0, we have (.’):6); = (ny): = x".

A g-analogue of the Gauss binomial formula is given by

(x+a), = Z[ Z ] Akt (11)
q

k=0

The symmetric g-integral or g-integral is defined by ([9])

j: f@)dzx = a(g™ - q) Z q'f(q"a), (12)

=13,...
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b b
f flx)dgx = f fx)dzx — f fx)dzx, (13)
a 0 0

and
fo f@)dx = (g7 - 9) q'f(q"a). (14)

n=+1,%3,...

From 8 and 12, we note that for any function f we have

1.
f: f(x)dzx = F(a) — F(0), (15)

under the condition 5qP = f, continuous at x = 0.
2.

D, fo f(Bd=t = f(x). (16)

A symmetric g-analogue of the exponential function (symmetric under the interchange g < g!) has been
defined by ([13],[14])
%@ =Y —=—, zeCandqel0,1[U],+oo]. (17)
n=0 [n]q!

Note that we can consider ¢,(z) as formal power series in the formal variable z satisfiying the relation

lime,(z) = €.
g—1 q( )

In [6], the author secured the following result

2+ ) = 8 (e (). (18)

2. Symmetric g-Appel Polynomials

In literature, the history of Appell polynomials go back to Appel (1880) [2], and since then, Appell
polynomials have been studied by many authors such that Throne [18], Sheffer [16], and Varma [19]. In-
spiredby the previous works, , Al-Salam, in 1967, introduced the family of g-Appell polynomials (A, 4(x));,
and studied some of their properties [1].

According to his definition, the n-degree polynomials A, ;(x) are called g-Appell if they hold the
following g-differential equation

Dy(Ang(x)) = [n];An-14(x);n =0,1,2,... (19)

In1982, Srivastava provided more detais about the family of g-Appell polynomials [17], and since
then ,they have been extensively studied from different perspectives [7, 15], various methods, like operator
algebra, have been used to explore their properties [11]. In [12], Mahmudov derived the g-difference
equations satisfied by sequence of g-Appell polynomials.

Inspired by the Costabile et al. s determinantal approach for defining Bernoulli polynomials as well
as Appell polynomials [3, 4], Mahmudov et al. [10] introduced a new determinantal definition of g-Appell
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polynomials and proved new properties.

Motivated by [10], in this paper, we introduce and study a new g-analogue of Appell polynomials
which is symmetric under the interchange g < 7! called symmetric g-Appell polynomials then we give a
new determinantal definition of symmetric g-Appell polynomials. Additionally, we prove some properties
of the family of symmetric g-Appell polynomials using related algebraic approaches.

Definition 2.1. The n-degree polynomials Zn,q(x) are called symmetric q-Appell if they hold the following g-
differential equation

Dy(Ang(®) = [l An1g(@)in = 1,2, . (20)
Note that Zo,q(x) is a non zero constant let say fTo,q.

Theorem 2.2. The symmetric q-Appell polynomials satisfy the following relation

—~ S~

— - - n ]~ ~ ~
Apg(x) = Ang + [n],An 1% + [ 5 ] Ang g + [ ] Ana gt + o+ Ag g (21)
9 q

W I

Proof. For n = 1, the relation 20 gives

5’1(;1/17(3()) = mq ~O,q(x) = go,q-

Using 15, we obtain
Aqu(X) = Ao,qx + Al,Q/

where A1, is an arbitrary constant.

By repeating the method above, we get Zz,q(x), as below by starting from the property 20 for g-Appell
polynomials

Dy(A24(x)) = [21,A14(x) = [2], A0 % + [21, A1 4.

Using symmetric g-integral 12, we get

szrq(x) = go,qxz + [Fiqulqu + Az,q,

where A, is an arbitrary constant.

By induction on n and Application of similar method to the methods used for finding gl,q (%), gz,q (x) and
continuing taking symmetric g-integral we have

—~— —~—

n—-11]~
1 } An_z,qx +
q

A 1

-~ -~ n—1 =
An_l,q(x) = An—l,q + ) ] An_3,qx2 + ...+ Ao,qx” .
q

Using the fact that forn =1,2,3, ..., every gn,q(x) satisfies the relation 20, we can write

) = —
D,,(An,,,(x))=[n]qAn1,q+[n]q[ 1 ]Anz,,,x+[n]q[ 5 ]An3,,,x2+...+[n]qAO,qx” L
q q

Now, taking the symmetric g-integral of the symmetric g-differential equation above can lead to

— [m[ﬁi]g , Wﬂ;j]z [n], ~
q q

Zn,q(x) = Xn,q + [Tl]q n-14X + — n-24X" + — ,,_3,,1x3 + ...+ erqun,
2l 1 Bl 2 [n],
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where A, ; is an arbitrary constant. Since

==
=
—

soforn=0,1,2,..., we have

— — n | ~ n | ~ —
Apg(x) = Ayy + [n]qAn,l,qx + [ 2 ] An,zquz + [ 3 ] An,g,qx3 + o+ Ag X"
q

Note that there exists a one to one correspondence between the family of symmetric g-Appell polyno-

mials (An 4(¥));”, and the numerical sequence (An Q) An,q # 0. Moreover, every A, 4(x) can be obtained

n=0 "’

recursively from An 14(x) forn > 1.

Also, symmetric g-Appell polynomials can be defined by means of generating function Zq(t), as
follows

Ag(x, 1) = Ag(te (tx Z (x) — ,o <g<1, (22)

where

=Y A, 23)

n=0 n]q

is an analytic function att =0, gn,q = gnlq(O) and e (t) = Y, [Zt_’]"
n=0 g

Depending on the choice of the generating function gq(t), we obtain different families of symmetric
g-Appel polynomials. The following are some of them

1. By taking gq(t) = mq =1, we obtain the family {1, x, X2,
2. By taking gq(t) = Eﬁ, we obtain the family of symmetric g-Bernoulli polynomials qu (x).[5].

2l

3. By taking qu(t) = o

we obtain the family of symmetric (4, )-Euler polynomials E, 4(x/A). [5].

21,

4. By taking A, g(f) = (Ta,(tm

E{) (x/A). [5].

,
) , we obtain the family of higher-order symmetric (A, g)-Euler polynomials
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3. Symmetric g-Appel polynomials from determinantal point of view
Let consider the sequence P, 4(x) of n-degree g-polynomials defined by
P O,q(x) = [%0
1 x x? x1 x"
fo B P BB
2 n-—1 n
0 Bo [1],31 [ 1 ]ﬁn—z [1]511—1
q 1 - g 24)
— n-1 n
Pug®) = gm0 0 Bo [ 5 ]5n_3 [ ) ]5n_2 ,
q q
n
0 0 0 Bo [n_lLﬁl

where Bo, 1,...pn €ER; po#0,n=1,2,3...
Then we have the following results.

Theorem 3.1. P, ,(x) satisfies the following identity

Dq(Pn,q(x)) = [n]qpn—l,q(x)rn = 1/ 2/

To prove this theorem, we need to prove the following Lemma

Lemma 3.2. Let consider the matrix A,x,(x) with first order symmetric g-differentiable functions a;j(x) as elements.
Then the symmetric q-derivative of det(A,x,(x)) is given by the following formula.

an(@'x) (g 'x) a1a(g 7' x)
_ B n atl,liq‘lx) atl,z{q‘1X) aﬁl,n('q‘lx)
Dy(det(Anxn(x))) = Dy(laij(x)l) = Z Dy(aii(x))  Dy(ai(x)) Dy(ain(x)) (25)
i=1 | ay1,1(9%)  aiv1,2(9%) i+1,2(gx)
an,l'(qx) an,Z.(qx) an,n‘(qx)

Proof. Using the multi-linearity of the determinant, we obtain

det(R1(qx), R2(qx), ..., Ra(qx)) — det(Ri(77'x), Ra(q~'x), ..., Ru(g "))
= det(Ri(gx) — Ri(q7"x), Ra(gx), ..., Ry (q%)) + det(Ri(g~"x), Ra(gx), ..., Ru(q%))
— det(Ri(¢7'x), Ro(q7'%), ..., Ru(q7'%))
det(Ry(gx) — R1(q"'x), Ra(qx), ..., Ru(qx)) + det(R1(7~"x), Ro(9x) — Ra(q7'%), ..., Ru(gx))

+ det(Ry(7'%), Ro(q7'x), ..., Ru(gqx)) — det(Ry(g'x), Ra(q7'x), ..., Ru(q "))

= det(R;(gx) — Ri(q7'x), Ro(qx), ..., Ru(qx)) + det(R1(g7"x), Ro(9x) — Ro(97'%), ..., Ru(gx))
+  det(Ri(q7"x), Ra(q7"x), Ra(qx) = R3(q7'x), ..., Ru(qx))

+ det(Ri(77'x), Ra(g7'%), Ra(g7'%), ..., Ru(qx)) — det(Ri(g7'x), Ro(q7'%), ..., Ru(q %))

(
det(R;(qx) — Ri(q %), Ro(gw), ..., Ru(gx)) + det(Ri(g~"x), Ra(gx) — Ra(q '), .., Ru(qx))
+ det(R1(g7'x), Ra(g"x), Ra(q%x) — R3(q '), ..., Ru(gx))
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+ ot det(Ri(g'%), Ro(3' %), Rs(@ 1), -, Ru() = Ru(q ')
= Z det(R1(g7"x), Ra(77'x), ..., Riz1(77'x), Ri(gx) — Ri(g %), Ri+1(gx), ..., Ru(gx)),
i=1
where R; is the i row of the determinant.
Dividing by (7 — g~ ')x, we obtain the desired result. [
Let prove theorem 3.1
Proof. Using Lemma 3.2, the symmetric g-derivative of determinant 24 with respect to x is given by
0 1 [E]qx . qu”‘l
fo p1 /\ﬁ; /\én
2 n
0 Bo [1]ﬁ1 . [1][3n1
. q -
Dy (P = A " 26)
LAY (ﬁo)n+l 0 0 ﬁo . 2 ,Bn—Z
q
n
0 0 0 [n—lL‘Bl
Expanding the determinant 26 above along with the first column, we get
1 fz]qx .. [ﬁtJl]qx”‘2 qu"‘l
-1
,80 ﬁl |: " 1 ] ﬁn72 [ ’il :| ﬁnfl
1)1 n-—1 n
DyPug) = 0 p [ 2 ] Pu=s [ 2 ] -2 @7)
(o) q g
n
0 0 Bo | n_1 L,Bl
Using the fact that
[??’]q[ 7] ) [i = 11,071, I VR iR _[ i1 ]
o, Limtl =t =iy a-2siv, L2
and multiplying the j column of the determinant 27 by []%, as well as the i row by [f—\f]q we obtain
q
1 x ... x"2 x"1
Bo P1 ... r\[in—z /\ﬁ/n—l
— — — n-2 n-1
(-1t [ [2] [n], 0 Bo - [ 1 ] Pn-3 [ 1 ] Pn—2
Dy(Pp,q(x)) = — X =X = X.X —=——X q q , (28)
N (T T (S 1 L :
n—1
0 o O g

which completes the proof. [
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Theorem 3.3. The g-polynomials P, 4(x), defined in 26, can be expressed as

—~—

Py g(x) = Z [ 7 ] X!, (29)
=0 q
where
ap = ﬁlo
ﬁl /\‘Bg e /\ﬁl'_l /\ﬁ]
o [f]ﬁl [];1]51‘—2 [{]ﬁj-l
q — 1 1
) i—1 i
=g |0 P [ ]2 Lﬁj_a [ é Lﬁj_z ’ Y
i
0 0 ﬁO |: ] -1 :Lﬁl

Proof. Expanding the determinant 24 along the first row, we obtain

b1 /_\ﬁ/z /_\‘811_1 ,-\E”
ﬁO [?]ﬁl |:n11:|ﬁn—2 [q]ﬁn—l
q o q L g
-1 n
o s [” ]ﬁn [ ]5n
Pn,q(x):((;;+:1 ' 2 q ’ 2 q ’
0 0 Po [nﬁl]ﬁl
po B B B
o |3 [ e [ ]
q e L 1q
Lo |0 B ' [n;l ]ﬁn_3 [’;]ﬁn—z
+Wx . q 'q
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po PP B
2 n—1
S
q g
-1
072 .10 0 " ] .
+ ...+ (,Bo)””x Po [ 2 q‘Bn 3.
0 0 Bo

By the definition of «; in 30, the first determinant leads to obtain a,,, which is the coefficient of %Y. Also,
the last determinant, which is the determinant of an upper triangular n X n matrix, will lead to obtain the

coefficient of x™ as follows

B (_1)2n+2 . l
= B (Bo)" = B

[2%]

To calculate the coefficient of x/ for 0 < j < 1, consider the following determinant

fo B1 ... B Bj+1 e B
o b0 [ e [T e [ ]
—~ 7 —~ —~
0 0 [];1]@—3 [];1]ﬁ1—1 [Z]ﬁn—z
q q q
= ((ﬁ;%(—l)]#z 0 o Bo [ ;ti ]52 [ Z ]ﬁn—j—l
~ ~
0 0 [H.l]ﬁ [”,]ﬁn
i) il
0 0 0 [nﬁl]ﬁl
- . . q
j+1 n-1 , n
[ J Lﬁl [ j Lﬁn_ﬂ []Lﬁn_j

-1 1+ j .
= G (Bo)!




B1
L
— i+ 1
_ o] j+1 ]j
BECE R B L
0

(71)11+/'
- (,go)n—jﬂ ]

(1
=G|

To obtain coefficient 1 for the term fy placed in the second row, we multiply this raw by [ j

Using the fact that

H. Elmonser / Filomat 38:26 (2024), 9265-9288

j+2 n
e ]
PR 1
i+ 2 n
wol e | e
q q
Bo
n
Po |n_1]&
q
n
ﬁl 52 [j]ﬁn_]‘
— q
j+2
. p1 —
. W A [.” ]mﬁq
j+1 j+2 j+1],
]0 X 1] qﬁ
i |
I
n
: o
q
B P _ Bu-j
j+2 p n b
L5, ]:1” ]ii
j+1 j+2 n
I Jo "
0 2
I
n
) n-1
0 —~——Po ——1p1
n—l} n
U 1,

—~—

j+1

53]
=7 ]-7]
ol i LT,

9274

L.
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and
4]
naASEY
R
Il
we get
j+1 n
N J
= B ].:il tX
I
po B B P
2 n—j-1 n—j
o s 1T e [
q q q
0 —L—p ...
j+2
I
n
) n-1
0 ~——Po ~——P1
n—l} n
I, I,
We continue this method for each row. At the end we obtain
j+1 n
_ (=D J 9 / q
TS nfjl}
oLt
pr. P P P
2 n—j-1 n—j
po [1]131 [ ! ].Bﬂ—j—Z [ 1]]ﬁn—f—1 .
q q q
<0 B . =[”]a,,_]
. J
: q
n
: woo e

whence the result. [

Corollary 3.4. The g-polynomials P, 4(x) satisfy

n £

Pyg(x) = Z[ ’; } Py iy, n=0,1,2,...
=0 q

9275

(31)
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Proof. According to the definition 24, for j = 0,1, ...,n, P;;(0) = &, , since

1 0 0 0 0
ﬁo ﬁl /\‘Bg /\‘Bl_l /\@]
2 j-1 ]
0 pBo 1 B 1 ﬁj—Z 1 .Bf—l
-1y ” = (7
P, 0) = W 0 0 Bo [ J ) ] Bj-3 [ é ] Bj-
q q
0 0 0 Bo [ 'j ]ﬁl
=1,
ﬁl /—\ﬁ} /\ﬁ/]‘_l /-\g]
e [
q — 1 1
_1y 1 ‘
= (‘([30)11)*'/1 0 Po [ ]2 Lﬁj3 [ é Lng]z =a;.
g
0 0 Bo [ i-1 L,Bl

Replacing P, 4(0), instead of a,,_; in relation 29, gives the desired result. [J

Corollary 3.5. The following relations hold for a;s in relation 29

1
0(()—%

—~—

,
aj=—= 3
! ﬁ(’i_o[

j 10
i Lﬁ]‘_iai ] = 1,2,...,7’1

9276

(32)

Proof. The proof is done by expanding a;, defined in relation 30, along with the first row and also applying
a similar technique to the proof of theorem 3.3. [

Theorem 3.6. Suppose that gn,q(x) be the sequence of symmetric q-Appell polynomials with generating function

Ay(t), defined in the relations 22 and 23. If Bog,B1y, ..., Byg , with Bog # 0 are the coefficients of g-Taylor series

expansion of the function %t), then for n = 0,1, ... we have
q

A
A _ 1
AO,q(x) - m
1 x x? x 1 x"
BO q Bl,q /\B/Zq e e /\B/nfl q /\?n,q
2 n-1 n
0 Boq [ 1 ] B1,q [ 1 ] Bn—Zq 1 ] Bn—l,q
U e O n-—1 n
A ™ (Bo,y)t 0 0 BO,q [ ) ] Bn—B,q [ 2 ] Bn—Zq
q q
n
0 0 0 By, o Lqu

(33)
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Proof. Using 22 and 23, we obtain

Z —_A0q+A1qt+A2qi—2+ +Zn f + .., (34)
=0 T’l]q [2]q [n]q
and
sl 2 n
t)eq(tx Z (x) — = Ao 4(X) + A1 40t + Az g = +..+ An g(X) =+ ... (35)
& ! 21,1 [n],!

Let By(t) = =—. Thus, taking in account the hypothesis of the theorem and the definition of g-Taylor series
’7
expansion of Bq(t) ata = 0 we get

t t2 n
Bq(t) Boq+qu~ +leq~— + ... +Bnqi + ..., (36)
[1],! [2],! [n],!

Cauchy product rule for the series production Aq(t)Bq(t) gives

(B)By(t)
LI ol
[n]q n=0 [n]q

1 =

=

gl

S~

i[ ]Akq nkthan .

k=0 [ ]q

b
I
(=}

then,

S~

- 7]~ 1 for n=0,
kZO[k}Akq"kq {0forn>0.
which is equivalent to

(37)

By multiplying both sides of identity 35 by B,(t) = %(t) , and replacing e,(tx) by its g-Taylor series expansion,
q

e. ) x . We obtain

n ”ﬁ‘

=0
i x" = ¢ty

n=0

Bq<t>ZZn,q<x>[i—;,

Al
ZBM~ Ay ().
n=0 [n]q n=0 [ ]q

Cauchy product rule in the last part of relation above leads to

71

n

Yl -yy [ . ]ank,qu,q<x>i—'. (38)

[,
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Comparing the coefficients of [—;v—;| in both sides of equation 38, we have
K
Z[ Z ] By kgArg(¥) =x", 1=0,1,2,.. (39)
k=0 q

Writing identity 39 for n = 0,1, 2, ... leads to obtain the following infinite system in the parameter gk,q(x)

BogAog0) =1 _
Bl,qAO,q(x) +/%A1,q(X) =X

— 2 — —_
BZ,qAO,q(x) + [ 1 ] Bl,qu,q(x) + BO,qAZ,q(x) = x2
q

(40)

—~

— n — —
B3A04(x) + [ 1 ] By1,4A1,4(x) + ... + BogAy4(x) = x",
q

The coefficient matrix of the infinite system 40 is lower triangular. By applying Cramer rule to only the first
n + 1 equations of this system. We obtain

By, 0 0 ... 0 1
B, By, 0 ... 0
2 2
BZ,q 1 Bqu BO,q ce 0 X
q
n-1
Bn—lq [ 1 ] Bn—2q BOq X1
— q —~——
n n-1
Bnq [ 1 ] Bn—l,q [ 1 ] qu X
g ¥) = 9 q
na®) Bo,, 0 0 0 0
By, By, 0 0 0
2
By, [ . ] By, B, 0 0
q
n-1
Bn—l,q [ 1 ] Bn—Zq BOq 0
q —~——
n n-1
Bnq [ 1 ]Bn—lq [ 1 ]qu BOL]
q q
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Bo, 0 0 0 1
Bl q BO,q 0 0 X
2
Bz q [ 1 ] Bl q Bo q 0 xz
q
— 1 . .
- B )+l : —_
( O,q) n-1 o
Bn—l,q 1 Bn—Z,q e e BO,l] X
— q —~——
n n—1
Bn,q [ 1 ] anl,q e e [ 1 ] Bl,q x"
q q

9279

By taking the transpose of the last determinant and then interchange i row of the obtained determinant

with (i + 1) row, i = 1,2, ..., n. We obtain the desired result that is exactly relation 33. [

Theorem 3.7. The following facts are equivalent for the symmetric q-Appell polynomials:

a) Symmetric g-Appell polynomials can be expressed by considering the relations 20 and 21.

b) Symmetric q-Appell polynomials can be expressed by considering the relations 22 and 23.

c) Symmetric g-Appell polynomials can be expressed by considering the determinantal relation 33.

Proof. (a = b) Suppose that relations 20 and 21 hold. Construct an infinite series }.,~, Knlq[%—;‘ from all
K

constants gn,q used for defining gn,q (%) in relation 21.
Now find the following Cauchy product

|
01
\: I
| =
[
R:
=

o~ 1
An —_ t
Y e

n=0

From relation 21 we have

then we find that

[Se] . n .
Z Ang i—zg(tx) = A,(x, D),
n=0 [Vl]q!

whence the result.

(b = ¢) The proof follows directly from Theorem 3.6.

(c = a) The proof follows from Theorems 3.1 and 3.6. [

As the consequence of discussion above and particularly Theorem 3.7, we introduce the determinantal

definition of symmetric g-Appell polynomials as follows
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Definition 3.8. Symmetric q-Appell polynomials (Zn,q(x));f:o can be defined as

AO,q(x) = %‘7
1 X x? X1 X"
Boy By /_\Biz,q ,-\Bi”_l'q JM
2 n—1 n
S AT =t P
q 4 - e (1)
A, = n-1 n
A”/q(x) - W 0 0 BO,q el e [ 2 :| Bl’l—3,q |: 2 ] Bn_Q,q
q q
n
0 0 0 Bo,g [ n-1 ] Bi,

where Bog, B1,4, B2, .. Bng € R, Bog #0andn=1,2,3, ...

4. Basic Properties of Symmetric g-Appell polynomials from determinantal point of view
In this section by using Definition 3.8, we review the basic properties of symmetric g-Appell polynomials.

Theorem 4.1. Let (EW ()5 be a sequence of symmetric g-Appel polynomials, then

1 o[ n)
An,q(x) = B_(xn - Z [ k Bn—k,qu,q(x))/ n=1,23,.. (42)
04 k=0 q
Proof. By expanding the determinant in the Definition 3.8 along with the (1 + 1) row, we obtain
1 x x? el x1
Bo; Biy /_\ﬁz,q cee e /-\li”_l"’
2 n-1
0 BO,q [ 1 ] Bl,q e e [ 1 ] Bn—Z,q
_ | n -
An,q(x) - (Bolq)n+l|: n-1 ] Blqu 0 0 BO,q e e [ " 2 1 ] Bn_3q
1 q
n-1
0 0 0 Bog [ n_o LBl g
1 x x? X2 x"
BO q Bl,q B2,q /\B/nfz q /\?n q
2 n—2 n
0 BOq [ 1 ]qu [ 1 ]Bn—Bq [ 1 ]Bn—lq
=" n—2 n
+ (BO,q)”H Boqu 0 0 Bolq N e [ 2 ] Bn—4,q [ ) ] Bn—Z,q
q q
n-1
0 0 0 By, [ oo Lqu




—~—

n
= —%ﬂ[ n-1 LBl,qAnl,q(x) +
1 X X2
BO,q Bl,q ,\1?/2,11

2
SHD
q

0 0 By,
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(_1)n+1

Bog <
xn—2 xn
By By
n-—2 n
[ e 3]
n—2 n
[ e [2]
q q
n-1
Bog [ n-2 LB”

Repeating the same method for the last determinant

—~—

—~—

_ 1 n e 1
- _m[ ] Bl,qAﬂ—l,q(x) + (B[W)" [ n— 2 ] Bz,qX
g q

n—1
1 X x2 xn—S xn—Z
Bo,q Bl,q /\B/Z,q /\B/n—S,q /\B/n_z q
2 n-—3 n-—2
e ({5 e [
n—3 n-—2
0 0 BO,q 2 } Bn—S,q [ 2 ] Bn—4q
q q
n_2
0 0 0 BOq [ n-3 ] Bl q
—_— . q
_ n (=1 n-—1 (Bo,g)"!
= —ﬁq[ n—1 LBl,qAnl,q(x) + B ([ n_"o LBz,q(_OfTAnz,q(x)]
1 X X2 X3 X"
Bog By Bag  Brsa _ Bua
2 n—3 n
Cun [ [ e [3]
q PR L
(=n+2 n-3 n
+(Bo,q)’H X10 0 BOq |: 2 ] Bn75,q [ 2 ] Bn72q
q q

0 0 0

—~

n
= _%{7| n-1 LBl,qAn—l,q(x) -

1| n—=1
m| n—2 ] BZ,qAn—Z,q(x)
q

9281



H. Elmonser / Filomat 38:26 (2024), 9265-9288

1 X X2
Bog Big _ Bay
2
o (]
q
(12
TE,yT <] 0 0 Bo,g

0 0 0
Similar method gives
Sl
= _%ﬂ n—-1 Bl,qAn—l,q(x) -
L g
—_1 no ]
T "Byl n—-1 Bl,qAn—l,q(x) -
g
—~
= _%ﬂ n—1 Bl,qAn—l,q(x) -

n

= %ﬂ [xn _ Z]:l;ol [ k ] Bn—k,qu,q(x)
q

Corollary 4.2. Powers of x can be expressed based on symmetric q-Appell polynomials as

1| n-1

Bog| n—2

B —~—

-l

Bog| n—2

| n-l
B(]Iq n_
. g

n

xn: E

k=0

N

Xn_3 A
/\B,"‘”"? Jw
n—3 n
|: 1 ] Bn—4q [ 1 ] Bn—lq
—_ 1 L
n—3 n
|: 2 ] Bn75q [ ) ] anzq
1 q
n—1
Bog [ -2 ] Ba
q
: ) y
— _ 1
AqBZ,qAn—Z,q (x) — ... 57 oy By
BZ,qAn—Z,q(X) — . = m(Bn,q — Boqu")
49
BZ,qAn—Z,q(X) —_——— %ﬂBn,qu,q(x) + %ﬂxn

n
[ k ] Bn,k,qu,q(x), n= 1,2,3,...
q

Proof. The proof is the direct result of relation 42 in Theorem 4.1.

O
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Notation 4.3. Let P,(x) and Q,(x) be two polynomials of degree n with P,(x) defined as in relation 24. Then for

n=1,2,3,..., we have

Qo(x) Qi(x)  Qalx) ... Qu-1(x)
Bo pr B ... e
o n [
q
(-1)" 1
(PQ)(x) = ( 0)"+1 0 0 ‘BO .. [ " 2
0 0 0o ... Bo

Theorem 4.4. Let (Zn,q(x)):;"zo and (;l\n,q(x)):"zo be two families of symmetric g-Appell polynomials. Then
a) For every a and p € R, (agn,q(x) + ﬁgnlq(x));"zo is also a family of symmetric q-Appell polynomials.

b) ((Zg)n,q(x))jl"zo is also a family of symmetric q-Appell polynomials.

Qn(%)

b

N

5 ] [l
q q

S~

! ]ﬁn—?) [ ;l ] ,871—2
q q

—~—

s
q

Proof. a) The proof is the direct consequence of linear properties of determinant.
b) According to the determinantal definition of symmetric g-Appell polynomials given in Theorem 3.6

(43)
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relation 33 and also notation 43, we have

(AA)g(0) = Ang(Ang) N N
AO,q(x) Al,q(x) AZ,q(x) v An—l,q(x) An,q(x)
BO,q Bl,q /\1_3/2,1/7 /\%n—l,q /\?n,q
2 n-1 n
o e [Flme o [ e 7]
_ n—1 n
= (Boy)T 0 0 BO,q cee e [ ) ] Bn—B,q [ 5 ] Bn—z,q :
q q
n
0 0 0 Bo, [ o LBM

Using formula 25 given in Lemma 3.2 we have
="

Dy((AA)n4(®)) = G X
Dq(AO,q(x)) Dq(Al,q(x)) Dq(AZ,q(x)) Dq(An—l,q(x)) Dq(An,q(x))
BO/q Bl/q /\?/ZM /\_/n_l,q /\_/Bn,q
2 n-1 n
o e [Ffme e [ e [T
n-1 n .
0 0 Bo, 5 Bu-3q 5 Bu-2g4
q q
n
0 0 0 Boyg [ o1 LBW

Since (A\n,q (X)), is a family of symmetric g-Appell polynomials, according to relation 20 we have

5q(gn,q(x)) = mqgn—l,q(x); n= O/ 1/ 2/

Therefore we can continue as Bq((A;l\)n,q (x)) = %x
4

0 Aoy [21,A14() (1= 11, Au2q()  [1],Au-1,4()
Bug B B B Bu
2 n-1 n
o m [Tfm e [ B [
n-1 n
0 0 BO,q ) Bn—S,q ) Bn—Z,q '
q q
n
0 0 0 Boyg [ 11 LBW

By expanding the last determinant along with the first column as follows
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Ag() LA oo o =11 Aug(®) [l Aug(x)
By By o _Bay By
2 n-1 n
w [Flon e [ e 7]
N G VA n—1 n
(B(],q)n+1( Bo,q) 0 BO,q [ 2 ] Bn—3,q [ 2 ] Bn—z,q
q q
n
0 0 Bo,, [n_l]Bl,,
q

= [n"“]q (Av;‘\)n—l,q (x).

which means that ((X@n,q(x))fzo belongs to the family of symmetric g-Appell polynomials too. [

Theorem 4.5. For Symmetric g-Appell polynomials A, 4(x) we have

S~

Aug(x+y) = Z[ ’: ] Ay n=0,1, ...
i=0 q

Proof. Using the definition in 24 and the identity

we obtain
1T (x+'( (x+y)? (x+y)t (x+y)"
0 B1 B2 /\,@71 Bn
0 o [f]ﬁl [”;1]&1_2 [’f]ﬁn_l
q g Ll
An,q(x+y)=(;§;% 0 0 Bo I:ngl]ﬁn—3 [Z]‘Bn_z
q q
0 0 0 Po [ n’fl ] pr
q
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—~— —~— —~—

0 0 ... 0 [z] [";1]%-1-1‘ [7]x"-l‘
q q q
Bo P .- ﬁiiJ ,\Ei r\@_l ,\E”
1 : 1
0 po - .31‘2[11 ] [i]ﬁil [nl ]ﬁnz [T]ﬁnl
q q q q
; “n
ﬁo |:l—1:|ﬁ1 [i_l]ﬁn—Hl
q g
n
ﬁo [i}ﬁn—i
/\ﬂ
n
0 50 [ﬂ—l]ﬁl
q
[z] [Z+1]x1 z+’2 2 n-1 -1 [n]xn_z
i i i i i
i+1 i+2 n-—1 n
ﬁO [ i }ﬁl i ﬁz i ,Bn—i—l [ i :|,8n—i
q :/\/:q E/\/_q /\/q
noo i+2 n-1 , n .
=Y yig| © Po iv1 [P e [P [i+1]ﬁ”"‘1-
i=0 L Iq : Iq q
: : Po —
n
0 e e 0 ﬁO |:n_1:|qﬁ1

iﬁz]
i
q

—_—~—

Dividing the j column by [ T ]i_ 1 ] for j = 2,..,n — i+ 1 and multiplying the i row by
q
forh=3,..,.n—i+1,

we obtain ey .
i+1 n
YA L I s
" i=0[ i+1 n—1 ] G
i i
q q
1 At x2 xn-1-1 ¥
Bo P r\,‘iz /\ﬁ/n—i—l /\gn—i
2 ] n—i—1 n—i
0 Po [ 1 B ... [ 1 ] Bu-i-2 [ 1 ] Br-i-1
Iq q q
: Bo i
n—i
N AT
— — q
L ] I n ;
= Z [ i ] An—i(x)yl = Z | i ] Ai(x)ynil'
i=0 q i=0 q

O
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Corollary 4.6. (Forward Difference). For Symmetric g-Appell polynomials A,(x) we have

n—-1

AAn(xX) = Anx +1) — An(x) = Z[ ’Z ] Aix), n=0,1,..
i=0 q

Proof. The desired result follows from 44 withy =1. O

Corollary 4.7. (Multiplication Theorem). For Symmetric q-Appell polynomials A,(x) we have
n71 T —

A, (mx) = Z[ Tll ] Aix)m=1)""x""", n=0,1,.. and m=1,2,..
i=0 q

Proof. The desired result follows from 44 with y = x(m —1). O
Theorem 4.8. (Symmetry). For Symmetric g-Appell polynomials A, (x) the following relation holds
(Ap(h —x) = (-1)"A,(x)) © (An(h) = (-1)"An(0)) n=0,1,... and heR.

Proof. (=) Follows from the hypothesis with x = 0.
(<) Using 44 we find

n-1
Ay (h - x) [

] An-i(h)(=1)"'x.

Therefore, using the assumptions and 31, we have

" ] Aui(0)x'
q

n—-1

Aph—x) = (D"

—

i=0
= (—1)"Au().

O
Lemma 4.9. For the numbers a1 and Bay+1 we have
(@241 =0) © (B2ns1=0) n=0,1,...

Proof. As in 32, we know that

bo=a
1w n
,Bn =~z Z ak,gn—k n= ]-/ 2/
Po 2| k
= q
Hence
p1= —alomﬁo
2n+1 n 2n+1 n
Bans1 = —%[ 1 ] a1Pon ,310 Y “ ok ] WokPo(n-i)+1 +[ ok +1 ] 012k+1ﬁ2(n—k)}
q q
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(45)

(46)

(47)

(48)
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and
Aoyl = 0, n= 0; 1;

p1=0 ey

= l 2n+1
Boni1 = —% L, axPon-+1 n=12;..
Po o 2k ]

= Pouws1 =0 n=0;1;..

In the same way, again from 32, we have

apg =

=

S~

[ Z ] ak,Bn—k n=1;2;...
q

—_

n—

|H

ay = —

=

0 /D

o

Asa consequence

_ 1
ay = —g-aofi
—~—

[l 21 1 ol
1 Y “ 2k Lﬁzkaz(nk)ﬂ +[ 2k +1 Lazkuﬁz(nk)l - ﬁlo[ m L,Blazn

Ap41 = B
0
k=0

n=12;..

and
B =0, n=0;1;..

a1 = 0
= 1 2n+1
Qi1 = —5; k§0 k41 | @b =12

q

= Ao+l = 0 n= 0,’ 1,’

O
Theorem 4.10. For Symmetric g-Appell polynomials A,(x) the following relation holds
(An(=x) = (=1)"An(x)) & (B2n+1 = 0).

Proof. By Theorem 4.8 with & = 0 and Lemma 4.9, we find

(An(=x) = (=1)"Au(x)) & (An(0) = (=1)"A4(0)) & (A2:41(0) = 0) & (2041 = 0) & (Bons1 = 0)

n=01,.. O

Theorem 4.11. For each n > 1 it is true that

X 1
j(; An(t)dﬁt = m[An+1(x) - An+1(0)]

and

1 1 vw[n+1
fo An(t)dﬁt:mZ[ l. LA,-(O).

9287

(49)

(50)

(51)
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Proof. Equality 50 follows from 20. Moreover, for x = 1 we find

1
1
fo At = (A1) ~ Ava (O) (52)

and, using 44 with x = 0 and y = 1, we obtain

n+1 St
+1
A=) 1T A0), (53)
i=0 q

so, by 53, relation 52 becomes

O

—~—

1 1 n+1 +1
fo At = — 2[”1. ]Ai<0)—An+1(0>
i=0 q

1 &[n+t
n+1;| i LA,<0>.
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