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Abstract. Inspired by the concepts ofΦ-GCEP andΦ-*GCEP inverses as generalizations of the gMP, *gMP
and MP inverse, the aim of this paper is to extend notions of inner-gMP, gMP-inner, inner-*gMP, *gMP-inner,
1MP and MP1 inverses usingΦ-GCEP andΦ-*GCEP inverses. Thus, four new types of generalized inverses
are introduced and called inner-Φ-GCEP, Φ-GCEP-inner, inner-Φ-*GCEP and Φ-*GCEP-inner inverses. As
particular kinds of these new inverses, inner-GCEP, GCEP-inner, inner-*GCEP and *GCEP-inner inverses
are established. Numerous properties, representations and characterizations of new inverses are presented
as well. Applying our new inverses, we solve some linear equations and express their solutions.

1. Introduction

Through this paper, H, K and G are arbitrary Hilbert spaces, B(H,K) is the set of all bounded linear
operators from H to K, and B(H) = B(H,H). For A ∈ B(H,K), its null space, range and adjoint, respectively,
are represented as N(A), R(A) and A∗. Denote by PU,V the projector onto U along V, where U and V are
closed subspaces, and by PU the orthogonal projector onto U.

Generalized inverses, firstly applied for solving various optimization and approximation problems, are
very useful tools in singular differential and difference equations, Markov chain theory and so on [1]. For
an operator A ∈ B(H,K), its Moore–Penrose inverse, denoted by A†, is unique if it exists and satisfies the
following equations [1]: AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.When only AXA = A holds, A is
regular and X is an inner inverse (or {1}-inverse) of A. The operator A is regular if and only if its Moore–
Penrose inverse exists if and only if R(A) is closed in K. The set of all inner inverses of A will be denoted
by A{1}, and the set of all regular operators of B(H,K) by B(H,K)−. If T and S are closed subspaces of H
and K, respectively, the outer inverse of A, denoted by A(2)

T,S, is a unique (if it exists) solution to XAX = X,

R(X) = T and N(X) = S [1]. The notation A(1,2)
T,S represents A(2)

T,S such that AA(2)
T,SA = A. Denote by B(H,K)T,S

the set of all A ∈ B(H,K) such that A(2)
T,S exists. The symbol B(H,K)−T,S marks the subset of regular operators

from B(H,K)T,S.
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The second author is supported by the Ministry of Science, Technological Development and Innovation Republic of Serbia, grant

no. 451-03-65/2024-03/200124, and the bilateral project between Serbia and France (Generalized inverses on algebraic structures and
applications), grant no. 337-00-93/2023-05/13. The research is done under the project Linear operators: invertibility, spectra and operator
equations, no. O-30-22 under the Branch of SANU in Niš.
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The generalized Drazin inverse of A ∈ B(H), denoted by Ad [5], is a unique solution (if it exists) to
XAX = X, AX = XA, A − A2X is quasinilpotent. We use B(H)d to denote the set of all generalized Drazin
invertible operators ofB(H). The core–EP inverse of A ∈ B(H)d [3, 6, 10], denoted by AdO, is a unique solution
to the system of equations XAX = X, R(X) = R(X∗) = R(Ad). Dually, there exists a unique *core–EP inverse
AdO of an operator A ∈ B(H)d, which satisfies the equations XAX = X, R(X) = R(X∗) = R((Ad)∗).

The generalized Moore-Penrose inverse was presented for a generalized Drazin invertible operator in
[16] in order to generalize the notion of the Moore-Penrose inverse for an operator with closed range.
Precisely, the generalized Moore–Penorse (or gMP) inverse of A ∈ B(H)d is unique solution to

XAX = X, AX = A(AdOA)†AdO and XA = (AdOA)†AdOA,

and it is given by
A⋄ = (AdOA)†AdO.

The dual gMP (or *gMP) inverse of A [16] is expressed as

A⋄ = AdO(AAdO)†.

Notice that, for A ∈ B(H)#, both gMP and *gMP inverses of A are equal to the Moore–Penrose inverse A†

[16]. Recent results about the gMP inverse were proposed in [2, 9, 16, 17].
To extend the concept of the core–EP inverse, a new generalized inverse was introduced in [11] for

rectangular matrices and is called the generalized core–EP inverse. The definition of the generalized core–
EP inverse is stated now for corresponding bounded linear operators. Let A ∈ B(H,K)T,S. The generalized
core–EP (or GCEP) inverse of A is defined as a uniquely determined solution to

XAX = X, XA = A(2)
T,S(AA(2)

T,S)†A and AX = AA(2)
T,S(AA(2)

T,S)†,

which is represented by

A 2O

T,S := A(2)
T,S

(
AA(2)

T,S

)†
.

The generalized *core–EP (or *GCEP) inverse of A is defined by

AT,S
2O :=

(
A(2)

T,SA
)†

A(2)
T,S.

If A(2)
T,S = A†, both GCEP and *GCEP inverses are equal to the Moore-Penrose inverse of A. For H = K and

A(2)
T,S = Ad, by [8], recall that, the GCEP and *GCEP inverses reduces to the core–EP and *core–EP inverses

of A, respectively. In the case that H = K and A(2)
T,S = AdO (or A(2)

T,S = AdO), the GCEP (or *GCEP) becomes the
*gMP (or gMP) inverse of A.

The Φ-GCEP inverse of A was presented in [12] for rectangular matrices applying a matrix Φ in the
definition of the GCEP inverse instead of A(2)

T,S. For A ∈ B(H,K) and Φ ∈ B(G,H) such that AΦ is regular, the
Φ-GCEP inverse of A can be defined as

A 2O,Φ = Φ(AΦ)†.

For A ∈ B(H,K) and Φ ∈ B(K,G) such that ΦA is regular, the Φ-*GCEP inverse of A can be represented by

A 2O,Φ = (ΦA)†Φ.

In the case that A ∈ B(H,K)T,S and Φ = A(2)
T,S, the Φ-GCEP (or Φ-*GCEP) inverse is equal to the GCEP (or

*GCEP) inverse of A.
Composing the inner and Moore–Penrose inverses in [4], the 1MP and MP1 inverses were defined for

rectangular complex matrices. Let A ∈ B(H,K) be regular and A− ∈ A{1} be arbitrary but fixed. Then the
1MP inverse of A is given by

A−,† = A−AA†,
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and the MP1 inverse of A is represented by

A†,− = A†AA−.

Significant results about 1MP and MP1 inverses can be found in [4, 7, 13].
The concepts of the inner-gMP and gMP-inner inverses were presented in [15] as generalizations of

the 1MP and MP1 inverses, respectively. Let A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then the
inner-gMP inverse of A is a unique solution to the system

XAX = X, AX = AA⋄ and XA = A−AA⋄A, (1)

which is represented by
A−,⋄ = A−AA⋄.

The gMP-inner inverse of A is expressed as

A⋄,− = A⋄AA−.

Note that, if A ∈ B(H)#, inner-gMP and gMP-inner inverses coincide with 1MP and MP1 inverses, respec-
tively. Dually, the inner-*gMP and *gMP-inner inverses are defined by A−,⋄ = A−AA⋄ and A⋄,− = A⋄AA−,
respectively, in [15].

Motivated by the Φ-GCEP inverse, GCEP inverses and their duals as generalizations of the Moore–
Penrose inverse, we introduce new generalized inverses for a bounded linear regular operator on Hilbert
spaces, extending concepts of inner-gMP, gMP-inner, inner-*gMP, *gMP-inner, 1MP and MP1 inverses. By
associating the Φ-GCEP with the inner inverse, we define both inner-Φ-GCEP and Φ-GCEP-inner inverses
of that operator. Precisely, by replacing the Moore–Penorse inverse with aΦ-GCEP inverse in the definition
of a 1MP (MP1) inverse, we obtain its inner-Φ-GCEP (Φ-GCEP-inner) inverse. As special cases of the inner-
Φ-GCEP and Φ-GCEP-inverses, we establish the definitions of the inner-GCEP and GCEP-inner inverses.
We present many characterizations and representations of new generalized inverses. Finally, substituting
the Φ-GCEP inverse with the Φ-*GCEP inverse, we give definitions for the inner-Φ-*GCEP and Φ-*GCEP-
inner inverses. Applying our new inverses, we solve several kinds of linear equations, and one of them is
an extension of normal equation related to the least–squares solution.

The paper is organized in the following way. Inner-Φ-GCEP and Φ-GCEP-inner inverses, as well as
inner-GCEP and GCEP-inner inverses, are defined and investigated in Section 2. In Section 3, the definitions
and properties of inner-Φ-*GCEP, Φ-*GCEP-inner, inner-*GCEP and *GCEP-inner inverses are presented.
Solvability of linear equations based on our new generalized inverses is part of Section 4.

2. Inner-Φ-GCEP andΦ-GCEP-inner inverses

Associating inner and Φ-GCEP inverses of a given operator, we present new classes of generalized
inverses and generalized notions of the inner-*gMP and *gMP-inner inverses as well as of the 1MP and
MP1 inverses.

Theorem 2.1. Let A ∈ B(H,K)− and Φ ∈ B(G,H) such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
Then

(a) the system
XAX = X, AX = AA 2O,Φ and XA = A−AA 2O,ΦA (2)

has a uniquely determined solution expressed by X = A−AA 2O,Φ,

(b) the system
XAX = X, AX = AA 2O,ΦAA− and XA = A 2O,ΦA

has a uniquely determined solution expressed by X = A 2O,ΦAA−.
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Proof. (a) Note that A 2O,ΦAA 2O,Φ = Φ(AΦ)†AΦ(AΦ)† = Φ(AΦ)† = A 2O,Φ. If X = A−AA 2O,Φ, we have XA =
A−AA 2O,ΦA and AX = (AA−A)A 2O,Φ = AA 2O,Φ, which yields X(AX) = (XA)A 2O,Φ = A−A(A 2O,ΦAA 2O,Φ) =
A−AA 2O,Φ = X. It follows that X = A−AA 2O,Φ is a solution of (2).

Assume that X is a solution of (2). From

X = (XA)X = A−AA 2O,Φ(AX) = A−A(A 2O,ΦAA 2O,Φ) = A−AA 2O,Φ,

we obtain that the system (2) has unique solution X = A−AA 2O,Φ.
The part (b) can be checked similarly as part (a).

Definition 2.2. Let A ∈ B(H,K)− and Φ ∈ B(G,H) such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.

(a) The inner-Φ-GCEP inverse of A is defined by

A−, 2O,Φ = A−AA 2O,Φ.

(b) The Φ-GCEP-inner inverse of A is defined by

A 2O,Φ,− = A 2O,ΦAA−.

By the definition of Φ-GCEP inverse, remark that

A−, 2O,Φ = A−AΦ(AΦ)† and A 2O,Φ,− = Φ(AΦ)†AA−.

As a consequence of Theorem 2.1, we can define the inner-GCEP and GCEP-inner inverses which are
particular kinds of inner-Φ-GCEP and Φ-GCEP-inner inverses.

Corollary 2.3. Let A ∈ B(H,K)−T,S and A− ∈ A{1} be arbitrary but fixed. Then

(a) the system
XAX = X, AX = AA 2O

T,S and XA = A−AA 2O

T,SA

has a uniquely determined solution expressed by X = A−AA 2O

T,S,

(b) the system
XAX = X, AX = AA 2O

T,SAA− and XA = A 2O

T,SA

has a uniquely determined solution expressed by X = A 2O

T,SAA−.

Definition 2.4. Let A ∈ B(H,K)−T,S and A− ∈ A{1} be arbitrary but fixed.

(a) The inner-GCEP inverse of A is defined by

A−, 2OT,S = A−AA 2O

T,S.

(b) The GCEP-inner inverse of A is defined by

A 2O,−
T,S = A 2O

T,SAA−.

A list of special cases of inner-GCEP and GCEP-inner inverses follows:

- when A(2)
T,S = A†, A−, 2OT,S = A−,† and A 2O,−

T,S = A†,−;

- for H = K and A(2)
T,S = AdO, A 2O

T,S = A⋄, A−, 2OT,S = A−,⋄ and A 2O,−
T,S = A⋄,−;

- if H = K and A(2)
T,S = Ad, A 2O

T,S = AdO, A−, 2OT,S = A−AAdO and A 2O,−
T,S = AdOAA− [14];
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Some representations for inner-GCEP and GCEP-inner inverses follow by [11, Corollary 2.1 and Corol-
lary 2.3].

Corollary 2.5. Let A ∈ B(H,K)−T,S and A− ∈ A{1} be arbitrary but fixed. Then

A−, 2OT,S = A−AA(2)
T,S(AA(2)

T,S)† = A−AA(2)
T,SPR(AA(2)

T,S) = A−A(AA(2)
T,S(A(2)

T,S)†)†

and
A 2O,−

T,S = A(2)
T,S(AA(2)

T,S)†AA− = A(2)
T,SPR(AA(2)

T,S)AA− = (AA(2)
T,S(A(2)

T,S)†)†AA−.

Example 2.6. For complex matrices

A =

 1 2 0
0 0 1
0 0 0

 and Φ =

 1 0 0
1 0 0
0 0 0

 ,
we have

AΦ =

 3 0 0
0 0 0
0 0 0

 , (AΦ)† =


1
3 0 0
0 0 0
0 0 0

 ,
A 2O,Φ = Φ(AΦ)† =


1
3 0 0
1
3 0 0
0 0 0

 and A− =

 1 − 2a −2b s
a b c
0 1 f

 ,
where a, b, c, f , s ∈ C are arbitrary. Therefore,

A−, 2O,Φ = A−AA 2O,Φ =

 1 − 2a 0 0
a 0 0
0 0 0


and

A 2O,Φ,− = A 2O,ΦAA− =


1
3 0 s+2c

3
1
3 0 s+2c

3
0 0 0

 .
Theorem 2.1 yields the following properties for inner-Φ-GCEP inverses.

Theorem 2.7. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
For X ∈ B(K,H), the following statements are equivalent:

(i) X = A−, 2O,Φ;

(ii) XAX = X, AXA = AA 2O,ΦA, AX = AA 2O,Φ and XA = A−AA 2O,ΦA;

(iii) XA = A−AA 2O,ΦA and XAA 2O,Φ = X;

(iv) XA = A−AA 2O,ΦA and XAΦ(AΦ)† = X;

(v) XAA† = A−AA 2O,ΦAA† and XAΦ(AΦ)† = X;

(vi) XAA∗ = A−AA 2O,ΦAA∗ and XAΦ(AΦ)† = X;

(vii) XAΦ = A−AΦ and XAΦ(AΦ)† = X;

(viii) AX = AA 2O,Φ and A−AA 2O,ΦAX = X;

(ix) AX = AA 2O,Φ and A−AX = X;



D. Stojanović, D. Mosić / Filomat 38:26 (2024), 9025–9041 9030

(x) A†AX = A†AA 2O,Φ and A−AX = X;

(xi) A∗AX = A∗AA 2O,Φ and A−AX = X;

(xii) A 2O,ΦAX = A 2O,Φ and A−AA 2O,ΦAX = X;

(xiii) (AΦ)†AX = (AΦ)† and A−AΦ(AΦ)†AX = X;

(xiv) (AΦ)∗AX = (AΦ)∗ and A−AΦ(AΦ)†AX = X;

(xv) XAA 2O,ΦAX = X, AA 2O,ΦAXAA 2O,ΦA = AA 2O,ΦA, AA 2O,ΦAX = AA 2O,Φ and XAA 2O,ΦA = A−AA 2O,ΦA;

(xvi) XAA 2O,ΦAX = X, AA 2O,ΦAX = AA 2O,Φ and XAA 2O,ΦA = A−AA 2O,ΦA.

Proof. (i)⇒ (ii): Using Theorem 2.1, this part trivially follows.
(ii)⇒ (iii): X = X(AX) = XAA 2O,Φ follows from XAX = X and AX = AA 2O,Φ.
(iii) ⇒ (iv): By the definition of A 2O,Φ and the assumption XAA 2O,Φ = X, we obtain X = XAA 2O,Φ =

XAΦ(AΦ)†.
(iv)⇒ (i): Since XA = A−AA 2O,ΦA and XAΦ(AΦ)† = X, we conclude that

X = (XA)Φ(AΦ)† = A−AA 2O,ΦAA 2O,Φ = A−AA 2O,Φ = A−, 2O,Φ.

We complete this proof similarly.

Similar results hold for the inner-GCEP inverses.

Corollary 2.8. Let A ∈ B(H,K)−T,S and A− ∈ A{1} be arbitrary but fixed. For X ∈ B(K,H), the following statements
are equivalent:

(i) X = A−, 2OT,S ;

(ii) XAX = X, AXA = AA 2O

T,SA, AX = AA 2O

T,S and XA = A−AA 2O

T,SA;

(iii) XA = A−AA 2O

T,SA and XAA 2O

T,S = X;

(iv) XA = A−AA 2O

T,SA and XAA(2)
T,S(AA(2)

T,S)† = X;

(v) XAA† = A−AA 2O

T,SAA† and XAA(2)
T,S(AA(2)

T,S)† = X;

(vi) XAA∗ = A−AA 2O

T,SAA∗ and XAA(2)
T,S(AA(2)

T,S)† = X;

(vii) XAA(2)
T,S = A−AA(2)

T,S and XAA(2)
T,S(AA(2)

T,S)† = X;

(viii) AX = AA 2O

T,S and A−AA 2O

T,SAX = X;

(ix) AX = AA 2O

T,S and A−AX = X;

(x) A†AX = A†AA 2O

T,S and A−AX = X;

(xi) A∗AX = A∗AA 2O

T,S and A−AX = X;

(xii) A 2O

T,SAX = A 2O

T,S and A−AA 2O

T,SAX = X;

(xiii) (AA(2)
T,S)†AX = (AA(2)

T,S)† and A−AA(2)
T,S(AA(2)

T,S)†AX = X;

(xiv) (AA(2)
T,S)∗AX = (AA(2)

T,S)∗ and A−AA(2)
T,S(AA(2)

T,S)†AX = X;
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(xv) XAA 2O

T,SAX = X, AA 2O

T,SAXAA 2O

T,SA = AA 2O

T,SA, AA 2O

T,SAX = AA 2O

T,S and XAA 2O

T,SA = A−AA 2O

T,SA;

(xvi) XAA 2O

T,SAX = X, AA 2O

T,SAX = AA 2O

T,S and XAA 2O

T,SA = A−AA 2O

T,SA.

If A ∈ B(H,K)−R(B),N(C), for adequate operators B and C, and A− ∈ A{1} be arbitrary but fixed, notice, by

Corollary 2.8(vii), that X = A−, 2OR(B),N(C) if and only if XAB = A−AB and XAA(2)
R(B),N(C)(AA(2)

R(B),N(C))
† = X.

Analogously to Theorem 2.7, we characterize the Φ-GCEP-inner inverse.

Theorem 2.9. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
For X ∈ B(K,H), the following statements are equivalent:

(i) X = A 2O,Φ,−;

(ii) XAX = X, AXA = AA 2O,ΦA, AX = AA 2O,ΦAA− and XA = A 2O,ΦA;

(iii) AX = AA 2O,ΦAA− and A 2O,ΦAX = X;

(iv) AX = AA 2O,ΦAA− and Φ(AΦ)†AX = X;

(v) A†AX = A†AA 2O,ΦAA− and Φ(AΦ)†AX = X;

(vi) A∗AX = A∗AA 2O,ΦAA− and Φ(AΦ)†AX = X;

(vii) (AΦ)†AX = (AΦ)†AA− and Φ(AΦ)†AX = X;

(viii) (AΦ)∗AX = (AΦ)∗AA− and Φ(AΦ)†AX = X;

(ix) XA = A 2O,ΦA and X = XAA 2O,ΦAA−;

(x) XA = A 2O,ΦA and XAA− = X;

(xi) XAA† = A 2O,ΦAA† and XAA− = X;

(xii) XAA∗ = A 2O,ΦAA∗ and XAA− = X;

(xiii) XAA 2O,Φ = A 2O,Φ and X = XAA 2O,ΦAA−;

(xiv) XAΦ(AΦ)† = Φ(AΦ)† and X = XAΦ(AΦ)†AA−;

(xv) XAA 2O,ΦAX = X, AA 2O,ΦAXAA 2O,ΦA = AA 2O,ΦA, AA 2O,ΦAX = AA 2O,ΦAA− and XAA 2O,ΦA = A 2O,ΦA;

(xvi) XAA 2O,ΦAX = X, AA 2O,ΦAX = AA 2O,ΦAA− and XAA 2O,ΦA = A 2O,ΦA.

Corollary 2.10. Let A ∈ B(H,K)−T,S and A− ∈ A{1} be arbitrary but fixed. For X ∈ B(K,H), the following statements
are equivalent:

(i) X = A 2O,−
T,S ;

(ii) XAX = X, AXA = AA 2O

T,SA, AX = AA 2O

T,SAA− and XA = A 2O

T,SA;

(iii) AX = AA 2O

T,SAA− and A 2O

T,SAX = X;

(iv) AX = AA 2O

T,SAA− and A(2)
T,S(AA(2)

T,S)†AX = X;

(v) A†AX = A†AA 2O

T,SAA− and A(2)
T,S(AA(2)

T,S)†AX = X;

(vi) A∗AX = A∗AA 2O

T,SAA− and A(2)
T,S(AA(2)

T,S)†AX = X;

(vii) (AA(2)
T,S)†AX = (AA(2)

T,S)†AA− and A(2)
T,S(AA(2)

T,S)†AX = X;
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(viii) (AA(2)
T,S)∗AX = (AA(2)

T,S)∗AA− and A(2)
T,S(AA(2)

T,S)†AX = X;

(ix) XA = A 2O

T,SA and X = XAA 2O

T,SAA−;

(x) XA = A 2O

T,SA and XAA− = X;

(xi) XAA† = A 2O

T,SAA† and XAA− = X;

(xii) XAA∗ = A 2O

T,SAA∗ and XAA− = X;

(xiii) XAA 2O

T,S = A 2O

T,S and X = XAA 2O

T,SAA−;

(xiv) XAA(2)
T,S = A(2)

T,S and X = XAA(2)
T,S(AA(2)

T,S)†AA−;

(xv) XAA 2O

T,SAX = X, AA 2O

T,SAXAA 2O

T,SA = AA 2O

T,SA, AA 2O

T,SAX = AA 2O

T,SAA− and XAA 2O

T,SA = A 2O

T,SA;

(xvi) XAA 2O

T,SAX = X, AA 2O

T,SAX = AA 2O

T,SAA− and XAA 2O

T,SA = A 2O

T,SA.

For A ∈ B(H,K)−R(B),N(C), where B and C are corresponding operators, and arbitrary but fixed A− ∈ A{1},

Corollary 2.10(xiv) implies that X = AR(B),N(C)
−, 2O if and only if XAB = B and X = XAA(2)

R(B),N(C)(AA(2)
R(B),N(C))

†AA−.
Theorem 2.1 implies that A−, 2O,Φ and A 2O,Φ,− are outer inverses of A, and Theorem 2.7 and Theorem 2.9

yield that A−, 2O,Φ and A 2O,Φ,− are both inner and outer inverses of AA 2O,ΦA. Therefore, we have the next
characterizations of projectors defined by A−, 2O,Φ and A 2O,Φ,− and new representations for A−, 2O,Φ and A 2O,Φ,−.

Lemma 2.11. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
The following statements hold:

(i) AA−, 2O,Φ is the orthogonal projector onto R(AΦ);

(ii) A−, 2O,ΦA is a projector onto R(A−AΦ) along N((AΦ)∗A);

(iii) A−, 2O,Φ = A(2,3)
R(A−AΦ),N((AΦ)∗) = (AA 2O,ΦA)(1,2,3)

R(A−AΦ),N((AΦ)∗);

(iv) AA 2O,Φ,− is a projector onto R(AΦ) along N((AΦ)∗AA−);

(v) A 2O,Φ,−A is a projector onto R(Φ(AΦ)∗) along N((AΦ)∗A);

(vi) A 2O,Φ,− = A(2)
R(Φ(AΦ)∗),N((AΦ)∗AA−) = (AA 2O,ΦA)(1,2)

R(Φ(AΦ)∗),N((AΦ)∗AA−).

Proof. (i) Based on Theorem 2.1, AA−, 2O,Φ = AA 2O,Φ = AΦ(AΦ)† is the orthogonal projector onto R(AΦ(AΦ)†) =
R(AΦ).

(ii) Because A−, 2O,Φ = A−, 2O,ΦAA−, 2O,Φ by Theorem 2.1, we deduce that A−, 2O,ΦA is a projection. Given that
A−, 2O,ΦA = A−AA 2O,ΦA = A−AΦ(AΦ)†A, it follows that R(A−, 2O,ΦA) ⊆ R(A−AΦ). Furthermore,

R(A−AΦ) = R(A−AΦ(AΦ)†AΦ) ⊆ R(A−AΦ(AΦ)†A) = R(A−, 2O,ΦA),

i.e. R(A−, 2O,ΦA) = R(A−AΦ). Clearly,

N(A−, 2O,ΦA) = N(A−AΦ(AΦ)†A) = N((AΦ)†A) = N((AΦ)∗A).

(iii) Evidently, R(A−, 2O,Φ) = R(A−, 2O,ΦA) = R(A−AΦ) and N(A−, 2O,Φ) = N(AA−, 2O,Φ) = R(AΦ)⊥ = N((AΦ)∗).
In a similar manner, we finish this proof.

Lemma 2.11 gives the next properties of inner-GCEP and GCEP-inner inverses.

Corollary 2.12. Let A ∈ B(H,K)− and A− ∈ A{1} arbitrary but fixed. The following statements hold:
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(i) AA−, 2OT,S is the orthogonal projector onto R(AA(2)
T,S);

(ii) A−, 2OT,S A is a projector onto R(A−AA(2)
T,S) along N((AA(2)

T,S)∗A);

(iii) A−, 2OT,S = A(2,3)

R(A−AA(2)
T,S),N((AA(2)

T,S)∗)
= (AA 2O

T,SA)(1,2,3)

R(A−AA(2)
T,S),N((AA(2)

T,S)∗)
;

(iv) AA 2O,−
T,S is a projector onto R(AA(2)

T,S) along N((AA(2)
T,S)∗AA−);

(v) A 2O,−
T,S A is a projector onto T along N((AA(2)

T,S)∗A);

(vi) A 2O,−
T,S = A(2)

T,N((AA(2)
T,S)∗AA−)

= (AA 2O

T,SA)(1,2)

T,N((AA(2)
T,S)∗AA−)

.

Also, we can consider A−, 2O,Φ and A 2O,Φ,− as solutions of some restricted equations.

Theorem 2.13. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
Then, for X ∈ B(K,H),

(i) A−, 2O,Φ is a unique solution to the restricted equation

AX = PR(AΦ) and R(X) ⊆ R(A−A); (3)

(ii) A 2O,Φ,− is a unique solution to the restricted equation

AX = PR(AΦ),N((AΦ)∗AA−) and R(X) ⊆ R(Φ(AΦ)∗). (4)

Proof. (i) According to Lemma 2.11, (4) has a solution A−, 2O,Φ.
If X and Z are two solutions of (4), then R(X − Z) ⊆ R(A−A) and A(X − Z) = 0 yield R(X − Z) ⊆

R(A−A) ∩N(A−A) = {0}. Hence, A−, 2O,Φ = X = Z is unique solution to (4).
In a similar way, we prove (ii).

Corollary 2.14 is a consequence of Theorem 2.13.

Corollary 2.14. Let A ∈ B(H,K)− and A− ∈ A{1} arbitrary but fixed. Then, for X ∈ B(K,H),

(i) A−, 2OT,S is a unique solution to the restricted equation AX = PR(AA(2)
T,S) and R(X) ⊆ R(A−A);

(ii) A 2O,−
T,S is a unique solution to the restricted equation AX = PR(AA(2)

T,S),N((AA(2)
T,S)∗AA−) and R(X) ⊆ T.

Theorem 2.15. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
Then, for X ∈ B(K,H),

(i) A−, 2O,Φ is a unique solution to the restricted equation

XA = PR(A−AΦ),N((AΦ)∗A) and R(X∗) ⊆ R(AΦ); (5)

(ii) A 2O,Φ,− is a unique solution to the restricted equation

XA = PR(Φ(AΦ)∗),N((AΦ)∗A)) and R(X∗) ⊆ R((AA−)∗).

Proof. (i) Lemma 2.11 gives that A−, 2O,ΦA = PR(A−AΦ),N((AΦ)∗A). Since A−, 2O,Φ = A−AA 2O,Φ = A−AΦ(AΦ)†, we get
(A−, 2O,Φ)∗ = AΦ(AΦ)†(A−)∗. Thus, A−, 2O,Φ is a solution to (5).

If (5) has two solutions X and Z, then A∗(X∗ − Z∗) = 0 and so

R(X∗ − Z∗) ⊆ N(A∗) ∩ R(AΦ) ⊆ N((AΦ)∗) ∩ R(AΦ) = R(AΦ)⊥ ∩ R(AΦ) = {0}.

Hence, X = Z and (5) has the unique solution A−, 2O,Φ.
Part (ii) can be verified analogously.
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Corollary 2.16. Let A ∈ B(H,K)− and A− ∈ A{1} arbitrary but fixed. Then, for X ∈ B(K,H),

(i) A−, 2OT,S is unique solution to the restricted equation XA = PR(A−AA(2)
T,S),N((AA(2)

T,S)∗A) and R(X∗) ⊆ R(AA(2)
T,S);

(ii) A 2O,−
T,S is unique solution to the restricted equation XA = PT,N((AA(2)

T,S)∗A)) and R(X∗) ⊆ R((AA−)∗).

Necessary and sufficient conditions for inner-Φ-GCEP andΦ-GCEP-inner inverses to be an inner inverse
of A, are studied.

Theorem 2.17. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
Then the following claims are mutually equivalent:

(i) A = AA−, 2O,ΦA ;

(ii) A = AA 2O,ΦA;

(iii) A = AA 2O,Φ,−A;

(iv) N(A 2O,ΦA) = N(A) (⇔ N((AΦ)∗A) = N(A));

(v) R(A) = R(AA 2O,Φ) (⇔ R(A) = R(AΦ)).

Proof. (i)⇔(ii)⇔(iii): This part follows from the equalities AA−, 2O,ΦA = AA 2O,ΦA = AA 2O,Φ,−A. (ii)⇔(iv):
Keeping in mind that A 2O,ΦA = Φ(AΦ)†A is a projecton, we have

A = AA 2O,ΦA⇔ A(I − A 2O,ΦA) = 0⇔ A(I −Φ(AΦ)†A) = 0

⇔ R(I − A 2O,ΦA) ⊆ N(A)⇔ N(A 2O,ΦA) = N(A)

⇔ N(Φ(AΦ)†A) ⊆ N(A)⇔ N((AΦ)∗A) = N(A).

(ii)⇔(v): Similarly to (ii)⇔(iv), knowing that AA 2O,Φ is a projection.

For arbitrary operator F, it is interesting to investigate when A−, 2O,Φ coincides with A−AF.

Theorem 2.18. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
Then, for F ∈ Φ ∈ B(K,H), the following claims are mutually equivalent:

(i) A−, 2O,Φ = A−AF;

(ii) AA 2O,Φ = AF;

(iii) N(AA 2O,Φ) = N(AF) and AA 2O,ΦA = AFA;

(iv) F = A 2O,Φ + (I − A−A)E for arbitrary E ∈ B(K,H).

Proof. (i)⇒ (ii): Clearly, AF = A(A−AF) = AA−, 2O,Φ = AA 2O,Φ.
(ii)⇒ (iii) and (iv)⇒ (ii): These implications are evident.
(iii)⇒ (i): Note that R(I − AA 2O,Φ) = N(AA 2O,Φ) = N(AF) gives AF = AFAA 2O,Φ. Using AA 2O,ΦA = AEA, we

get A−, 2O,Φ = A−AA 2O,Φ = A−(AA 2O,ΦA)A 2O,Φ = A−(AFAA 2O,Φ) = A−AF.
(ii) ⇒ (iv): All solutions F of AA 2O,Φ = AF, by [1, p. 52], are the sum of its particular solution and the

general solutions to AF = 0, i.e. F = A 2O,Φ + (I − A−A)E, for arbitrary F ∈ B(K,H).

Analogous theorem can be verified for the Φ-GCEP-inner inverse.

Theorem 2.19. Let A ∈ B(H,K)− and Φ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
Then, for F ∈ Φ ∈ B(K,H), the following claims are mutually equivalent:

(i) A 2O,Φ,− = FAA−;
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(ii) A 2O,ΦA = FA;

(iii) R(A 2O,ΦA) = R(FA) and AA 2O,ΦA = AFA;

(iv) F = A 2O,Φ + E(I − AA−), for arbitrary E ∈ B(H).

If we denote by A{−, 2O,Φ} and A{ 2O,Φ,−}, respectively, the sets of all inner-Φ-GCEP and Φ-GCEP-inner
inverses of A, these sets can be described as follows.

Theorem 2.20. For A ∈ B(H,K)− andΦ ∈ B(G,H) be such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed,
we have

A{−, 2O,Φ} = {A−, 2O,Φ + (I − A−A)ZAΦ(AΦ)† : Z ∈ B(K,H)}

and
A{ 2O,Φ,−} = {A 2O,Φ,− + Φ(AΦ)†AZ(I − AA−) : Z ∈ B(K,H)}.

Proof. It is clear from A{1} = {A− + Z − A−AZAA− : Z ∈ B(K,H)} [1].

3. Inner-Φ-*GCEP andΦ-*GCEP-inner inverses

Using the Φ-*GCEP inverse instead of the Φ-GCEP inverse in the definitions of inner-Φ-GCEP and
Φ-GCEP-inner inverses, we introduce inner-Φ-*GCEP and Φ-*GCEP-inner inverses in this section. In this
manner, we generalize the notion of the inner-gMP and gMP-inner inverses. We omit the proofs of the
following results because they are similar to the corresponding results of Section 2.

Theorem 3.1. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed.
Then

(a) the system
XAX = X, AX = AA 2O,Φ and XA = A−AA 2O,ΦA

has a uniquely determined solution expressed by X = A−AA 2O,Φ,

(b) the system
XAX = X, AX = AA 2O,ΦAA− and XA = A 2O,ΦA

has a uniquely determined solution expressed by X = A 2O,ΦAA−.

Definition 3.2. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed.

(a) The inner-Φ-*GCEP inverse of A is defined by

A−, 2O,Φ = A−AA 2O,Φ.

(b) The Φ-*GCEP-inner inverse of A is defined by

A 2O,Φ,− = A 2O,ΦAA−.

Theorem 3.1 gives the definitions of inner-*GCEP and *GCEP-inner inverses.

Corollary 3.3. Let A ∈ B(H,K)−T,S and A− ∈ A{1} be arbitrary but fixed. Then

(a) the system
XAX = X, AX = AAT,S

2O and XA = A−AAT,S
2O A

has a uniquely determined solution expressed by X = A−AAT,S
2O ,
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(b) the system
XAX = X, AX = AAT,S

2O AA− and XA = AT,S
2O A

has a uniquely determined solution expressed by X = AT,S
2O AA−.

Definition 3.4. Let A ∈ B(H,K)−T,S and A− ∈ A{1} be arbitrary but fixed.

(a) The inner-*GCEP inverse of A is defined by

AT,S
−, 2O = A−AAT,S

2O .

(b) The *GCEP-inner inverse of A is defined by

AT,S
2O,− = AT,S

2O AA−.

Particular kinds of inner-*GCEP and *GCEP-inner inverses are given:

- if A(2)
T,S = A†, AT,S

−, 2O = A−,† and AT,S
2O,− = A†,−;

- when H = K and A(2)
T,S = AdO, AT,S

2O = A⋄, AT,S
−, 2O = A−,⋄ and AT,S

2O,− = A⋄,−;

- for H = K and A(2)
T,S = Ad, AT,S

2O = AdO, AT,S
−, 2O = A−AAdO and AT,S

2O,− = AdOAA−.

The following properties for inner-Φ-*GCEP inverses are the consequence of Theorem 3.1.

Theorem 3.5. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed. For
X ∈ B(K,H), the following statements are equivalent:

(i) X = A−, 2O,Φ;

(ii) XAX = X, AXA = AA 2O,ΦA, AX = AA 2O,Φ and XA = A−AA 2O,ΦA;

(iii) XA = A−AA 2O,ΦA and XAA 2O,Φ = X;

(iv) XA = A−AA 2O,ΦA and XA(ΦA)†Φ = X;

(v) XAA† = A−AA 2O,ΦAA† and XA(ΦA)†Φ = X;

(vi) XAA∗ = A−AA 2O,ΦAA∗ and XA(ΦA)†Φ = X;

(vii) XA(ΦA)† = A−A(ΦA)† and XA(ΦA)†Φ = X;

(viii) XA(ΦA)∗ = A−A(ΦA)∗ and XA(ΦA)†Φ = X;

(ix) AX = AA 2O,Φ and A−AA 2O,ΦAX = X;

(x) AX = AA 2O,Φ and A−AX = X;

(xi) A†AX = A†AA 2O,Φ and A−AX = X;

(xii) A∗AX = A∗AA 2O,Φ and A−AX = X;

(xiii) A 2O,ΦAX = A 2O,Φ and A−AA 2O,ΦAX = X;

(xiv) (ΦA)†ΦAX = (ΦA)†Φ and A−A(ΦA)†ΦAX = X;

(xv) XAA 2O,ΦAX = X, AA 2O,ΦAXAA 2O,ΦA = AA 2O,ΦA, AA 2O,ΦAX = AA 2O,Φ and XAA 2O,ΦA = A−AA 2O,ΦA;

(xvi) XAA 2O,ΦAX = X, AA 2O,ΦAX = AA 2O,Φ and XAA 2O,ΦA = A−AA 2O,ΦA.



D. Stojanović, D. Mosić / Filomat 38:26 (2024), 9025–9041 9037

Analogous properties stand for the inner-*GCEP inverses.

Corollary 3.6. Let A ∈ B(H,K)−T,S and A− ∈ A{1} arbitrary but fixed. For X ∈ B(K,H), the following statements
are equivalent:

(i) X = AT,S
−, 2O;

(ii) XAX = X, AXA = AAT,S
2O A, AX = AAT,S

2O and XA = A−AAT,S
2O A;

(iii) XA = A−AAT,S
2O A and XAAT,S

2O = X;

(iv) XA = A−AAT,S
2O A and XA(A(2)

T,SA)†A(2)
T,S = X;

(v) XAA† = A−AAT,S
2O AA† and XA(A(2)

T,SA)†A(2)
T,S = X;

(vi) XAA∗ = A−AAT,S
2O AA∗ and XA(A(2)

T,SA)†A(2)
T,S = X;

(vii) XA(A(2)
T,SA)† = A−A(A(2)

T,SA)† and XA(A(2)
T,SA)†A(2)

T,S = X;

(viii) XA(A(2)
T,SA)∗ = A−A(A(2)

T,SA)∗ and XA(A(2)
T,SA)†A(2)

T,S = X;

(ix) AX = AAT,S
2O and A−AAT,S

2O AX = X;

(x) AX = AAT,S
2O and A−AX = X;

(xi) A†AX = A†AAT,S
2O and A−AX = X;

(xii) A∗AX = A∗AAT,S
2O and A−AX = X;

(xiii) AT,S
2O AX = AT,S

2O and A−AAT,S
2O AX = X

(xiv) A(2)
T,SAX = A(2)

T,S and A−A(A(2)
T,SA)†A(2)

T,SAX = X;

(xv) XAAT,S
2O AX = X, AAT,S

2O AXAAT,S
2O A = AAT,S

2O A, AAT,S
2O AX = AAT,S

2O and XAAT,S
2O A = A−AAT,S

2O A;

(xvi) XAAT,S
2O AX = X, AAT,S

2O AX = AAT,S
2O and XAAT,S

2O A = A−AAT,S
2O A.

In a similar fashion to Theorem 3.5, the following properties for Φ-*GCEP-inner inverse are established.

Theorem 3.7. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed. For
X ∈ B(K,H), the following statements are equivalent:

(i) X = A 2O,Φ,−;

(ii) XAX = X, AXA = AA 2O,ΦA, AX = AA 2O,ΦAA− and XA = A 2O,ΦA;

(iii) AX = AA 2O,ΦAA− and A 2O,ΦAX = X;

(iv) AX = AA 2O,ΦAA− and (ΦA)†ΦAX = X;

(v) A†AX = A 2O,ΦAA−(= A†AA 2O,ΦAA−) and (ΦA)†ΦAX = X;

(vi) A∗AX = A∗AA 2O,ΦAA− and (ΦA)†ΦAX = X;

(vii) ΦAX = ΦAA− and (ΦA)†ΦAX = X;

(viii) XA = A 2O,ΦA and X = XAA 2O,ΦAA−;
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(ix) XA = A 2O,ΦA and XAA− = X;

(x) XAA† = A 2O,ΦAA† and XAA− = X;

(xi) XAA∗ = A 2O,ΦAA∗ and XAA− = X;

(xii) XAA 2O,Φ = A 2O,Φ and X = XAA 2O,ΦAA−;

(xiii) XA(ΦA)† = (ΦA)† and XA(ΦA)†ΦAA− = X;

(xiv) XA(ΦA)∗ = (ΦA)∗ and XA(ΦA)†ΦAA− = X;

(xv) XAA 2O,ΦAX = X, AA 2O,ΦAXAA 2O,ΦA = AA 2O,ΦA, AA 2O,ΦAX = AA 2O,ΦAA− and XAA 2O,ΦA = A 2O,ΦA;

(xvi) XAA 2O,ΦAX = X, AA 2O,ΦAX = AA 2O,ΦAA− and XAA 2O,ΦA = A 2O,ΦA.

Corollary 3.8. Let A ∈ B(H,K)−T,S and A− ∈ A{1} arbitrary but fixed. For X ∈ B(K,H), the following statements
are equivalent:

(i) X = AT,S
2O,−;

(ii) XAX = X, AXA = AAT,S
2O A, AX = AAT,S

2O AA− and XA = AT,S
2O A;

(iii) AX = AAT,S
2O AA− and AT,S

2O AX = X;

(iv) AX = AAT,S
2O AA− and (A(2)

T,SA)†A(2)
T,SAX = X;

(v) A†AX = AT,S
2O AA−(= A†AAT,S

2O AA−) and (A(2)
T,SA)†A(2)

T,SAX = X;

(vi) A∗AX = A∗AAT,S
2O AA− and (A(2)

T,SA)†A(2)
T,SAX = X;

(vii) A(2)
T,SAX = A(2)

T,SAA− and (A(2)
T,SA)†A(2)

T,SAX = X;

(viii) XA = AT,S
2O A and X = XAAT,S

2O AA−;

(ix) XA = AT,S
2O A and XAA− = X;

(x) XAA† = AT,S
2O AA† and XAA− = X;

(xi) XAA∗ = AT,S
2O AA∗ and XAA− = X;

(xii) XAAT,S
2O = AT,S

2O and X = XAAT,S
2O AA−;

(xiii) XA(A(2)
T,SA)† = (A(2)

T,SA)† and XA(A(2)
T,SA)†A(2)

T,SAA− = X;

(xiv) XA(A(2)
T,SA)∗ = (A(2)

T,SA)∗ and XA(A(2)
T,SA)†A(2)

T,SAA− = X;

(xv) XAAT,S
2O AX = X, AAT,S

2O AXAAT,S
2O A = AAT,S

2O A, AAT,S
2O AX = AAT,S

2O AA− and XAAT,S
2O A = AT,S

2O A;

(xvi) XAAT,S
2O AX = X, AAT,S

2O AX = AAT,S
2O AA− and XAAT,S

2O A = AT,S
2O A.
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4. Applications

We can use inner-Φ-GCEP, Φ-GCEP-inner, inner-Φ-*GCEP and Φ-*GCEP-inner inverses to solve several
linear equations.

Theorem 4.1. Let A ∈ B(H,K)− and Φ ∈ B(G,H) such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
For b ∈ H, the general solution to the equation

Ax = AA 2O,Φb (6)

is given by
x = A−, 2O,Φb + (I − A−A)u, (7)

where u ∈ H is arbitrary.

Proof. Because AA−, 2O,Φ = AA 2O,Φ, we easily check that x expressed as (7), is a solution to (6).
When x is a solution to (6), then A−, 2O,Φb = A−(AA 2O,Φb) = A−Ax yields x = A−, 2O,Φb + (I − A−A)x, that is, x

is represented by (7).

If Φ = A† = A 2O,Φ, (6) holds if and only if A∗Ax = A∗b, which is the normal equation of Ax = b. Let us
recall that x is a least-squares solution to Ax = b (often used approximate solution in statistical applications
[1]) if and only if x is a solution to the above mentioned normal equation.

For b ∈ R(AΦ) = R(AA 2O,Φ) in Theorem 4.1, we have AA 2O,Φb = b and solvability of (8).

Corollary 4.2. Let A ∈ B(H,K)− and Φ ∈ B(G,H) such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
For b ∈ H, the general solution to the equation

Ax = b, b ∈ R(AΦ) (8)

is given by
x = A−b + (I − A−A)u,

where u ∈ H is arbitrary.

The equation (6) has a unique solution in the next case.

Theorem 4.3. Let A ∈ B(H,K)− and Φ ∈ B(G,H) such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
For b ∈ H, the equation (6) has in R(A−A) a unique solution A−, 2O,Φb.

Proof. We observe, by Theorem 4.1, that A−, 2O,Φb ∈ R(A−A) is a solution to (6).
Suppose that (6) has in R(A−A) two solutions x and v. From x−v ∈ N(A)∩R(A−A) = N(A−A)∩R(A−A) =

{0}, we deduce that x = v.

Similarly, we show the following results.

Theorem 4.4. Let A ∈ B(H,K)− and Φ ∈ B(G,H) such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
For b ∈ H, the general solution to the equation

A 2O,ΦAx = A 2O,Φb (9)

is given by
x = A−, 2O,Φb + (I − A−, 2O,ΦA)u,

where u ∈ H is arbitrary. In addition, the equation (9) has in R(A−AΦ) a unique solution A−, 2O,Φb.

The equation (10) can be solved utilizing the Φ-GCEP-inner inverse.
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Theorem 4.5. Let A ∈ B(H,K)− and Φ ∈ B(G,H) such that AΦ is regular and A− ∈ A{1} is arbitrary but fixed.
For b ∈ H, the general solution to the equation

A 2O,ΦAx = A 2O,Φ,−b (10)

is given by
x = A 2O,Φ,−b + (I − A 2O,ΦA)u,

where u ∈ H is arbitrary. In addition, the equation (10) has in R(Φ(AΦ)∗) a unique solution A 2O,Φ,−b.

We give an example which confirms Theorem 4.1 and Theorem 4.5.

Example 4.6. Let A be given as in Example 2.6, b = [3 0 3]∗ and u = [u1 u2 u3]∗. Because

x = A−, 2O,Φb + (I − A−A)u

=

 3(1 − 2a) + 2au1 − 2(1 − 2a)u2 + 2bu3
3a − au1 + (1 − 2a)u2 − bu3

0

 ,
we get

Ax =

 3
0
0

 = AA 2O,Φb.

According to Theorem 4.3, A−, 2O,Φb = [3(1 − 2a) 3a 0]∗ is unique solution to (6) in

R(A−A) = {[(1 − 2a)y1 + 2(1 − 2a)y2 − 2by3 ay1 + 2ay2 + by3 y3]∗ : y1, y2, y3 ∈ C}.

By calculations,

x = A 2O,Φ,−b + (I − A 2O,ΦA)u

=

 1 + s + 2c + 2
3 u1 −

2
3 u2

1 + s + 2c − 1
3 u1 +

1
3 u2

u3

 ,
gives

A 2O,ΦAx =

 1 + s + 2c
1 + s + 2c

0

 = A 2O,Φ,−b.

By Theorem 4.5, (10) has unique solution A 2O,Φ,−b = [1 + s + 2c 1 + s + 2c 0]∗ in

R(Φ(AΦ)∗) =
{[1

3
y1

1
3

y1 0
]∗

: y1 ∈ C

}
.

Using inner-Φ-*GCEP, we can verify solvability of next equations in an analogous manner.

Theorem 4.7. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed. For
b ∈ H, the general solution to the equation

Ax = AA 2O,Φb (11)

is given by
x = A−, 2O,Φb + (I − A−A)u,

where u ∈ H is arbitrary. In addition, the equation (11) has in R(A−A) a unique solution A−, 2O,Φb.

In the case that b ∈ R(A(ΦA)∗)(= R(AA 2O,Φ)) in Theorem 4.7, we show the following result.
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Corollary 4.8. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed.
For b ∈ H, the general solution to the equation

Ax = b, b ∈ R(A(ΦA)∗)

is given by
x = A−b + (I − A−A)u,

where u ∈ H is arbitrary.

The equations solved by Φ-*GCEP-inner inverse are given now.

Theorem 4.9. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed. For
b ∈ H, the general solution to the equation

A 2O,ΦAx = A 2O,Φ,−b (12)

is given by
x = A 2O,Φ,−b + (I − A 2O,ΦA)u,

where u ∈ H is arbitrary. In addition, the equation (12) has in R((ΦA)∗) a unique solution A 2O,Φ,−b.

Corollary 4.10. Let A ∈ B(H,K)− and Φ ∈ B(K,G) such that ΦA is regular and A− ∈ A{1} is arbitrary but fixed.
For b ∈ H, the general solution to the equation

A 2O,ΦAx = A 2O,Φb, b ∈ R(A)

is given by
x = A 2O,Φb + (I − A 2O,ΦA)u,

where u ∈ H is arbitrary.
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