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Abstract. In this paper, we explore the existence, uniqueness, and stability of mild solutions in impul-
sive differential equations featuring conformable fractional derivatives. Our principal findings leverage
fractional semigroup theory, complemented by some fixed-point theorems. Additionally, we provide a
practical example to demonstrate the relevance of our theoretical outcomes.

1. Introduction

Fractional calculus deals with integrals and derivatives of non-integer orders, extending classical cal-
culus. Its application spans various fields including mechanics, physics, chemistry, engineering, and
other scientific disciplines, making it a crucial area of study [1–4]. Various fractional derivative types like
Riemann–Liouville, Caputo, Hadamard, Caputo–Hadamard and conformable have been developed, each
contributing significantly to its advancement [5–11].

Impulsive FDEs are a special class of differential equations that involve fractional derivatives and
impulses. In these equations, the fractional derivative captures the memory effects and non-local behavior
of the system, while the impulses represent sudden changes or discontinuities in the system. For this
reason and others, this class has increasingly been used in various applications. In particular, impulsive
FDEs are widely used in various scientific fields for modeling dynamic phenomena with abrupt changes.
Their applications span mechanical systems, electrical engineering, chemical reactions, and fluid dynamics,
playing a crucial role in understanding dynamic systems facing sudden variations [12–16]. The Cauchy
problem associated with these equations garners significant interest from numerous researchers [17–22].
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For instance, Shaochun Ji and Shu Wen [23] have demonstrated the existence of mild solutions for the
Cauchy problem

u′(t) = Au(t) + f (t,u(t)), t ∈ J = [0,T], tk , t, i = 1, ..., p
u(t+i ) − u(t−i ) = Ii(u(tk)), i = 1, ..., p
u(0) = 1(u) + u0,

where the operator A generates an infinitesimal of C0 semigroup T(t) on a Banach spaceX, f : [0,T]×X → X,
0 < t1 < t2 < · · · < tp < tp+1 = T, Ii : X → X, i = 1, 2, · · · , p are impulsive functions and 1 : PC([0,T],X)→ X.
Wang et al. [24] have demonstrated the existence and uniqueness of mild solutions for the ensuing fractional
Cauchy problem within the context of the Caputo fractional derivative fractional initial value problem.

Rabhi et al [25] have studied the existence of a mild solution, investigating it using fractional semigroups
for the following conformable fractional initial value problemD(α)u(t) − Au(t) = f (t,u(t)), t > t0

u(t0) = u0.

In this paper, we investigate the solutions of an abstract differential equations using fractional semi-
groups involving conformable fractional derivatives for 0 < ϱ ≤ 1 and instantaneous impulses in a Banach
space (X, ∥.∥):

D(ϱ)ψ(t) = Aψ(t) + ϕ(t, ψ(t)), t ∈ J = [0,T], tk , t, k = 1, ..., p
ψ(t+k ) − ψ(t−k ) = φk(ψ(tk)), k = 1, ..., p
ψ(0) = ψ0,

(1)

where the operator A generates an infinitesimal of fractional C0-ϱ-semigroupℑϱ(t) andψ0 ∈ X. ψ(t+k )−ψ(t−k ) =
φk(ψ(tk)) means the impulsive condition, with ψ(t+k ), ψ(t−k ) are the right and left limits of ψ(.) at t = tk. The
functions ϕ : J × X → X, φk : X → X satisfy certain assumptions which will be specified later.

In many branches of mathematics, physics, engineering, and other sciences, semigroup properties are
essential for problem solving and analysis. The following are major important roles for the significance of
semigroup properties in mathematical analysis [26–29]:

• Semigroups are frequently encountered in the context of dynamical and linear systems. For the
stability analysis of these systems, knowledge of the semigroup properties—such as contractivity and
the generation property—is crucial.

• Understanding the behavior of solutions to the ordinary, fractional, and partial differential equations
over time requires an understanding of semigroup properties including continuity, positivity, and
dissipativity.

• Functional analysis provides powerful techniques including spectral theory and operator semigroup
theory, which can be applied with an understanding of semigroup properties.

• Engineers and scientists may evaluate and forecast the behavior of complex systems, create control
strategies, and maximize performance by modeling physical systems using semigroups properties.

This work is significant as semi-group operators provide a versatile framework for studying dynamic
systems, playing a crucial role in mathematical modeling and analysis [26, 30, 31].

2. Preliminaries

This section will explore conformable fractional derivatives and introduce the concept of a fractional
semigroup for more details [7, 31–33]. This semigroup serves as a generalized version of the classical
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semigroup, with its generator based on the conformable derivative. Important properties of the fractional
semigroup and its analysis will be presented. Additionally, it covers essential background details concerning
the Kuratowski measure of noncompactness along with Mönch’s fixed-point theorem.

Definition 2.1. [7] Let ψ : [0,∞) −→ R be a real valued function. Then the ”conformable fractional derivative” of
ψ of order ϱ ∈ (0, 1], at t > 0 is defined by

D
ϱ
tψ(t) = lim

s→0

ψ(t + st1−ϱ) − ψ(t)
s

. (2)

When the limit exists, we say that ψ is ϱ−differentiable at t.
If ψ is ϱ−differentiable on the interval (0, b], b > 0 and limit of Dϱtψ(t) exists as t approaches 0+, then we define
D
ϱ
tψ(0) as the limit of Dϱtψ(t) as t approaches 0+.

The conformable fractional integral of ψ of order ϱ is defined by

Ia
ϱ(ψ)(t) = Ia

1(t1−ϱψ(t)) =
∫ t

a

ψ(s)
s1−ϱ ds, (3)

where the integral is the usual Riemann improper integral. When a = 0, we write simply Ia
ϱ = Iϱ.

Definition 2.2. [31] Let ϱ ∈ (0, 1]. For a Banach space X, a family {ℑϱ(t)}t≥0 ⊆ L(X) is called a fractional
ϱ−semigroup (or ϱ−semigroup ) of operators if

(i) ℑϱ(0) = I,

(ii) ℑϱ(t + s)
1
ϱ = ℑϱ(t

1
ϱ )ℑϱ(s

1
ϱ ) for all t, s ∈ [0,∞).

Clearly, if ϱ = 1, then 1−semigroups are just the usual semigroups. A fractional ϱ−semigroup {ℑϱ(t)}t≥0 ∈ L(X) on
a Banach space X is called uniformly continuous if

lim
t→0+
∥ℑϱ(t) − I∥ = 0.

An ϱ−semigroup ℑϱ(t) is called a C0-ϱ-semigroup, if for each x ∈ X, ℑϱ(t)x→ x as t→ 0+.
The conformable ϱ−derivative of ℑϱ(t) at t = 0 is called the ϱ−infinitesimal generator of the fractional ϱ−semigroup
ℑϱ(t) , with domain equals:

{ x ∈ X, lim
t→0+
D
ϱ
tℑϱ(t)x exists }.

We will write A for such a generator.

Theorem 2.3. [34] Let ℑϱ(t) be a C0 − ϱ−semigroup where ϱ ∈ (0, 1]. There exist constants ω ≥ 0 and M ≥ 1 such
that

∥ℑϱ(t)∥ ≤Meωtϱ for 0 ≤ t ≤ ∞. (4)

Theorem 2.4. [34] Letℑϱ(t) be a C0−ϱ−semigroup where ϱ ∈ (0, 1] and let A be its ϱ−infinitesimal generator. Then

a) For x ∈ X, lim
ϵ→0

1
ϵ

∫ t+ϵt1−ϱ

t

1
s1−ϱℑϱ(s)x ds = ℑϱ(t)x for every t > 0.

b) For x ∈ X,
∫ t

0

1
s1−ϱℑϱ(s)x ds ∈ D(A) and A(

∫ t

0

1
s1−ϱℑϱ(s)x ds) = ℑϱ(t)x − x.

c) For x ∈ D(A), ℑϱ(t)x ∈ D(A) and Dσtℑϱ(t)x = Aℑϱ(t)x = ℑϱ(t)Ax.

d) For x ∈ D(A), ℑϱ(t)x − ℑϱ(s)x =
∫ t

s

1
u1−σℑϱ(u)Ax du =

∫ t

s

1
u1−ϱAℑϱ(u)x du.
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Definition 2.5. [35] Let X be a Banach space andΩ the family of bounded subsets of X. The Kuratowski measure of
noncompactness is the map ϑ : Ω→ R+ defined by

ϑ(F) = inf{ϵ > 0 : F ⊆
n⊔

k=1

Fk and diam(Fk) ≤ ϵ}

If F, F1, and F2 are bounded subsets in X, then

1. ϑ(∅) = 0.
2. ϑ(F) = 0⇔ F is relatively compact.
3. ϑ(F + x) = ϑ(F) for any x ∈ X.

4. ϑ(F) = ϑ(F) = ϑ(convF).
5. ϑ(λF) = |λ|ϑ(F), λ ∈ R.
6. F1 ⊆ F2 ⇒ ϑ(F1) ≤ ϑ(F2).
7. ϑ(F1 + F2) ≤ ϑ(F1) + ϑ(F2).
8. ϑ(F1 ∪ F2) ≤ max(ϑ(F1), ϑ(F2)).

Here F and convF denote the closure and the convex hull of the bounded set F, respectively.

Lemma 2.6. [36] If ∆ ⊆ C(I,X) is an equicontinuous and bounded set, then the function ϑ(∆(t)) is continuous for

t ∈ I, and ϑ(
∫

I
u(s)ds) ≤

∫
I
ϑ(u(s))ds for any u ∈ ∆.

Theorem 2.7. (Mönch’s Fixed Point Theorem)[37]
Let F be a bounded, closed and convex subset of a Banach space X such that 0 ∈ F, and Υ : F → F be a continuous
satisfying Mönch’s condition, i.e., ∆ = conv(Υ(∆) ∪ {0})⇒ ϑ(∆) = 0. Then Υ has a fixed point.

3. Main results

Let PC is the space of functions ψ(.) defined from [0,T] into X such that ψ(.) is continuous on each
interval ]tk, tk+1] and ψ(t+k ), ψ(t−k ) exist.
Evidently, PC(J,X) is a Banach space with norm ∥ψ∥ = sup{∥ψ(t)∥, t ∈ J}. According to Theorem 2.3, there
exists a constant M > 0 such that

∥ℑϱ(t)∥ ≤M, t ∈ J.

3.1. Representation of mild solution

We introduce the formula for the mild solution of Problem (1) using fractional semigroups.

Lemma 3.1. Let the initial value problem:Dϱtψ(t) = Aψ(t) + ϕ(t, ψ(t)) t ∈ J
ψ(0) = ψ0.

(5)

Then

ψ(t) = ℑϱ(t)ψ0 +

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

is the mild solution of the initial value problem (5).
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Proof. Let A be a generator of C0-ϱ-semigroup ℑϱ. If ψ is the solution of (5), then the X valued-function

ℵ(s) = ℑϱ(tϱ − sϱ)
1
ϱψ(s) is ϱ−deffirentiable for 0 < s < t and

D
ϱ
sℵ(s) = −Aℑϱ(tϱ − sϱ)

1
ϱψ(s) + ℑϱ(tϱ − sϱ)

1
ϱD

ϱ
sψ(s)

= −Aℑϱ(tϱ − sϱ)
1
ϱψ(s) + ℑϱ(tϱ − sϱ)

1
ϱ [Aψ(s) + ϕ(s, ψ(s))]

= ℑϱ(tϱ − sϱ)
1
ϱϕ(s, ψ(s)). (6)

Now applying I0
ϱ to (6), we have

I0
ϱ(D

ϱ
sℵ(s))(t) = ℑϱ(tϱ − tϱ)

1
ϱψ(t) − ℑϱψ0 =

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

So

ψ(t) = ℑϱ(t)ψ0 +

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds. (7)

We assume that the solution of equation (1) is such that at the point of discontinuity tk, we haveψ(t−k ) = ψ(tk).
Hence, one has

ψ(t−1 ) = ℑϱ(t1)ψ0 +

∫ t1

0

1
s1−ϱℑϱ(t

ϱ
1 − sϱ)

1
ϱϕ(s, ψ(s)) ds.

For t ∈ (t1, t2], using the fractional semigroup in equation (1), we obtain

ψ(t) = ℑϱ(tϱ − tϱ1)
1
ϱψ(t+1 ) +

∫ t

t1

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds

= ℑϱ(tϱ − tϱ1)
1
ϱ [ψ(t−1 ) + φ1(ψ(t1))] +

∫ t

t1

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

Replacing ψ(t−1 ) by its expression in the above equation, we get

ψ(t) = ℑϱ(tϱ − tϱ1)
1
ϱ [ℑϱ(t1)ψ0 +

∫ t1

0

1
s1−ϱℑϱ(t

ϱ
1 − sϱ)

1
ϱϕ(s, ψ(s)) ds + φ1(ψ(t1))]

+

∫ t

t1

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

By using a computation, the above equation becomes

ψ(t) = ℑϱ(t)ψ0 + ℑϱ(tϱ − tϱ1)
1
ϱφ1(ψ(t1)) +

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

In particular, for t = t−2 , one has

ψ(t−2 ) = ℑϱ(t2)ψ0 + ℑϱ(t
ϱ
2 − tϱ1)

1
ϱφ1(ψ(t1)) +

∫ t2

0

1
s1−ϱℑϱ(t

ϱ
2 − sϱ)

1
ϱϕ(s, ψ(s)) ds.

As the same, for t ∈ (t2, t3], we obtain

ψ(t) = ℑϱ(tϱ − tϱ2)
1
ϱψ(t+2 ) +

∫ t

t2

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds

= ℑϱ(tϱ − tϱ2)
1
ϱ [ψ(t−2 ) + φ2(ψ(t2))] +

∫ t

t2

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.
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Hence, replacing ψ(t−2 ) by its expression, we have

ψ(t) = ℑϱ(tϱ − tϱ2)
1
ϱ [ℑϱ(t2)ψ0 + ℑϱ(t

ϱ
2 − tϱ1)

1
ϱφ1(ψ(t1))

+

∫ t2

0

1
s1−ϱℑϱ(t

ϱ
2 − sϱ)

1
ϱϕ(s, ψ(s)) ds + φ2(ψ(t2))]

+

∫ t

t2

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

Using a computation, we get

ψ(t) = ℑϱ(t)ψ0 + ℑϱ(tϱ − tϱ1)
1
ϱφ1(ψ(t1)) + ℑϱ(tϱ − tϱ2)

1
ϱφ2(ψ(t2))

+

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

Repeating the same process, we obtain the following conformable fractional formula

ψ(t) = ℑϱ(t)ψ0 +
∑

0<tk<t

ℑϱ(tϱ − tϱk)
1
ϱφk(ψ(tk)) +

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

Definition 3.2. A function ψ ∈ PC is called a mild solution of conformable fractional Cauchy problem (1) if

ψ(t) = ℑϱ(t)ψ0 +
∑

0<tk<t

ℑϱ(tϱ − tϱk)
1
ϱφk(ψ(tk)) +

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

3.2. Existence of mild solutions

In this section, we apply a technique based on noncompactness measure assumption. In the following,
we prove existence results, for the problem (1) by using a Mönch’s fixed point theorem. Let us introduce
the following hypotheses:

(H1) ℑϱ(t) is compact for t > 0 in the Banach space X.

(H2) The function ϕ(., ψ(.)) : [0,T]→ X is continuous, for all ψ ∈ PC.

(H3) The function ϕ(t, .) : X → X is continuous, and there exists µ ∈ C(J,R+) such that
i) ∥ϕ(t, ψ(t))∥ ≤ µ(t)∥ψ∥ for each t ∈ J, ψ ∈ PC.
ii) For each t ∈ J and each bounded set V ⊂ X, we have ϑ(ϕ(t,V)) ≤ µ(t)ϑ(V).

(H4) The mapping φk : X → X is continuous for k = 1, ..., p, and for each k = 1, ..., p there exists a positive
constant ζk > 0 such that
i) ∥φk(ψ)(t)∥ ≤ ζk∥ψ∥ for each t ∈ J, ψ ∈ PC.
ii) For each bounded set V ⊂ X, we have ϑ(φk(V)) ≤ ζkϑ(V).

Let Bρ = {ψ ∈ PC(J,X) : ∥ψ∥ ≤ ρ} for any ρ > 0. Then Bρ is clearly a bounded closed and convex subset in
PC(J,X). We define the operator Υ by

Υ(ψ)(t) = ℑϱ(t)ψ0 +
∑

0<tk<t

ℑϱ(tϱ − tϱk)
1
ϱφk(ψ(tk)) +

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

Obviously, ψ ∈ Bρ is a mild solution of (1) if and only if the operator Υ has a fixed point on Bρ, i.e., there
exists ψ ∈ Bρ satisfies ψ = Υψ.
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Lemma 3.3. If (H2)–(H4) hold, then Υ is continuous in Bρ and maps Bρ into Bρ for any ρ > 0 satisfies

M∥ψ0∥

1 −M(
Tϱ

ϱ
∥µ∥ +

p∑
k=1

ζk)

≤ ρ. (8)

Proof. Claim: Υmaps Bρ into Bρ.
For t ∈ J and for any ψ ∈ Bρ, by using (H3)(i) and (H4)(i), we get

∥Υ(ψ(t))∥ ≤ ∥ℑϱ(t)∥∥ψ0∥ +
∑

0<tk<t

∥ℑϱ(tϱ − tϱk)
1
ϱ ∥∥φk(ψ(tk))∥ +

∫ t

0

1
s1−ϱ ∥ℑϱ(t

ϱ
− sϱ)

1
ϱ ∥∥ϕ(s, ψ(s))∥ ds

≤M∥ψ0∥ +M∥ψ∥
k=p∑
k=0

ζk +M
∫ t

0

1
s1−ϱµ(t)∥ψ∥ ds

≤M∥ψ0∥ +M∥ψ∥
k=p∑
k=0

ζk +M∥µ∥∥ψ∥
∫ t

0

1
s1−ϱ ds

≤M∥ψ0∥ +M∥ψ∥
∑

0<tk<t

ζk +M
Tϱ

ϱ
∥µ∥∥ψ∥

≤ ρ[1 −M(
Tϱ

ϱ
∥µ∥ +

p∑
k=1

ζk)] +M(
∑

0<tk<t

ζk +
Tϱ

ϱ
∥µ∥)ρ

= ρ.

Claim: Υ is continuous in Bρ.
Let ψn be a sequence such that ψn → ψ in PC(J,X). Then for each t ∈ J

∥Υ(ψn)(t) − Υ(ψ)(t)∥ ≤
∑

0<tk<t

∥ℑϱ(tϱ − tϱk)
1
ϱ ∥∥φk(ψn(tk)) − φk(ψ(tk))∥

+

∫ t

0

1
s1−ϱ ∥ℑϱ(t

ϱ
− sϱ)

1
ϱ ∥∥ϕ(s, ψn(s)) − ϕ(s, ψ(s))∥ ds.

Using assumption (H1)(i), sϱ−1
∥ϕ(s, ψn(s)) − ϕ(s, ψ(s))∥ ≤ 2sϱ−1µ(s) and ϕ(s, ψn(s)) → ϕ(s, ψ(s)) as n → +∞.

The Lebesgue dominated convergence theorem proves that∫ t

0
1

s1−ϱ ∥ϕ(s, ψn(s))−ϕ(s, ψ(s))∥ ds→ 0 as n→ +∞. According to continuity of the function φ, we deduce that
lim

n→+∞
∥φk(ψn(tk)) − φk(ψ(tk))∥ = 0. Hence, Υ is continuous.

Lemma 3.4. If (H1)–(H4) hold, then Υ(Bρ) is bounded and equicontinuous.

Proof. By lemma 3.3, it is obvious that Υ(Bρ) ⊂ PC(J,X) is bounded.
For ψ ∈ Bρ and τk1 , τk2 ∈ J such that tk ≤ τk1 ≤ τk2 ≤ tk+1, for k = 1, ..., p where tp+1 = T. We have

∥Υ(ψ)(τk2 ) − Υ(ψ)(τk1 )∥ ≤ ∥ℑϱ(τk2 )ψ0 − ℑϱ(τk1 )ψ0∥

+ ∥

k∑
j=1

ℑϱ(τ
ϱ
k2
− tϱj )

1
ϱφk(ψ(t j)) −

k∑
j=1

ℑϱ(τ
ϱ
k1
− tϱj )

1
ϱφk(ψ(t j))∥

+ ∥

∫ τk2

0

1
s1−ϱℑϱ(τ

ϱ
k2
− sϱ)

1
ϱϕ(s, ψ(s)) ds

−

∫ τk1

0

1
s1−ϱℑϱ(τ

ϱ
k1
− sϱ)

1
ϱϕ(s, ψ(s)) ds∥.
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Using a computation, we get

∥Υ(ψ)(τk2 ) − Υ(ψ)(τk1 )∥ ≤ ∥(ℑϱ(τ
ϱ
k2
− τϱk1

)
1
ϱ − I)ℑϱ(τ

ϱ
k1

)
1
ϱψ0∥

+ ∥

k∑
j=1

(ℑϱ(τ
ϱ
k2
− τϱk1

)
1
ϱ − I)ℑϱ(τ

ϱ
k1
− tϱj )

1
ϱφk(ψ(t j))∥

+ ∥

∫ τk1

0

1
s1−ϱ (ℑϱ(τ

ϱ
k2
− τϱk1

)
1
ϱ − I)ℑϱ(τ

ϱ
k1
− sϱ)

1
ϱϕ(s, ψ(s)) ds

+

∫ τk2

τk1

1
s1−ϱℑϱ(τ

ϱ
k2
− sϱ)

1
ϱϕ(s, ψ(s)) ds∥.

Using assumptions (H1)(i) and (H2)(i), we obtain

∥Υ(ψ)(τk2 ) − Υ(ψ)(τk1 )∥ ≤M∥ℑϱ(τ
ϱ
k2
− τϱk1

)
1
ϱ − I∥(∥ψ0∥ +

P∑
j=1

ζJρ + ∥µ∥ρ
Tϱ

ϱ
) +M∥µ∥ρ

τϱk2
− τϱk1

ϱ
.

The compactness of (ℑϱ(t)) assures that ∥ℑϱ(τ
ϱ
k2
− τϱk1

)
1
ϱ − I∥ → 0 as τk1 → τk2 . So when for τk1 → τk2 the right

side of the above inequality tends to zero. In a similar manner throughout the interval [0, t1]. Since the
finite union of equicontinuous sets is equicontinuous, thus Υ(Bρ) is equicontinuous on [0,T].

Theorem 3.5. Assume that (H1)–(H4) are hold, then impulsive differential equations (1) has at least one mild
solution within the ball Bρ, where the radius ρ satisfies (8).

Proof. We know that Bρ is closed and convex. From Lemmas 3.3 and 3.4, we know that Ψ is a continuous
map from Bρ into Bρ and the set Υ(Bρ) is bounded and equicontinuous. We shall prove that Υ satisfies the
Mönch’s condition 2.7. Now, let ∆ be a subset of Bρ such that ∆ ⊂ conv(Υ(∆) ∪ {0}). Then ∆ is bounded and
equicontinuous and therefore the function t → χ(t) = ϑ(∆(t)) is continuous on J. From (H3),(H4), and the
properties of the measure we have for each t ∈ J:

χ(t) ≤ ϑ(conv(Υ(∆)(t) ∪ {0})) = ϑ(Υ(∆)(t) ∪ {0})
≤ ϑ(Υ(∆)(t))

≤M
∑

0<tk<t

ϑ(φk(∆(tk))) +M
∫ t

0

1
s1−ϱϑ(ϕ(s,∆(s))) ds

≤M
∑

0<tk<t

ζkϑ(∆)(tk) +M
∫ t

0

1
s1−ϱµ(t)ϑ(∆(s)) ds

=M
∑

0<tk<t

ζkχ(tk) +M
∫ t

0

1
s1−ϱµ(t)χ(s) ds

≤ ∥χ∥M(
p∑

k=1

ζk + ∥µ∥
Tϱ

ϱ
).

This means that

∥χ∥(1 −M(
p∑

k=1

ζk + ∥µ∥
Tϱ

ϱ
)) ≤ 0.

By (8), it follows that ∥χ∥ = 0, that is χ(t) = 0 for each t ∈ J, and then ∆(t) is relatively compact inPC(J,X). In
view of the Ascoli-Arzela theorem, ∆ is relatively compact in Bρ. Applying now Theorem 2.7, we conclude
that Υ has a fixed point which is a solution of the problem (1).
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3.3. Uniqueness of mild solutions
To obtain the uniqueness of the mild solution, we need the following assumption:

(A1) There exists a constant η > 0 such that

∥ϕ(t, ψ) − ϕ(t, ψ)∥ ≤ η∥ψ − ψ∥, for each t ∈ J,∀ψ,ψ ∈ PC.

(A2) There exist constants ςk > 0 such that

∥φ(ψ) − φ(ψ)∥ ≤ ςk∥ψ − ψ∥, for each k = 1, ..., p, ∀ψ,ψ ∈ PC.

Theorem 3.6. If assumptions (A1) and (A2) are satisfied,, then the conformable fractional Cauchy problem (1) has
an unique mild solution, provided that

M(η
Tϱ

ϱ
+

p∑
k=1

ςk) < 1.

Proof. Define the operator Υ : PC → PC by

Υ(ψ)(t) = ℑϱ(t)ψ0 +
∑

0<tk<t

ℑϱ(tϱ − tϱk)
1
ϱφk(ψ(tk)) +

∫ t

0

1
s1−ϱℑϱ(t

ϱ
− sϱ)

1
ϱϕ(s, ψ(s)) ds.

We will show that Υ is a contraction, consider ψ,ψ ∈ PC. Thus, for t ∈ J, we have:

∥Υ(ψ)(t) − Υ(ψ)(t)∥ ≤
∑

0<tk<t

∥ℑϱ(tϱ − tϱk)
1
ϱ ∥∥φk(ψ(tk)) − φk(ψ(tk))∥

+

∫ t

0

1
s1−ϱ ∥ℑϱ(t

ϱ
− sϱ)

1
ϱ ∥∥ϕ(s, ψ(s)) − ϕ(s, ψ(s))∥ ds

≤M[
∑

0<tk<t

ςk∥ψ(tk) − ψ(tk)∥ + η
∫ t

0

1
s1−ϱ ∥ψ(s) − ψ(s)∥ ds]

≤M[η
Tϱ

ϱ
+

p∑
k=1

ςk]∥ψ − ψ∥.

Since M[η
Tϱ

ϱ
+

p∑
k=1

ςk] < 1, then Υ is a contraction operator on the Banach space (PC, ∥.∥). Therefore,

employing the Banach Fixed Point Theorem, we can affirm that the operator Υ possesses an unique fixed
point in PC, which represents the mild solution of the conformable fractional Cauchy problem (1).

Theorem 3.7. If we assume that the conditions of Theorem (3.6) are satisfied, with ψ0 and ψ0 belonging to the setX,
and ifψ andψ represent the solutions corresponding toψ0 andψ0 respectively, then we can approximate the following
estimate:

∥ψ − ψ∥ ≤
M

1 −M[η
Tϱ

ϱ
+

p∑
k=1

ςk]

∥ψ0 − ψ0∥.

Proof. For t ∈ J, we have

∥ψ(t) − ψ(t)∥ ≤M∥ψ0 − ψ0∥ +M[η
Tϱ

ϱ
+

p∑
k=1

ςk]∥ψ − ψ∥.
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Taking the supremum, we get

∥ψ − ψ∥ ≤M∥ψ0 − ψ0∥ +M[η
Tϱ

ϱ
+

p∑
k=1

ςk]∥ψ − ψ∥.

Therefore, we can infer the desired approximation as follows:

∥ψ − ψ∥ ≤
M

1 −M[η
Tϱ

ϱ
+

p∑
k=1

ςk]

∥ψ0 − ψ0∥.

Example 3.8. We consider the impulsive conformable partial differential equation of the form

D
1
2ω(t, λ) =

∂2ω(t, λ)
∂λ2 +

e−t
|ω(t, λ)|

(5 + et)(1 + |ω(t, λ)|)
, (t, λ) ∈ [0, 1] × [0, 1], t ,

1
2

ω(t, 0) = ω(t, 1) = 0
ω(0, λ) = ψ0

lim
s→0+

ω(
1
2
+ s, λ) = lim

s→0+
ω(

1
2
− s, λ) +

|ω( 1
2 , λ)|

2 + |ω( 1
2 , λ)|

.

(9)

Let X = L2([0, 1]), and define the operator A as follows A = ∂2

∂λ2 with its domain

D(A) = {u ∈ X,u′,u′′ are absolutely continuous and u′′ ∈ X,u(0) = u(1) = 0}.

From [26], A is the generator of the C0-α-semigroup ℑϱ(t)u and ∥ℑϱ(t)∥ ≤ 1. Next, we consider the change
ψ(t)(λ) = ω(t, λ) and the following notations:

ϕ(t, ψ) =
e−t
|ψ(t)|

(5 + et)(1 + |ψ(t)|)
,

φ1(ψ(
1
2

)) =
|ψ( 1

2 )|

2 + |ψ( 1
2 )|
.

The equation (9) transforms into the following form:
D

1
2ψ(t) = Aψ(t) + ϕ(t, ψ(t)), t ∈ J = [0,T], t , 1

2

ψ( 1
2
+

) − ψ( 1
2
−

) = φ1(ψ( 1
2 ))

ψ(0) = ψ0.

(10)

For each t ∈ J,∀ψ,ψ ∈ PC, we have

∥ϕ(t, ψ) − ϕ(t, ψ)∥ =
e−t

5 + et ∥
|ψ(t)|

1 + |ψ(t)|
−
|ψ(t)|

1 + |ψ(t)|
∥

≤
e−t

5 + et ∥ψ − ψ∥

≤
1
5
∥ψ − ψ∥,
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and

∥φ1(ψ) − φ1(ψ)∥ = ∥
|ψ( 1

2 )|

2 + |ψ( 1
2 )|
−
|ψ( 1

2 )|

2 + |ψ( 1
2 )|

≤
1
2
∥ψ − ψ∥.

We have M = 1,T = 1, ϱ = 1
2 , η =

1
5 and ς1 =

1
2 . It is clear that M(η

Tϱ

ϱ
+ ς1) =

9
10

< 1, therefore, all the conditions

of Theorem 3.6 are satisfied. Hence the problem (10) has a unique mild solution.

Example 3.9. Consider the following fractional pantograph-differential equation with impulsive by:
D

1
2ψ(t) = − 1

2ψ(t) + +
sin(t)|ψ(t)|

(t + 4)2(1 + |ψ(t)|)
+

cos(t)
(et + 3)2ψ(

t
4

), t ∈ [0, 1], t ,
1
2

ψ( 1
2
+

) − ψ( 1
2
−

) = |ψ( 1
2 )|

16+|ψ( 1
2 )|

ψ(0) = ψ0.

(11)

Let A = − 1
2 . A is the generator of the C0- 1

2 -semigroup ℑ 1
2
(t) = e−

√
t and ∥ℑ 1

2
(t)∥ ≤ e.

Consider the following notations:

ϕ(t, ψ(t), ψ(
t
4

)) =
sin(t)|ψ(t)|

(t + 4)2(1 + |ψ(t)|)
+

cos(t)
(et + 3)2ψ(

t
4

),

φ1(ψ(
1
2

)) =
|ψ( 1

2 )|

16 + |ψ( 1
2 )|
.

Then for any ψ,ψ ∈ PC and t ∈ [0, 1], we obtain

∥ϕ(t, ψ(t), ψ(
t
4

)) − ϕ(t, ψ(t), ψ(
t
4

))∥ ≤
1
8
∥ψ − ψ∥,

∥φ1(ψ) − φ1(ψ)∥ ≤
1
16
∥ψ − ψ∥.

It is clear that M(η
Tϱ

ϱ
+ ς1) =

5e
16

< 1. Hence problem (11) has a unique solution on [0, 1].

Conclusion

In this study, we have found a mild solution to fractional impulsive evolutionary differential equations,
primarily employing fractional semigroup analysis. The main outcome has been derived through the
utilization of measures of non-compactness, in addition to Banach’s and Mönch’s theorems. The concepts
introduced in this paper have the potential to be applied to various other models in fields such as physics,
biology, chemistry, economics, and beyond.
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