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Abstract. Combining n independent tests of simple hypotheses, vs one-tailed alternative as n approaches
infinity, in case of conditional normal distribution with probability density function X|θ ∼ L (γθ, 1), θ ∈
[a,∞), a ≥ 0 for the case where θ1, θ2, ... are distributed according to the distribution function (DF) Gθ
was studied. Four nonparametric combination procedures (Fisher, logistic, sum of P-values and inverse
normal) were compared via the exact Bahadur slope. We observed that the sum of the p-values consistently
outperformed all other combing methods used in our study via EBS.

1. Introduction

In evolutionary biology, as in most branches of empirical science that have embraced a statistical
approach, it is relatively common to have several independent tests of the same null hypothesis. Often
we would like to combine the results of these tests to ask whether there is evidence from the collection of
studies that we might reject the null hypothesis. The collection of methods known as meta-analysis gives
many ways to do these combinations, including some techniques that combine p-values from multiple
independent tests. There are many methods which are used for combining independent tests and they
are compared by using different criteria viz., Exact Bahadur slope, Approximate Bahadur Slope, Pitman
Efficiency, Local Power, Admissibility and others. Bahadur’s stochastic comparison is one of the most
common approaches in asymptotic relative efficiency for two test procedures in which the probabilities of
the two types of errors (I and II) change with increasing sample size, and also with respect to the manner
in which the alternatives under consideration are required to behave. In comparison of test procedures,
suppose H0 is to be tested. Typically, we represent H0 as a specified family F0 of distributions for the data.
For a test procedure Tn, the function γn(T,F) = PF(Tn rejects H0), for distribution functions F, represents the
power function of Tn.

• For H0 : F ∈ F0, γn(T,F) represents the probability of a Type I error. The quantity αn(T,F0) =
sup
F∈F0

γn(T,F) is called the size of the test.

• For HA : F < F0, the quantity βn(T,F) = 1 − γn(T,F) represents the probability of a Type II error.
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Usually, attention is confined to consistent tests, i.e. for a fixed F < F0, βn(T,F) → 0 as n → ∞, and
unbiased tests i.e. for F < F0, γn(T,F) ≥ αn(T,F0). A general way to compare two such test procedures is
through their power functions. For two competing statistical procedures A and B, suppose that a desired
performance criterion is specified. Let n1 and n2 be the respective sample sizes at which the two procedures
“perform equivalently” with respect to the adopted criterion. Then the ratio n1/n2 is usually regarded as the
relative efficiency, of procedure B relative to procedure A. Suppose that the specified performance criterion
is tightened in a way that causes the required sample sizes n1 and n2 to tend to∞, then ratio n1/n2 approaches
limit L, where L represents the asymptotic relative efficiency of procedure B relative to procedure A. Note
that the value L depends upon the particular performance criterion adopted. This limit represents the
asymptotic relative efficiency (ARE) of procedure TB relative to procedure TA and is denoted by e(TB,TA).
We shall consider several performance criteria. Each entails specifications regarding: α = limnαn(T,F0),
an alternative distribution F(n) allowed to depend on n, and β = limnβn(T,F(n)). In Bahadur’s approach,
the following behaviors are satisfied: the Type I error is αn → 0, the Type II error is βn → β > 0, and the
alternatives F(n) = F is fixed.

Several authors have considered the problem of combining n independent tests of hypothesis. [1]
showed that any reasonable p-value combiner must be optimal against some alternative hypothesis. [3]
studied six free-distribution methods (sum of p-values, inverse normal, logistic, Fisher, minimum of p-
values and maximum of p-values) of combining infinite number of independent tests when the p-values
are independent identically distributed (iid) random variables (rv’s) distributed with uniform distribution
under the null hypothesis versus triangular distribution with essential support (0, 1) under the alternative
hypothesis. They proved that the sum of p-values method is the best method. [4] combined infinite number
of independent tests for testing simple hypotheses against one-sided alternative for normal and logistic
distributions, they used four methods of combining tests namely, Fisher, logistic, sum of p-values and inverse
normal. They showed that under the both distributions the inverse normal method is the best method. [5]
studied six methods of combining independent tests. He showed under conditional shifted Exponential
distribution that the inverse normal method is the best among six combination methods. [9] considered
combining independent tests in case of conditional normal distribution with probability density function
X|θ ∼ N(γθ, 1), θ ∈ [a,∞], a ≥ 0 when θ1, θ2, ... have a distribution function (DF) Fθ. They showed that
the inverse normal procedure is the best among four combination procedures via exact Bahadur slope. [7]
considered combining n independent tests of simple hypothesis, vs one-tailed alternative as n approaches
infinity, in case of Laplace distribution L(γ, 1). He showed that the sum of p-values procedure is better
than all other procedures under the null hypothesis, and the inverse normal procedure is better than the
other procedures under the alternative hypothesis. [6] considered combining n independent tests of simple
hypothesis, vs one-tailed alternative as n approaches infinity, in case of log-logistic distribution. They
showed that the sum of p-values procedure is better than all other procedures under the null hypothesis
and under the alternative hypothesis. [8] considered the problem of combining n independent tests as
n → ∞ for testing a simple hypothesis in case of log-normal distribution. He showed that as ξ → 0, the
maximum of p-values is better than all other methods, followed in decreasing order by the inverse normal,
logistic, the sum of p-values, Fisher and Tippett’s procedure. Also, as ξ→∞ the worst method the sum of
p-values and the other methods remain the same, since they have the same limit.

The conditional logistic distribution is largely applied to statistical modelling and analysis. For instance,
the distribution is used to model the period until an event occurs, such as the start of a specific disease.
Furthermore, the distribution can be used to analyse panel data while accounting for within-cluster corre-
lation over time. It can also be utilized to accurately model the relationship between observations while
estimating regression parameter coefficients in grouped data analysis.

To measure the strength of the observed sample as the evidence against the null hypothesis the signif-
icance level of the observed value of the test statistic is computed. This concept provides another way to
compare two test procedures, the better procedure being the one which, when the alternative is true, on
the average yields stronger evidence against the null hypothesis. [2] Introduced a notion of “stochastic
comparison” and corresponding measure of asymptotic relative efficiency.

Consider iid observations X1, . . . ,Xn in a sample space, having a distribution with parameter θ ∈ Θ.
Now consider testing the hypothesis H0 : θ ∈ Θ0 by a real-valued test statistic Tn, where H0 is rejected
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for sufficiently large values of Tn. Let Gθn denote the DF of Tn under the θ−distribution of X1, . . . ,Xn. The
level attained is the indicator of the significance of the observed data against the null hypothesis which is
given by Ln = Ln(X1, . . . ,Xn) = supθ∈Θ0 [1 − Gθn (Tn)], where supθ∈Θ0 [1 − Gθn (t)] is the maximum probability,
under any one of the null hypothesis models, that the experiment will lead to a test statistic exceeding the
value t. It is a decreasing function of t. Evaluated at the observed Tn, it represents the largest probability,
under the possible null distributions, that a more extreme value than Tn would be observed in a repetition
of the experiment. Thus the level attained is a random variable representing the degree to which the test
statistic Tn, tends to reject H0. The lower the value of the level attained, the greater the evidence against
H0. Also, [2] suggests stochastic comparison of two test sequences TA = TAn and TB = TBn in terms of
their performances with respect to the level attained, as follows: Under the nonnull θ−distribution, the
test TAn is more successful than the test TBn with the sample X1, . . . ,Xn if LAn (X1, . . . ,Xn) < LBn (X1, . . . ,Xn).
Equivalently, defining Kn = −2 log Ln, TAn is more successful than TBn at the observed sample if KAn > KBn .
In this case, for θ ∈ Θ0, Ln converges in θ−distribution to some nondegenerate random variable, and under
an alternative θ < Θ0, Ln → 0 at an exponential rate of θ.

2. The specific problem

Consider n hypotheses of the form:

H(i)
0 : ηi = η

i
0, vs ,H(i)

1 : ηi ∈ Ωi − {η
i
0} (1)

such that H(i)
0 is rejected for large values, i = 1, 2, ...,n of some continuous random variable T(i). The n

hypotheses are combined into one as

H(i)
0 : (η1, ..., ηn) = (η1

0, ..., η
n
0), vs ,H(i)

1 : (η1, ..., ηn) ∈

 n∏
i=1

Ωi − {(η1
0, ..., η

n
0)}

 (2)

For i = 1, 2, . . . ,n the p-value of the i-th test is given by

Pi(t) = PH(i)
0

(
T(i) > t

)
= 1 − FH(i)

0
(t) (3)

where FH(i)
0

(t) is the DF of T(i) under H(i)
0 . Note that Pi ∼ U(0, 1) under H(i)

0 .

If considering the special case where ηi = θ and ηi
0 = θ0 for i = 1, . . . ,n, and also assume that T(1), . . . ,T(n)

are independent, then (1) reduces to

H0 : θ = θ0, vs ,H1 : θ ∈ Ω − {θ0} (4)

It follows that the p-values P1, . . . ,Pn are also independent identically distributed random variables that
have a U(0, 1) distribution under H0, and under H1 have a distribution whose support is a subset of the
interval (0, 1) and is not a U(0, 1) distribution. Therefore, if f is the probability density function (pdf) of P,
then (4) is equivalent to

H0 : P ∼ U(0, 1), vs ,H1 : P / U(0, 1) (5)

where P has a pdf f with support a subset of the interval (0, 1).
This study considers the case: ηi = γθi, i = 1, . . . ,n where θ1, . . . , θn are independent identically distributed
with DF Gθ with support [a,∞), a ≥ 0 and the following hypothesis is tested:

H0 : γ = 0, vs ,H1 : γ > 0 (6)

where the i-th problem is based on T1, . . . ,Tn, which are independent random variables from a conditional
logistic distribution with pdf L (γθ, 1) and θ1, . . . , θn are independent identically distributed with DF Gθ
with support [a,∞), a ≥ 0.
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We shall assume that the i-th problem in case of the conditional logistic distribution is based on T(i)
1 , . . . ,T

(i)
(ni)

which are independent r.v.’s. By sufficiency we may assume ni = 1 and T(i) = Xi for i = 1, . . . ,n. Then we
consider the sequence

{
T(n)

}
of independent test statistics that is we will take a random sample X1, . . . ,Xn of

size n and let n→ ∞ and compare the four non-parametric methods via EBS. Although Xi is not sufficient
for θi under H(i)

0 for the other distributions, but we will assume ni = 1; the reason for this is that, under the
conditions specified in theorems 3.1 and 3.2 in the following section, we shall get additional tests in this
situation in addition to those previously know and T(i) = Xi for i = 1, . . . ,n.
The following test will be used in this paper:

φFisher =

{
1, −2

∑n
i=1 ln(Pi) > c

0, ow

φlo1istic =

{
1, −

∑n
i=1 ln

(
Pi

1−Pi

)
> c

0, ow

φNormal =

{
1, −

∑n
i=1Φ

−1(Pi) > c
0, ow

φSum =

{
1, −

∑n
i=1 Pi > c

0, ow,

where Φ is the cdf of standard normal distribution.

3. Definitions and preliminaries

In this section we will state some definitions and preliminaries that will be used

Definition 3.1. (Bahadur efficiency and exact Bahadur slope (EBS)) Let X1, . . . ,Xn be i.i.d. from a distribution
with a probability density function f (x, θ), and we want to test H0 : θ = θ0 vs. H1 : θ ∈ Θ − {θ0}. Let

{
T(1)

n

}
and{

T(2)
n

}
be two sequences of test statistics for testing H0. Let the significance attained by T(i)

n be L(i)
n = 1−Fi

(
T(i)

n

)
, where

Fi

(
T(i)

n

)
= PH0

(
T(i)

n ≤ ti

)
, i = 1, 2. Then there exists a positive valued function Ci(θ) called the exact Bahadur slope of

the sequence {T(i)
n } such that

Ci(θ) = lim
θ→∞
−2n−1 ln

(
Li

n

)
with probability 1 (w.p.1) under θ and the Bahadur efficiency of

{
T(1)

n

}
relative to

{
T(2)

n

}
is given by eB (T1,T2) =

C1(θ)/C2(θ).

Theorem 3.2. (Large deviation theorem) Let X1,X2, . . . ,Xn be i.i.d., with distribution F and put Sn =
∑n

i=1 Xi.
Assume existence of the moment generating function (mgf) M(z) = EF

(
ezX

)
, z real, and put m(t) = infz EF

(
e−z(X−t)

)
=

infz e−ztM(z). The behavior of large deviation probabilities P (Sn ≥ tn) , where tn →∞ at rates slower than O(n). The
case tn = tn, if −∞ < t ≤ EY, then P (Sn ≤ nt) ≤ [m(t)]n , the

−2n−1 ln PF (Sn ≥ nt)→ −2 ln m(t) a.s. (Fθ) .

Theorem 3.3. (Bahadur theorem) Let {Tn} be a sequence of test statistics which satisfies the following:

1. Under H1 : θ ∈ Θ − {θ0}:
n−

1
2 Tn → b(θ) a.s. (Fθ) ,

where b(θ) ∈ R.
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2. There exists an open interval I containing {b(θ) : θ ∈ Θ − {θ0}} , and a function 1 continuous on I, such that

lim
n
−2n−1 log sup

θ∈Θ0

[
1 − Fθn (n

1
2 t)

]
= lim

n
−2n−1 log

[
1 − Fθn (n

1
2 t)

]
= 1(t), t ∈ I.

If {Tn} satisfied (1)-(2), then for θ ∈ Θ − {θ0}

−2n−1 log sup
θ∈Θ0

[
1 − Fθn (Tn)

]
→ C(θ) a.s. (Fθ) .

Theorem 3.4. Let X1, . . . ,Xn be i.i.d. with probability density function f (x, θ), and we want to test H0 : θ = 0 vs.
H1 : θ > 0. For j = 1, 2, let Tn, j =

∑n
i=1 fi(xi)/

√
n be a sequence of statistics such that H0 will be rejected for large

values of Tn, j and let φ j be the test based on Tn, j. Assume Eθ( fi(x)) > 0,∀θ ∈ Θ, E0( fi(x)) = 0, Var( fi(x)) > 0 for
j = 1, 2. Then
1. If the derivative b′j(0) is finite for j = 1, 2, then

lim
θ→0

C1(θ)
C2(θ)

=
Varθ=0( f2(x))
Varθ=0( f1(x))

[
b′1(0)
b′2(0)

]2

,

where bi(θ) = Eθ( f j(x)), and C j(θ) is the EBS of test φ j at θ.
2. If the derivative b′j(0) is infinite for j = 1, 2, then

lim
θ→0

C1(θ)
C2(θ)

=
Varθ=0( f2(x))
Varθ=0( f1(x))

[
lim
θ→0

b′1(θ)
b′2(θ)

]2

.

Theorem 3.5. If T(1)
n and T(2)

n are two test statistics for testing H0 : θ = 0 vs. H1 : θ > 0 with distribution functions
F(1)

0 and F(2)
0 under H0, respectively, and that T(1)

n is at least as powerful as T(2)
n at θ for any α, then if φ j is the test

based on T( j)
n , j = 1, 2, then

C(1)
φ1

(θ) ≥ C(2)
φ2

(θ)

.

Corollary 3.6. If Tn is the uniformly most powerful test for all α, then it is the best via EBS.

Theorem 3.7.
2t ≤ mS(t) ≤ et, ∀ : 0 ≤ t ≤ 0.5,

where
mS(t) = inf

z>0
e−zt ez

− 1
z
.

Theorem 3.8. 1. mL(t) ≥ 2te−t, ∀t ≥ 0,
2. mL(t) ≤ te1−t, ∀t ≥ 0.852,

3. mL(t) ≤ t
(

t2

1+t2

)3
e1−t, ∀t ≥ 4,

where mL(t) = infz∈(0,1) e−ztπz csc(πz) and csc is an abbreviation for cosecant function.

Theorem 3.9. For x > 0,

ϕ(x)
[1
x
−

1
x3

]
≤ 1 −Φ(x) ≤

ϕ(x)
x
.

Where ϕ is the pdf of standard normal distribution.

Theorem 3.10. For x > 0,

1 −Φ(x) >
ϕ(x)

x +
√
π
2

.
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Lemma 3.11. 1. mL(t) ≥ inf
0<z<1

e−zt = e−t

2. mL(t) ≤
e−t2/(t+1)

(
πt

t+1

)
sin

(
πt

t+1

)
3.

{
ms(t) = infz>0

e−zt(1−e−z)
z ≤ infz>0

e−zt

z ≤ −et, t < 0
ms(t) ≥ −2t, −

1
2 ≤ t ≤ 0.

4.
x − 1

x
≤ ln x ≤ x − 1, x > 0

Theorem 3.12. For any integrable function f and any η in the interior of Θ, the integral∫
f (x)e

∑
ηiTi(x)h(x)dµ(x)

is continuous and has derivatives of all orders with respect to the η′s, and these can be obtained by differentiating
under the integral sign.

4. Derivation of the EBS with general DF Gθ

In this section we will study testing problem (6). We will compare the four methods viz. Fisher, logistic,
sum of P-values and the inverse normal method via EBS.
Let X1, . . . ,Xn be i.i.d. with probability density function L (γθ, 1), and we want to test (6). The P-value in
this case is given by

Pn(Xn) = 1 − FH0 (Xn) = 1 − F0(x) = (1 + ex)−1 (7)

The next four lemmas give the EBS for Fisher (CF), logistic (CL), inverse normal (CN), and sum of p-values
(CS) methods.

Lemma 4.1. The exact Bahadur’s slope (EBS’s) result for the tests, which is given in Section 2, are as follows:

B1. Fisher method. CF(γ) = bF(γ) − 2 ln(bF(γ)) + 2 ln(2) − 2,
where

bF(γ) = 2γEGθ

{
θ
(
1 − e−γθ

)−1
}
.

B2. Logistic method. CL(γ) = −2 ln(m(bL(γ))), where

mL(t) = inf
z∈(0,1)

e−ztπz csc(πz)

and

bL(γ) = EGθ

[∫
R

xFL (x − γθ) dx
]
= γEGθ (θ) .

B3. Sum of p-values method. CS(γ) = −2 ln(m(bS(γ))), where

mS(t) = inf
z>0

e−zt 1 − e−z

z
and

bS(γ) = EGθ

 (1 − γθ)e−γθ − e−2γθ(
1 − e−γθ

)2

 .
B4. Inverse Normal method. CN(γ) = −2 ln(m(bN(γ))) = b2

N(γ) where

bN(γ) = −EGθ EL (γθ,1)

{
Φ−1((1 + ex)−1)|θ

}
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Proof. [Proof of B1]

TF = 2
n∑

i=1

ln (1 + exi )
√

n
.

By the strong law of large number (SLLN)

TF
√

n
w.p.1
−−−→ bF(γ) = 2EH1 [ln (1 + ex)]

then

bF(γ) = 2EGθ EL (γθ,1) {ln (1 + ex) |θ} = 2
"
R

ln (1 + ex) FL (x − γθ) dx dGθ = 2γEGθ

{
θ
(
eγθ − 1

)−1
}
.

Now under H0, then by Theorem (1):

M(z) = EL (0,1)

{
eln(1+ex)2z}

= EL (0,1)

{
(1 + ex)2z

}
, then let t = 1 + ex,

dt
dx
= ex, and x = ln(t − 1), thus

M(z) =
∫
∞

1

t−2z

t − 1
FL (ln(t − 1)) dt = (1 − 2z)−1, z <

1
2
. Then,

mF(t) = inf
z>0

e−zt(1 − 2z)−1 =
t
2

e1− t
2 .

Then by Theorem 2

CF(γ) = −2 ln(mF(bF(γ))) = −2 ln
(

bF(γ)
2

e1− bF (γ)
2

)
= bF(γ) − 2 ln(bF(γ)) + 2 ln(2) − 2

.

Proof. [Proof of B3]

TS = −

n∑
i=1

(1 + exi )−1

√
n

.

By the strong law of large number (SLLN)

TS
√

n
w.p.1
−−−→ bS(γ) = −EH1

[
(1 + ex)−1

]
then

bS(γ) = −EGθ EL (γθ,1)

{
(1 + ex)−1

|θ
}
= −

"
R

(1 + ex)−1 FL (x − γθ) dx dGθ = EGθ

 (1 − γθ)eγθ − 1(
eγθ − 1

)2

 .
Now, by Theorem 1, we have mS(t) = infz>0 e−ztMS(z), where MS(z) = EF(ezX). Under H0 : − (1 + exi )−1

∼

U(−1, 0), so MS(z) = 1−e−z

z , by part (2) of Theorem 2 we complete the proof, that is CS(γ) = −2 ln(mS(bS(γ))).

Proof. [Proof of B4]

TN = −

n∑
i=1

Φ−1((1 + exi )−1)
√

n
.

By the strong law of large number (SLLN)

TN
√

n
w.p.1
−−−→ bN(γ) = −EH1

{
Φ−1((1 + ex)−1)

}
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where

bN(γ) = −EGθ EL (γθ,1)

{
Φ−1((1 + ex)−1)|θ

}
= −EGθ

{∫
R

Φ−1((1 + ex)−1)FL (x − γθ) dx
}
.

Now, by Theorem 1, we have mN(t) = infz>0 e−ztMN(z), where MN(z) = EF(ezX).Under H0 : −Φ−1((1 + exi )−1) ∼
N(0, 1), so MN(z) = ez2/2, by part (2) of Theorem 2, CN(γ) = −2 ln(mN(bN(γ))) = b2

N(γ).

4.1. The Limiting ratio of the EBS for different tests when γ→ 0
Corollary 4.2. The limits of ratios for different tests are as follows:

A1. lim
γ→0

CS(γ)
CF(γ)

= 1.333333

A2. lim
γ→0

CL(γ)
CF(γ)

= 1.215854

A3. lim
γ→0

CN(γ)
CF(γ)

= 1.273239

A4. lim
γ→0

CN(γ)
CL(γ)

= 1.0472

A5. lim
γ→0

CN(γ)
CS(γ)

= 0.954929

A6. lim
γ→0

CS(γ)
CL(γ)

= 1.09662

Proof. [Proof of A1]

bF(γ) = 2γEGθ

{
θ
(
1 − e−γθ

)−1
}
.

Therefore

b′F(γ) = 2EGθ

θ1 − (1 + γθ)e−γθ(
1 − e−γθ

)2

 = EGθ

(
θ

eγθ − γθ − 1
cosh(γθ) − 1

)
.

By using L’Hopital’s rule twice, we get

lim
γ→0

b′F(γ) = − lim
γ→0
EGθ

[
θe−γθ

]
= −EGθ (θ) < ∞.

Also

bS(γ) = EGθ

 (1 − γθ)eγθ − 1(
eγθ − 1

)2

 .
By using L’Hopital’s rule three times, we get

lim
γ→0

b′S(γ) =
1
4

lim
γ→0
EGθ

{
θ

[
−2 + γθ coth

(
γθ

2

)]
csch2

(
γθ

2

)}
= lim
γ→0
EGθ

θ
[
5 + γθ + eγθ

(
−4 + 8γθ

)]
3
[
1 − 8eγθ + 9e2γθ]


=

1
6
EGθ (θ) < ∞.

Now under H0 : hF(x) = 2 ln(1 + ex) ∼ χ2
2 and hS(x) = −(1 + ex)−1

∼ U(−1, 0), so Varγ=0(hF(x)) = 4 and

Varγ=0(hS(x)) = 1
12 , also,

b′S(0)

b′F(0)
=

1
6
. By applying Theorem 3 we can get lim

γ→0

CS(γ)
CF(γ)

= 1.33333. Similarly we

can prove the other parts.
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4.2. The Limiting ratio of the EBS for different tests when γ→∞
Corollary 4.3. The limits of ratios for different tests are as follows:

D1. lim
γ→∞

CL(γ)
CF(γ)

= 1

D2. lim
γ→∞

CN(γ)
CS(γ)

= 0

D3. lim
γ→∞

CN(γ)
CL(γ)

= 0

D4. lim
γ→∞

CN(γ)
CF(γ)

= 0

D5. lim
γ→∞

CL(γ)
CS(γ)

= 0

D6. lim
γ→∞

CF(γ)
CS(γ)

= 0

D7. lim
γ→∞

(
CF(γ) − CL(γ)

)
≤ 0

Proof. [Proof of D1] By Lemma 1 part (1) CL(γ) ≤ 2γEGθ (θ) . So

lim
γ→∞

CL(γ)
CF(γ)

≤ lim
γ→∞

2γEGθ (θ)
bF(γ) − 2 ln(bF(γ)) + 2 ln(2) − 2

where
bF(γ) = 2γEGθ

{
θ
(
1 − e−γθ

)−1
}
.

It is sufficient to obtain the limit of lim
γ→∞

2γEGθ (θ)
bF(γ)

. Then

lim
γ→∞

2γEGθ (θ)

2γEGθ

{
θ
(
1 − e−γθ

)−1
} = lim

γ→∞

EGθ (θ)

EGθ

{
θ
(
1 − e−γθ

)−1
} = 1.

Then

lim
γ→∞

CL(γ)
CF(γ)

≤ 1.

Also, by Lemma 1 part (2), we have

CL(γ) ≥ 2
γ2E2

Gθ (θ)

1 + γEGθ (θ)
− 2 ln

[
πγEGθ (θ)

1 + γEGθ (θ)

]
+ 2 ln

[
sin

(
πγEGθ (θ)

1 + γEGθ (θ)

)]
.

So,

lim
γ→∞

CL(γ)
CF(γ)

≥ lim
γ→∞

2
γ2 E2

Gθ
(θ)

1+γEGθ (θ) − 2 ln
[
πγEGθ (θ)

1+γEGθ (θ)

]
+ 2 ln

[
sin

(
πγEGθ (θ)

1+γEGθ (θ)

)]
bF(γ) − 2 ln(bF(γ)) + 2 ln(2) − 2

.

It is sufficient to obtain the limit of lim
γ→∞

2
γ2 E2

Gθ
(θ)

1+γEGθ (θ)

bF(γ)
. Then

lim
γ→∞

2
γ2 E2

Gθ
(θ)

1+γEGθ (θ)

2γEGθ

{
θ
(
1 − e−γθ

)−1
} = lim

γ→∞

γE2
Gθ

(θ)

1+γEGθ (θ)

EGθ (θ)
= 1.
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Then lim
γ→∞

CL(γ)
CF(γ)

≥ 1.

By pinching theorem, we have lim
γ→∞

CL(γ)
CF(γ)

= 1.

Proof. [Proof of D2] We have
CN(γ) = b2

N(γ)

where
bN(γ) = −EGθ EL (γθ,1)

{
Φ−1((1 + ex)−1)|θ

}
.

By lemma 1 part (3) CS(γ) ≥ −2 − 2 ln
(
−bS(γ)

)
,where bS(γ) = EGθ

 (1 − γθ)e−γθ − e−2γθ(
1 − e−γθ

)2

 .
So

lim
γ→∞

CN(γ)
CS(γ)

≤ lim
γ→∞

{
EGθ EL (γθ,1)

{
Φ−1((1 + ex)−1)|θ

}}2

−2 − 2 ln
(
−bS(γ)

) .

Putting u = x − γθ,we get

lim
γ→∞

{
EGθ EL (γθ,1)

{
Φ−1((1 + ex)−1)|θ

}}2

−2 − 2 ln
(
−bS(γ)

) = lim
γ→∞

{
EGθ EL (0,1)

{
Φ−1(

(
1 + eu+γθ

)−1
)|θ

}}2

−2 − 2 ln
(
−bS(γ)

) .

Again, let t = Φ−1(
(
1 + eu+γθ

)−1
, Φ(t) =

(
1 + eu+γθ

)−1
, ϕ(t)

dt
du
= −eu+γθ

(
1 + eu+γθ

)−2
= −

1
2
(
1 + cosh

(
u + γθ

)) ,
we get

lim
γ→∞

{
EGθ EL (0,1)

{
Φ−1(

(
1 + eu+γθ

)−1
)|θ

}}2

−2 − 2 ln
(
−bS(γ)

) = lim
γ→∞

{
EGθ EL (0,1)

{
eγθtϕ(t)

[(
eγθ − 1

)
Φ(t) + 1

]−2
|θ

}}2

−2 − 2 ln
(
−bS(γ)

) .

Now, bS(γ)→ 0 as γ→∞, and eγθtϕ(t)
[(

eγθ − 1
)
Φ(t) + 1

]−2
→ 0 as γ→∞. Then

lim
γ→∞

CN(γ)
CS(γ)

≤ 0.

So

lim
γ→∞

CN(γ)
CS(γ)

= 0.

Proof. [Proof of D3] Same as the proof for D1 and D2
by Lemma 1 part (2), we have

CL(γ) ≥ 2
γ2E2

Gθ (θ)

1 + γEGθ (θ)
− 2 ln

[
πγEGθ (θ)

1 + γEGθ (θ)

]
+ 2 ln

[
sin

(
πγEGθ (θ)

1 + γEGθ (θ)

)]
,

and
CN(γ) = b2

N(γ)

where
bN(γ) = −EGθ EL (γθ,1)

{
Φ−1((1 + ex)−1)|θ

}
.
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lim
γ→∞

CN(γ)
CL(γ)

≤ lim
γ→∞

{
EGθ EL (0,1)

{
eγθtϕ(t)

[(
eγθ − 1

)
Φ(t) + 1

]−2
|θ

}}2

2
γ2 E2

Gθ
(θ)

1+γEGθ (θ) − 2 ln
[
πγEGθ (θ)

1+γEGθ (θ)

]
+ 2 ln

[
sin

(
πγEGθ (θ)

1+γEGθ (θ)

)] .
Now, as γ→∞

γ2E2
Gθ (θ)

1 + γEGθ (θ)
→∞

−2 ln
[
πγEGθ (θ)

1 + γEGθ (θ)

]
→ −2 ln(π)

2 ln
[
sin

(
πγEGθ (θ)

1 + γEGθ (θ)

)]
→ sin(π) = 0.

Then we have

lim
γ→∞

CN(γ)
CL(γ)

≤ 0

so

lim
γ→∞

CN(γ)
CL(γ)

= 0.

Proof. [Proof of D7] By Theorem 6 part (3)

CL(γ) ≥ −2 + 2γEGθ (θ) − 2 ln
(
EGθ (θ)

)
− 2 ln(γ) − 6 ln

[
γ2EGθ (θ)

1 + γ2EGθ (θ)

]
.

So

CF(γ) − CL(γ) ≤ bF(γ) − 2 ln(bF(γ)) + 2 ln(2) − 2γEGθ (θ) + 2 ln
(
EGθ (θ)

)
+ 2 ln(γ) + 6 ln

[
γ2EGθ (θ)

1 + γ2EGθ (θ)

]

= 2γEGθ

{
θ
(
1 − e−γθ

)−1
}
− 2 ln

[
EGθ

{
θ
(
1 − e−γθ

)−1
}]
− 2γEGθ (θ) + 2 ln

(
EGθ (θ)

)
+ 6 ln

[
γ2EGθ (θ)

1 + γ2EGθ (θ)

]
.

Now

6 ln
[
γ2EGθ (θ)

1 + γ2EGθ (θ)

]
= 6 ln

 EGθ (θ)
1
γ2 + EGθ (θ)

→ ln(1) = 0 as γ→∞

and
−2 ln

[
EGθ

{
θ
(
1 − e−γθ

)−1
}]
→ −2 ln

[
EGθ (θ)

]
as γ→∞

2γEGθ

{
θ
(
1 − e−γθ

)−1
}
− 2γEGθ (θ) = 2γ

[
EGθ

{
θ
(
1 − e−γθ

)−1
}
− EGθ (θ)

]
= 2
EGθ

{
θ
(
1 − e−γθ

)−1
}
− EGθ (θ)

1
γ

and by using L’Hopital’s rule three times, we get

2γEGθ

{
θ
(
1 − e−γθ

)−1
}
− 2γEGθ (θ)→ 0 as γ→∞.

Then,
CF(γ) − CL(γ) ≤ 0 as γ→∞
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4.3. Comparison of the EBS for the four combination procedures
From the relations in section (4.1) we conclude that locally as γ→ 0, the sum of p-values procedure is

better than all other procedures since it has the highest EBS, followed in decreasing order by the logistic
and inverse normal procedure. The worst is the Fisher’s procedure, i.e,

CS(γ) > CL(γ) > CN(γ) > CF(γ).

Whereas, from result of Section (4.2) as γ → ∞ the sum of p-values procedure is better than the other
procedures, followed in decreasing order by the logistic and Fisher’s procedure. The worst is the inverse
normal procedure, i.e,

CS(γ) > CL(γ) > CF(γ) > CN(γ)
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